1
|
Nematollahzadeh S, Athukorala A, Donnelly CM, Pavan S, Atelie-Djossou V, Di Iorio E, Nath B, Helbig KJ, McSharry BP, Forwood JK, Sarker S, Alvisi G. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Traffic 2024; 25:e12953. [PMID: 39301720 DOI: 10.1111/tra.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
Adenoviral pVII proteins are multifunctional, highly basic, histone-like proteins that can bind to and transport the viral genome into the host cell nucleus. Despite the identification of several nuclear localization signals (NLSs) in the pVII protein of human adenovirus (HAdV)2, the mechanistic details of nuclear transport are largely unknown. Here we provide a full characterization of the nuclear import of precursor (Pre-) pVII protein from an ancient siadenovirus, frog siadenovirus 1 (FrAdV1), using a combination of structural, functional, and biochemical approaches. Two strong NLSs (termed NLSa and NLSd) interact with importin (IMP)β1 and IMPα, respectively, and are the main drivers of nuclear import. A weaker NLS (termed NLSb) also contributes, together with an additional signal (NLSc) which we found to be important for nucleolar targeting and intranuclear binding. Expression of wild-type and NLS defective derivatives Pre-pVII in the presence of selective inhibitors of different nuclear import pathways revealed that, unlike its human counterpart, FrAdV1 Pre-pVII nuclear import is dependent on IMPα/β1 and IMPβ1, but not on transportin-1 (IMPβ2). Clearly, AdVs evolved to maximize the nuclear import pathways for the pVII proteins, whose subcellular localization is the result of a complex process. Therefore, our results pave the way for an evolutionary comparison of the interaction of different AdVs with the host cell nuclear transport machinery.
Collapse
Affiliation(s)
| | - Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Camilla M Donnelly
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Enzo Di Iorio
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Babu Nath
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Brian P McSharry
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Kulanayake S, Singh B, Dar F, Tikoo SK. Role of Protein VII in the Production of Infectious Bovine Adenovirus-3 Virion. Viruses 2024; 16:1323. [PMID: 39205297 PMCID: PMC11359501 DOI: 10.3390/v16081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bovine adenovirus (BAdV)-3 genome encodes a 26 kDa core protein designated as protein VII, which localizes to the nucleus/nucleolus. The requirement of a protein VII-complementing cell line for the replication of VII-deleted BAdV-3 suggests that protein VII is required for the production of infectious progeny virions. An analysis of the BAV.VIId+ virus (only phenotypically positive for protein VII) detected no noticeable differences in the expression and incorporation of viral proteins in the virions. Moreover, protein VII does not appear to be essential for the formation of mature BAV.VIId+. However, protein VII appeared to be required for the efficient assembly of mature BAV.VIId- virions. An analysis of the BAV.VIId- virus (genotypically and phenotypically negative for protein VII) in non-complementing cells detected the inefficient release of virions from endosomes, which affected the expression of viral proteins or DNA replication. Moreover, the absence of protein VII altered the proteolytic cleavage of protein VI of BAV.VIId-. Our results suggest that BAdV-3 protein VII appears to be required for efficient production of mature virions. Moreover, the absence of protein VII produces non-infectious BAdV-3 by altering the release of BAdV-3 from endosomes/vesicles.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Barinder Singh
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
3
|
Kulanayake S, Dar F, Tikoo SK. Regions of Bovine Adenovirus-3 Protein VII Involved in Interactions with Viral and Cellular Proteins. Viruses 2024; 16:732. [PMID: 38793614 PMCID: PMC11125828 DOI: 10.3390/v16050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The L 1 region of bovine adenovirus (BAdV)-3 encodes a multifunctional protein named protein VII. Anti-protein VII sera detected a protein of 26 kDa in transfected or BAdV-3-infected cells, which localizes to nucleus and nucleolus of infected/transfected cells. Analysis of mutant protein VII identified four redundant overlapping nuclear/nucleolar localization signals as deletion of all four potential nuclear/nucleolar localization signals localizes protein VII predominantly to the cytoplasm. The nuclear import of protein VII appears to use importin α (α-1), importin-β (β-1) and transportin-3 nuclear transport receptors. In addition, different nuclear transport receptors also require part of protein VII outside nuclear localization sequences for efficient interaction. Proteomic analysis of protein complexes purified from recombinant BAdV-3 expressing protein VII containing Strep Tag II identified potential viral and cellular proteins interacting with protein VII. Here, we confirm that protein VII interacts with IVa2 and protein VIII in BAdV-3-infected cells. Moreover, amino acids 91-101 and 126-137, parts of non-conserved region of protein VII, are required for interaction with IVa2 and protein VIII, respectively.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Faryal Dar
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Suresh K. Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.K.); (F.D.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
4
|
Kulanayake S, Tikoo SK. Adenovirus Core Proteins: Structure and Function. Viruses 2021; 13:v13030388. [PMID: 33671079 PMCID: PMC7998265 DOI: 10.3390/v13030388] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Adenoviruses have served as a model for investigating viral-cell interactions and discovering different cellular processes, such as RNA splicing and DNA replication. In addition, the development and evaluation of adenoviruses as the viral vectors for vaccination and gene therapy has led to detailed investigations about adenovirus biology, including the structure and function of the adenovirus encoded proteins. While the determination of the structure and function of the viral capsid proteins in adenovirus biology has been the subject of numerous reports, the last few years have seen increased interest in elucidating the structure and function of the adenovirus core proteins. Here, we provide a review of research about the structure and function of the adenovirus core proteins in adenovirus biology.
