1
|
Lalande A, Canus L, Bourgeais A, Mathieu C, Ogire E. The liver as a potential gate to the brain for encephalitic viruses. Curr Opin Virol 2025; 71:101463. [PMID: 40347828 DOI: 10.1016/j.coviro.2025.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
To model infection of viruses targeting the liver and the central nervous system, two-dimensional in vitro cultures rapidly show their limitations. Conversely, in vivo models do not easily allow the investigation of early events of the infection process. In between, ex vivo models, comprising mainly organoids and organotypic cultures, mimic or retain the cytoarchitecture of the organ while being relatively simple to handle and analyze. Here, we summarize the main features of brain and liver ex vivo models and pinpoint examples of their utilization for studying encephalitogenic and hepatotropic viruses. We highlight a gap of development and application of liver compared to ex vivo models in virology. Many hepatotropic viruses can also infect and/or have impacts on the central nervous system. In this sense, we sought to present these ex vivo models while providing a conceptual framework for the modeling of the hepatocerebral axis in the context of viral infections.
Collapse
Affiliation(s)
- Alexandre Lalande
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Lola Canus
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Amélie Bourgeais
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France
| | - Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, NeuroInvasion TROpism and VIRal Encephalitis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, F-69007 Lyon, France.
| |
Collapse
|
2
|
Yu F, Chen H, Xu J, Wang Y, Nie C, Song S, Meng L, Hao K, Zhao Z. Heparan sulfate is the attachment factor associated with channel catfish virus infection on host cells. Front Vet Sci 2023; 10:1260002. [PMID: 37745212 PMCID: PMC10514354 DOI: 10.3389/fvets.2023.1260002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Channel catfish virus (CCV; family Alloherpesviridae) infects channel catfish, causing great harm to aquaculture fisheries and economic development. Attachment is the first step in viral infection and relies on the interaction of virions with components of the extracellular matrix (ECM). The present study aimed to explored the role of the main three ECM components in CCV attachment. Western blotting and quantitative real-time PCR analysis showed that neither collagen nor hyaluronic acid treatments had significant effects on CCV attachment. When exogenous heparin was used as a competitive inhibitor, the adhesion of heparin sodium salt to CCV was dose-dependent. When the concentration of heparin sodium salt was 10 mg/mL, the inhibitory effect on CCV infection of channel catfish ovary (CCO/BB) cells was more than 90%. Heparinase I could significantly prevent CCV attachment by digesting heparan sulfate on the cell surface, and both heparin sodium salt and heparinase I could dose-dependently reduce CCV titers, suggesting that heparin plays an important role in CCV attachment. In addition, the binding experiments between heparin-agarose beads and virions showed that CCV virions could specifically bind to heparin in a dose-dependent manner. The above results suggested that heparan sulfate might be an attachment factor involved in CCV infection of CCO/BB cells. These results increase our understand of the attachment mechanism of CCV and lay the foundation for further research on antiviral drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
3
|
Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 2023; 19:458-473. [PMID: 35574061 PMCID: PMC9079116 DOI: 10.1016/j.bioactmat.2022.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
4
|
The GABA A Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci 2018; 8:brainsci8040072. [PMID: 29690521 PMCID: PMC5924408 DOI: 10.3390/brainsci8040072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 01/06/2023] Open
Abstract
Alcoholism initiates with episodes of excessive alcohol drinking, known as binge drinking, which is one form of excessive drinking (NIAAA Newsletter, 2004) that is related to impulsivity and anxiety (Ducci et al., 2007; Edenberg et al., 2004) and is also predictive of smoking status. The predisposition of non-alcohol exposed subjects to initiate binge drinking is controlled by neuroimmune signaling that includes an innately activated neuronal Toll-like receptor 4 (TLR4) signal. This signal also regulates cognitive impulsivity, a heritable trait that defines drug abuse initiation. However, the mechanism of signal activation, its function in dopaminergic (TH+) neurons within the reward circuitry implicated in drug-seeking behavior [viz. the ventral tegmental area (VTA)], and its contribution to nicotine co-abuse are still poorly understood. We report that the γ-aminobutyric acidA receptor (GABAAR) α2 subunit activates the TLR4 signal in neurons, culminating in the activation (phosphorylation/nuclear translocation) of cyclic AMP response element binding (CREB) but not NF-kB transcription factors and the upregulation of corticotropin-releasing factor (CRF) and tyrosine hydroxylase (TH). The signal is activated through α2/TLR4 interaction, as evidenced by co-immunoprecipitation, and it is present in the VTA from drug-untreated alcohol-preferring P rats. VTA infusion of neurotropic herpes simplex virus (HSV) vectors for α2 (pHSVsiLA2) or TLR4 (pHSVsiTLR4) but not scrambled (pHSVsiNC) siRNA inhibits signal activation and both binge alcohol drinking and nicotine sensitization, suggesting that the α2-activated TLR4 signal contributes to the regulation of both alcohol and nicotine abuse.
