1
|
Watanabe S, Borthakur D, Bressan A. Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. INSECT SCIENCE 2016; 23:591-602. [PMID: 25728903 DOI: 10.1111/1744-7917.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
| |
Collapse
|
2
|
Abstract
Kufor-Rakeb syndrome (KRS) is caused by loss-of-function mutations in ATP13A2 (PARK9) and characterized by juvenile-onset parkinsonism, pyramidal signs, and cognitive decline. Previous studies suggested that PARK9 deficiency causes lysosomal dysfunction and α-synuclein (α-syn) accumulation, whereas PARK9 overexpression suppresses toxicity of α-syn. However, the precise mechanism of PARK9 effect on lysosomes and α-syn has been unknown. Here, we found that overexpressed PARK9 localized to multivesicular bodies (MVBs) in the human H4 cell line. The results from patient fibroblasts showed that loss of PARK9 function leads to decreased number of the intraluminal vesicles in MVBs and diminished release of exosomes into culture media. By contrast, overexpression of PARK9 results in increased release of exosomes in H4 cells and mouse primary cortical neurons. Moreover, loss of PARK9 function resulted in decreased secretion of α-syn into extracellular space, whereas overexpressed PARK9 promotes secretion of α-syn, at least in part via exosomes. Finally, we found that PARK9 regulates exosome biogenesis through functional interaction with the endosomal sorting complex required for transport machinery. Together, these data suggest the involvement of PARK9 in the biogenesis of exosomes and α-syn secretion and raise a possibility that disruption of these pathways in patients with KRS contributes to the disease pathogenesis.
Collapse
|
3
|
Short JR, Nakayinga R, Hughes GE, Walter CT, Dorrington RA. Providence virus (family: Carmotetraviridae) replicates vRNA in association with the Golgi apparatus and secretory vesicles. J Gen Virol 2013; 94:1073-1078. [PMID: 23343628 DOI: 10.1099/vir.0.047647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Providence virus (PrV) is the sole member of the family Carmotetraviridae (formerly Tetraviridae) sharing the characteristic T=4 capsid architecture with other tetravirus families. Despite significant structural similarities, PrV differs from other tetraviruses in terms of genome organization, non-structural protein sequence and regulation of gene expression. In addition, it is the only tetravirus that infects tissue culture cells. Previous studies showed that in persistently infected Helicoverpa zea MG8 cells, the PrV replicase associates with detergent-resistant membranes in punctate cytosolic structures, which is similar to the distribution of an alpha-like tetravirus replicase (Helicoverpa armigera stunt virus). Here, we demonstrate that the site of PrV vRNA replication coincides with the presence of PrV p40/p104 proteins in infected cells and that these replication proteins associate with the Golgi apparatus and secretory vesicles in transfected cells.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Ritah Nakayinga
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Gareth E Hughes
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Cheryl T Walter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Wang Q, Han Y, Qiu Y, Zhang S, Tang F, Wang Y, Zhang J, Hu Y, Zhou X. Identification and characterization of RNA duplex unwinding and ATPase activities of an alphatetravirus superfamily 1 helicase. Virology 2012; 433:440-8. [PMID: 22995190 PMCID: PMC7111927 DOI: 10.1016/j.virol.2012.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022]
Abstract
Dendrolimus punctatus tetravirus (DpTV) belongs to the genus omegatetravirus of the Alphatetraviridae family. Sequence analysis predicts that DpTV replicase contains a putative helicase domain (Hel). However, the helicase activity in alphatetraviruses has never been formally determined. In this study, we determined that DpTV Hel is a functional RNA helicase belonging to superfamily-1 helicase with 5′–3′ dsRNA unwinding directionality. Further characterization determined the length requirement of the 5′ single-stranded tail on the RNA template and the optimal reaction conditions for the unwinding activity of DpTV Hel. Moreover, DpTV Hel also contains NTPase activity. The ATPase activity of DpTV Hel could be significantly stimulated by dsRNA, and dsRNA could partially rescue the ATPase activity abolishment caused by mutations. Our study is the first to identify an alphatetravirus RNA helicase and further characterize its dsRNA unwinding and NTPase activities in detail and should foster our understanding of DpTV and other alphatetraviruses.
Collapse
Affiliation(s)
- Qinrong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Short JR, Dorrington RA. Membrane targeting of an alpha-like tetravirus replicase is directed by a region within the RNA-dependent RNA polymerase domain. J Gen Virol 2012; 93:1706-1716. [PMID: 22535773 DOI: 10.1099/vir.0.038992-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The members of the family Tetraviridae are small positive-sense insect RNA viruses that exhibit stringent host specificity and a high degree of tissue tropism, suggesting that complex virus-host interactions are likely to occur during infection and viral replication. The alpha-like replicase of Helicoverpa armigera stunt virus (HaSV) (genus Omegatetravirus) has been proposed to associate with membranes of the endocytic pathway, which is similar to Semliki Forest virus, Sindbis virus and rubella virus. Here, we have used replicase-EGFP fusion proteins and recombinant baculovirus expression to demonstrate that the HaSV replicase associates strongly with cellular membranes, including detergent-resistant membranes, and that this association is maintained through a novel membrane targeting domain within the C-terminal region of the RNA-dependent RNA polymerase domain. We show a similar subcellular localization and strong association with detergent-resistant membranes for the carmo-like replicase of another tetravirus, Providence virus, in replicating cells, suggesting a common site of replication for these two tetraviruses.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| |
Collapse
|
6
|
Geisler C, Jarvis DL. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway. J Biol Chem 2012; 287:7084-97. [PMID: 22238347 DOI: 10.1074/jbc.m111.296814] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
7
|
Tetraviridae. VIRUS TAXONOMY 2012. [PMCID: PMC7149323 DOI: 10.1016/b978-0-12-384684-6.00094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter describes the Tetraviridae family. The virions of the Betatetravirus genus are nonenveloped, roughly spherical, of about 40 nm in diameter and exhibit T = 4 icosahedral shell quasi-symmetry. The genome consists of ssRNA and the viruses in the genus Betatetravirus have monopartite genomes. Betatetraviruses replicate in the cytoplasm and has three distinct types of genomic organization. Most of the members of the group are serologically interrelated but distinguishable. The majority of the isolates were identified on the basis of their serological reaction with antiserum raised against NβV. All the virus species were isolated from Lepidoptera species (moths and butterflies), principally from Saturniid, Limacodid, and Noctuid moths, and no replication in other animals has been detected. In larvae, virus replication is restricted predominantly to the cells of the midgut. With the exception of PrV, no infections by members of the Betatetravirus genus have been achieved in cultured cells, even when gRNA was transfected directly into cells. At high host densities, horizontal spread appears to be the major route of infection. Suggestive evidence exists for vertical transmission, which could be responsible for the observed persistence of tetraviruses within insect populations. The viruses replicate primarily in the cytoplasm of gut cells of several Lepidoptera species. The virons of omegatetravirus genus are nonenveloped, roughly spherical, about 40 nm in diameter and exhibit T = 4 icosahedral shell quasi-symmetry. Unlike viruses in the genus Betatetravirus, viruses in the genus Omegatetravirus have bipartite genomes. As with the betatetraviruses, omegatetraviruses replicate in the cytoplasm and studies in tissue culture cells show that the HaSV replicase is localized within the cytoplasm and associates with membranes derived from the endocytic pathway.
Collapse
|