Collapse
Affiliation(s)
- Shermila Kulanayake
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada;
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E3, Canada
- Correspondence:
| |
Collapse
|
5
|
McKay DM, Mancini NL, Shearer J, Shutt T. Perturbed mitochondrial dynamics, an emerging aspect of epithelial-microbe interactions. Am J Physiol Gastrointest Liver Physiol 2020; 318:G748-G762. [PMID: 32116020 DOI: 10.1152/ajpgi.00031.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria exist in a complex network that is constantly remodeling via the processes of fission and fusion in response to intracellular conditions and extracellular stimuli. Excessive fragmentation of the mitochondrial network because of an imbalance between fission and fusion reduces the cells' capacity to generate ATP and can be a forerunner to cell death. Given the critical roles mitochondria play in cellular homeostasis and innate immunity, it is not surprising that many microbial pathogens can disrupt mitochondrial activity. Here we note the putative contribution of mitochondrial dysfunction to gut disease and review data showing that infection with microbial pathogens can alter the balance between mitochondrial fragmentation and fusion, preventing normal remodeling (i.e., dynamics) and can lead to cell death. Current data indicate that infection of epithelia or macrophages with microbial pathogens will ultimately result in excessive fragmentation of the mitochondrial network. Concerted research efforts are required to elucidate fully the processes that regulate mitochondrial dynamics, the mechanisms by which microbes affect epithelial mitochondrial fission and/or fusion, and the implications of this for susceptibility to infectious disease. We speculate that the commensal microbiome of the gut may be important for normal epithelial mitochondrial form and function. Drugs designed to counteract the effect of microbial pathogen interference with mitochondrial dynamics may be a new approach to infectious disease at mucosal surfaces.
Collapse
Affiliation(s)
- Derek M McKay
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group (GIRG) and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Timothy Shutt
- Department of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Gaba A, Ayalew LE, Patel A, Kumar P, Tikoo SK. Bovine adenovirus‐3 protein VIII associates with eukaryotic initiation factor‐6 during infection. Cell Microbiol 2018. [DOI: 10.1111/cmi.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amit Gaba
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Lisanework E. Ayalew
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Amrutlal Patel
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Pankaj Kumar
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| | - Suresh K. Tikoo
- VIDO‐InterVacUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Veterinary MicrobiologyUniversity of Saskatchewan Saskatoon Saskatchewan Canada
- Vaccinology & Immunotherapeutics Program, School of Public HealthUniversity of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
7
|
Gaba A, Ayalew L, Makadiya N, Tikoo S. Proteolytic Cleavage of Bovine Adenovirus 3-Encoded pVIII. J Virol 2017; 91:e00211-17. [PMID: 28298598 PMCID: PMC5411589 DOI: 10.1128/jvi.00211-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 11/20/2022] Open
Abstract
Proteolytic maturation involving cleavage of one nonstructural and six structural precursor proteins including pVIII by adenovirus protease is an important aspect of the adenovirus life cycle. The pVIII encoded by bovine adenovirus 3 (BAdV-3) is a protein of 216 amino acids and contains two potential protease cleavage sites. Here, we report that BAdV-3 pVIII is cleaved by adenovirus protease at both potential consensus protease cleavage sites. Usage of at least one cleavage site appears essential for the production of progeny BAdV-3 virions as glycine-to-alanine mutation of both protease cleavage sites appears lethal for the production of progeny virions. However, mutation of a single protease cleavage site of BAdV-3 pVIII significantly affects the efficient production of infectious progeny virions. Further analysis revealed no significant defect in endosome escape, genome replication, capsid formation, and virus assembly. Interestingly, cleavage of pVIII at both potential cleavage sites appears essential for the production of stable BAdV-3 virions as BAdV-3 expressing pVIII containing a glycine-to-alanine mutation of either of the potential cleavage sites is thermolabile, and this mutation leads to the production of noninfectious virions.IMPORTANCE Here, we demonstrated that the BAdV-3 adenovirus protease cleaves BAdV-3 pVIII at both potential protease cleavage sites. Although cleavage of pVIII at one of the two adenoviral protease cleavage sites is required for the production of progeny virions, the mutation of a single cleavage site of pVIII affects the efficient production of infectious progeny virions. Further analysis indicated that the mutation of a single protease cleavage site (glycine to alanine) of pVIII produces thermolabile virions, which leads to the production of noninfectious virions with disrupted capsids. We thus provide evidence about the requirement of proteolytic cleavage of pVIII for production of infectious progeny virions. We feel that our study has significantly advanced the understanding of the requirement of adenovirus protease cleavage of pVIII.