Collapse
|
5
|
Balan I, Warnock KT, Puche A, Gondre-Lewis MC, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun 2018; 69:139-153. [PMID: 29146239 PMCID: PMC5857415 DOI: 10.1016/j.bbi.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/25/2022] Open
Abstract
Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABAA receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation.
Collapse
Affiliation(s)
- Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaitlin T Warnock
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marjorie C Gondre-Lewis
- Department of Anatomy, Laboratory for Neurodevelopment, Howard University College of Medicine, Washington, DC, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017; 308:43-49. [PMID: 28302316 DOI: 10.1016/j.jneuroim.2017.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are neurotropic human pathogens that infect and establish latency in peripheral sensory neurons of the host. Herpes Simplex Virus-1 (HSV-1) readily infects the facial mucosa that can result in the establishment of a latent infection in the sensory neurons of the trigeminal ganglia (TG). From latency, HSV-1 can reactivate and cause peripheral pathology following anterograde trafficking from sensory neurons. Under rare circumstances, HSV-1 can migrate into the central nervous system (CNS) and cause Herpes Simplex Encephalitis (HSE), a devastating disease of the CNS. It is unclear whether HSE is the result of viral reactivation within the TG, from direct primary infection of the olfactory mucosa, or from other infected CNS neurons. Areas of the brain that are susceptible to HSV-1 during acute infection are ill-defined. Furthermore, whether the CNS is a true reservoir of viral latency following clearance of virus during acute infection is unknown. In this context, this review will identify sites within the brain that are susceptible to acute infection and harbor latent virus. In addition, we will also address findings of HSV-1 lytic gene expression during latency and comment on the pathophysiological consequences HSV-1 infection may have on long-term neurologic performance in animal models and humans.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. USA.
| |
Collapse
|
7
|
Tsalenchuck Y, Steiner I, Panet A. Innate defense mechanisms against HSV-1 infection in the target tissues, skin and brain. J Neurovirol 2016; 22:641-649. [PMID: 27098517 DOI: 10.1007/s13365-016-0440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initiates productive infection in mucocutaneous tissues to cause cold sores and establishes latent infection in the trigeminal ganglia. Under certain circumstances, HSV-1 may cause encephalitis. Here, we compared host innate defenses against HSV-1 in the two clinically relevant tissues, skin and brain, using a unique ex vivo system of organ culture. Upon HSV-1 infection and spread, apoptosis induction was observed in the skin, but not in brain tissues. While the two tissues elicited interferon (IFN-β) response upon HSV1 infection, IFN induction was more robust in the skin compared to the brain. Moreover, antiviral response to exogenous IFNβ treatment was much stronger in the skin compared to brain tissues. This observation was not related to the availability of the IFN receptor on cells' surface. Taken together, our study demonstrates differential innate antiviral responses to HSV-1 infection that may be exploited in future development of selective and tissue-specific anti-viral treatments.
Collapse
Affiliation(s)
- Yael Tsalenchuck
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Israel Steiner
- Department of Neurology, Rabin Medical Center, Campus Beilinson, Petach Tikva, Israel
| | - Amos Panet
- Department of Biochemistry, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
8
|
June HL, Liu J, Warnock KT, Bell KA, Balan I, Bollino D, Puche A, Aurelian L. CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology 2015; 40:1549-59. [PMID: 25567426 PMCID: PMC4397415 DOI: 10.1038/npp.2015.4] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Alcohol dependence is a complex disorder that initiates with episodes of excessive alcohol drinking known as binge drinking. It has a 50-60% risk contribution from inherited susceptibility genes; however, their exact identity and function are still poorly understood. We report that alcohol-preferring P rats have innately elevated levels of Toll-like receptor 4 (TLR4) and monocyte chemotactic protein-1 (MCP-1) that colocalize in neurons from the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA). To examine the potential role of a TLR4/MCP-1 signal, we used Herpes Simplex Virus (HSV) vectors (amplicons) that retain in vivo neurotropism. Infusion of amplicons for TLR4 or MCP-1 siRNA into the CeA or VTA from the P rats inhibited target gene expression and blunted binge drinking. A similarly delivered amplicon for scrambled siRNA did not inhibit TLR4 or MCP-1 expression nor reduce binge drinking, identifying a neuronal TLR4/MCP-1 signal that regulates the initiation of voluntary alcohol self-administration. The signal was sustained during alcohol drinking by increased expression of corticotropin-releasing factor and its feedback regulation of TLR4 expression, likely contributing to the transition to alcohol dependence.
