1
|
Lin J, Wang C, Liang W, Zhang J, Zhang L, Lv H, Dong W, Zhang Y. Rab1A is required for assembly of classical swine fever virus particle. Virology 2017; 514:18-29. [PMID: 29128753 DOI: 10.1016/j.virol.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein.
Collapse
Affiliation(s)
- Jihui Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huifang Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
3
|
Sheng C, Liu X, Jiang Q, Xu B, Zhou C, Wang Y, Chen J, Xiao M. Annexin A2 is involved in the production of classical swine fever virus infectious particles. J Gen Virol 2015; 96:1027-1032. [PMID: 25593157 DOI: 10.1099/vir.0.000048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/09/2014] [Indexed: 12/20/2022] Open
Abstract
Annexin A2 (ANXA2) is an important host factor regulating several key processes in many viruses. To evaluate the potential involvement of ANXA2 in the life cycle of classical swine fever virus (CSFV), an RNA interference (RNAi) approach was utilized. Knockdown of ANXA2 did not impair CSFV RNA replication but significantly reduced CSFV production. A comparable reduction of extracellular and intracellular infectivity levels was detected, indicating that ANXA2 might play a role in CSFV assembly rather than in genome replication and virion release. Furthermore, ANXA2 was found to bind CSFV NS5A, an essential replicase component. Amino acids R338, N359, G378 of NS5A were revealed to be pivotal for the ANXA2-NS5A interaction. Substitutions of these amino acids had no effect on viral RNA replication but substantially reduced CSFV production, which might partly be due to these mutations destroying the ANXA2-NS5A interaction. These results suggested that ANXA2 might participate in CSFV production process by binding NS5A.
Collapse
Affiliation(s)
- Chun Sheng
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xiaoxiang Liu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Qiuyue Jiang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Bin Xu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Chenhao Zhou
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Yujing Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Jun Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, PR China
| |
Collapse
|
4
|
Sheng C, Kou S, Jiang Q, Zhou C, Xiao J, Li J, Chen B, Zhao Y, Wang Y, Xiao M. Characterization of the C-terminal sequence of NS5A necessary for the assembly and production of classical swine fever virus infectious particles. Res Vet Sci 2014; 97:449-54. [PMID: 25218811 DOI: 10.1016/j.rvsc.2014.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
Recent studies show that classical swine fever virus (CSFV) NS5A is an essential replicase component, but it is not known how NS5A participates in viral particle production. In this study, deletion and substitution mutations were introduced into the C-terminus of CSFV NS5A. The efficiency of Core protein release and extracellular and intracellular infectivity levels were assessed and NS5A-Core interaction was investigated. These results suggested that CSFV NS5A was a key factor for the assembly of infectious CSFV particles. The C-terminal sequence from amino acids 478 to 487 and amino acids S481 and T482 were necessary for CSFV assembly and production. The effect of NS5A on CSFV assembly and production might be related to NS5A-Core interaction. T482 was found to be conserved in the C-terminus of NS5A proteins of pestiviruses and hepatitis C virus (HCV), therefore suggesting that it might be important for these virus assembly and production.
Collapse
Affiliation(s)
- Chun Sheng
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shumeng Kou
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiuyue Jiang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chenhao Zhou
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Li
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Zhao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yujing Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
5
|
RNA helicase is involved in the expression and replication of classical swine fever virus and interacts with untranslated region. Virus Res 2012; 171:257-61. [PMID: 23220337 DOI: 10.1016/j.virusres.2012.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/21/2022]
Abstract
To investigate whether cytoplasmic RNA helicase A (RHA) influences the expression and replication of classical swine fever virus (CSFV), an siRNA molecule targeted to RHA was transfected into PK-15 cells. The siRNA was found to reduce cytoplasmic RHA. In CSFV subgenomic replicon transfected cells, incubation with the siRNAs negatively impacted viral NS3 and RNA production. In the CSFV infected cells, treatment with the siRNA resulted in a significant reduction of viral replication by 65-70%. Furthermore, affinity chromatography and UV-crosslinking assays revealed that RHA can bind the 5' and 3' terminal region of CSFV 3'-untranslated region (UTR), the 5' terminal region and domain III of CSFV 5' UTR. All these regions are important for viral replication and translation. These data showed that RHA is involved in the expression and replication of CSFV and might participate in modulation of RNA synthesis, replication and translation of CSFV by binding these regions.