Collapse
Affiliation(s)
- Harry L June
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Juan Liu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaitlin T Warnock
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Kimberly A Bell
- Neuropsychopharmacology Laboratory, Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC, USA
| | - Irina Balan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dominique Bollino
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Pharmacology and Experimental Therapeutics, University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA, Tel: +1 410 7063895, Fax: +1 410 7062513, E-mail:
| |
Collapse
|
9
|
Kroll CM, Zheng M, Carr DJJ. Enhanced resistance of CXCR3 deficient mice to ocular HSV-1 infection is due to control of replication in the brain ependyma. J Neuroimmunol 2014; 276:219-23. [PMID: 25139013 DOI: 10.1016/j.jneuroim.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/26/2023]
Abstract
CXCR3 deficient (CXCR3(-/-)) mice are resistant to ocular HSV-1 infection in that less mice develop encephalitis and succumb to infection in comparison to wild type (WT) animals. A region of the brain previously identified to be crucial for development of encephalitis was evaluated in HSV-1-infected CXCR3(-/-) and WT mice. In this region, known as the ependyma, viral titer, infiltrating leukocyte populations, and key anti-viral cytokine message levels were evaluated. We found that CXCR3(-/-) mice possessed significantly less HSV-1 and expressed significantly more IFN-β mRNA in the brain ependyma compared to WT animals during the development of encephalitis.
Collapse
Affiliation(s)
- Chandra M Kroll
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Min Zheng
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Different modes of herpes simplex virus type 1 spread in brain and skin tissues. J Neurovirol 2014; 20:18-27. [PMID: 24408306 DOI: 10.1007/s13365-013-0224-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
Collapse
|
11
|
Conrady CD, Zheng M, van Rooijen N, Drevets DA, Royer D, Alleman A, Carr DJJ. Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2807-17. [PMID: 23382563 DOI: 10.4049/jimmunol.1203265] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HSV-1 is the leading cause of sporadic viral encephalitis, with mortality rates approaching 30% despite treatment with the antiviral drug of choice, acyclovir. Permanent neurologic deficits are common in patients that survive, but the mechanism leading to this pathology is poorly understood, impeding clinical advancements in treatment to reduce CNS morbidity. Using magnetic resonance imaging and type I IFN receptor-deficient mouse chimeras, we demonstrate HSV-1 gains access to the murine brain stem and subsequently brain ependymal cells, leading to enlargement of the cerebral lateral ventricle and infection of the brain parenchyma. A similar enlargement in the lateral ventricles is found in a subpopulation of herpes simplex encephalitic patients. Associated with encephalitis is an increase in CXCL1 and CXCL10 levels in the cerebral spinal fluid, TNF-α expression in the ependymal region, and the influx of neutrophils of encephalitic mouse brains. Reduction in lateral ventricle enlargement using anti-secretory factor peptide 16 reduces mortality significantly in HSV-1-infected mice without any effect on expression of inflammatory mediators, infiltration of leukocytes, or changes in viral titer. Microglial cells but not infiltrating leukocytes or other resident glial cells or neurons are the principal source of resistance in the CNS during the first 5 d postinfection through a Toll/IL-1R domain-containing adapter inducing IFN-β-dependent, type I IFN pathway. Our results implicate lateral ventricle enlargement as a major cause of mortality in mice and speculate such an event transpires in a subpopulation of human HSV encephalitic patients.
Collapse
Affiliation(s)
- Christopher D Conrady
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yaacov B, Lazar I, Tayeb S, Frank S, Izhar U, Lotem M, Perlman R, Ben-Yehuda D, Zakay-Rones Z, Panet A. Extracellular matrix constituents interfere with Newcastle disease virus spread in solid tissue and diminish its potential oncolytic activity. J Gen Virol 2012; 93:1664-1672. [PMID: 22622327 DOI: 10.1099/vir.0.043281-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advanced melanoma cells, characterized by resistance to chemotherapy, have been shown to be highly sensitive to oncolysis by Newcastle disease virus (NDV). In the present study, we investigated the capacity of NDV to specifically infect and spread into solid tissues of human melanoma and lung carcinoma, in vivo and ex vivo. For this purpose a new model of SCID-beige mice implanted with human melanoma was developed. Surprisingly, the replication competent NDV-MTH and the attenuated, single-cycle replication NDV-HUJ strains, demonstrated a similar oncolytic activity in the melanoma-implanted mice. Further, ex vivo analysis, using organ cultures derived from the melanoma tissues indicated a limited spread of the two NDV strains in the tissue. Extracellular matrix (ECM) molecules, notably heparin sulfate and collagen, were found to limit viral spread in the tissue. This observation was validated with yet another solid tumour of human lung carcinoma. Taken together, the results indicate that the ECM acts as a barrier to virus spread within solid tumour tissues and that this restriction must be overcome to achieve effective oncolysis with NDV.
Collapse
Affiliation(s)
- Barak Yaacov
- Department of Biochemistry, the Chanock Center for Virology, IMRIC, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Itay Lazar
- Department of Hematology, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Shay Tayeb
- Department of Biochemistry, the Chanock Center for Virology, IMRIC, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Sivan Frank
- Department of Hematology, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Uzi Izhar
- Department of Cardiothoracic Surgery, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Michal Lotem
- Department of Oncology, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry, the Chanock Center for Virology, IMRIC, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| | - Amos Panet
- Department of Biochemistry, the Chanock Center for Virology, IMRIC, Hadassah Medical Center-Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|