Collapse
|
6
|
Chen Y, Xiao J, Xiao J, Sheng C, Wang J, Jia L, Zhi Y, Li G, Chen J, Xiao M. Classical swine fever virus NS5A regulates viral RNA replication through binding to NS5B and 3'UTR. Virology 2012; 432:376-88. [PMID: 22795973 DOI: 10.1016/j.virol.2012.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/30/2012] [Accepted: 04/23/2012] [Indexed: 12/01/2022]
Abstract
In this report, classical swine fever virus (CSFV) NS5A inhibit viral RNA replication when its concentration reached and surpassed the level of NS5B. Three amino acid fragments of CSFV NS5A, 137-172, 224-268 and 390-414 individually were shown to be essential to NS5B binding. The former two fragments were independently necessary for regulation of viral RNA replication and correlated with NS5B and 3'UTR binding activity. We also found that amino acids W143, V145, P227, T246, P257, K399, T401, E406 and L413 of CSFV NS5A were essential to NS5B binding activity. Furthermore, these amino acids were shown to be necessary for viral RNA replication and infection and conserved in NS5A proteins of CSFV, BDV, BVDV and HCV. These results indicated that NS5A may regulate viral RNA replication by binding to NS5B and 3'UTR. NS5A can still regulate viral RNA synthesis through binding to 3'UTR when binding to NS5B is not available.
Collapse
Affiliation(s)
- Yan Chen
- Biology Department, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sheng C, Wang J, Xiao J, Xiao J, Chen Y, Jia L, Zhi Y, Li G, Xiao M. Classical swine fever virus NS5B protein suppresses the inhibitory effect of NS5A on viral translation by binding to NS5A. J Gen Virol 2012; 93:939-950. [DOI: 10.1099/vir.0.039495-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In order to investigate molecular mechanisms of internal ribosome entry site (IRES)-mediated translation in classical swine fever virus (CSFV), an important pathogen of pigs, the expression level of NS3 was evaluated in the context of genomic RNAs and reporter RNA fragments. All data showed that the NS5A protein has an inhibitory effect on IRES-mediated translation and that NS5B proteins suppress the inhibitory effect of NS5A on viral translation, but CSFV NS5B GDD mutants do not. Furthermore, glutathione S-transferase pull-down assay and immunoprecipitation analysis, associated with deletion and alanine-scanning mutations, were performed. Results showed that NS5B interacts with NS5A and that the region aa 390–414, located in the C-terminal half of NS5A, is important for binding of NS5B to NS5A. Furthermore, amino acids K399, T401, E406 and L413 in the region were found to be essential for NS5A–NS5B interaction, virus rescue and infection. The above-mentioned region and four amino acids were observed to overlap with the site responsible for inhibition of IRES-mediated translation by the NS5A protein. We also found that aa 63–72, aa 637–653 and the GDD motif of NS5B were necessary for the interaction between NS5A and NS5B. These findings suggest that the repression activity of the NS5B protein toward the role of NS5A in translation might be achieved by NS5A–NS5B interaction, for which aa 390–414 of NS5A and aa 63–72, aa 637–653 and the GDD motif of NS5B are indispensable. This is important for understanding the role of NS5A–NS5B interaction in the virus life cycle.
Collapse
Affiliation(s)
- Chun Sheng
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jing Wang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Jing Xiao
- The First Clinical Medical College, Southern Medical University, Guangzhou 510515, PR China
| | - Jun Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Yan Chen
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Lin Jia
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Yimiao Zhi
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Guangyuan Li
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|