Collapse
Affiliation(s)
- Amit Gaba
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisanework Ayalew
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niraj Makadiya
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suresh Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Zhao X, Tikoo SK. Deletion of pV affects integrity of capsid causing defect in the infectivity of bovine adenovirus-3. J Gen Virol 2016; 97:2657-2667. [PMID: 27521148 DOI: 10.1099/jgv.0.000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Members of the genus Mastadenovirus including bovine adenovirus 3 (BAdV-3) encode a genus-specific unique protein named pV. The pV encoded by BAdV-3 is a protein of 423 aa showing 40.9 % identity to pV of human adenovirus 2. Here, we report the construction and analysis of recombinant BAdV-3 (BAV.dV) containing deletion of pV. The BAV.dV could only be isolated in CRL.pV cells expressing pV, suggesting that pV appears essential for the infection of BAdV-3. Analysis of BAV.dV suggested that despite affecting some late gene expression in virus-infected cells, there was no significant difference in the incorporation of viral proteins in the mature virions. Moreover, analysis of mature virions revealed degraded capsids leading to change in morphology and infectivity of BAV.dV. Furthermore, analysis of the genome sequence of different clones of BAV.dV passaged in different cell lines revealed no mutations in core proteins pVII and pX\Mu suggesting that the replication defect may not be rescued. Our results suggest that pV is required for proper viral assembly of BAdV-3 as lack of pV produces aberrant capsids. Moreover, altered capsids lead to the production of non-infectious BAV.dV virions.
Collapse
Affiliation(s)
- Xin Zhao
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.,Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Suresh K Tikoo
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.,Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
9
|
Ayalew LE, Gaba A, Kumar P, Tikoo SK. Conserved regions of bovine adenovirus-3 pVIII contain functional domains involved in nuclear localization and packaging in mature infectious virions. J Gen Virol 2014; 95:1743-1754. [PMID: 24854002 DOI: 10.1099/vir.0.065763-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are non-enveloped DNA viruses that replicate in the nucleus of infected cells. One of the core proteins, named pVIII, is a minor capsid protein connecting the core with the inner surface of the capsid. Here, we report the characterization of minor capsid protein pVIII encoded by the L6 region of bovine adenovirus (BAdV)-3. Anti-pVIII serum detected a 24 kDa protein at 12-48 h post-infection and an additional 8 kDa protein at 24-48 h post-infection. While the 24 kDa protein was detected in empty capsids, only the C-terminal-cleaved 8 kDa protein was detected in the mature virion, suggesting that amino acids147-216 of the conserved C-terminus of BAdV-3 pVIII are incorporated in mature virions. Detection of hexon protein associated with both precursor (24 kDa) and cleaved (8 kDa) forms of pVIII suggest that the C-terminus of pVIII interacts with the hexon. The pVIII protein predominantly localizes to the nucleus of BAdV-3-infected cells utilizing the classical importin α/β dependent nuclear import pathway. Analysis of mutant pVIII demonstrated that amino acids 52-72 of the conserved N-terminus bind to importin α-3 with high affinity and are required for the nuclear localization.
Collapse
Affiliation(s)
- Lisanework E Ayalew
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Amit Gaba
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Pankaj Kumar
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Suresh K Tikoo
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.,Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| |
Collapse
|
10
|
Anand SK, Singh J, Gaba A, Tikoo SK. Effect of bovine adenovirus 3 on mitochondria. Vet Res 2014; 45:45. [PMID: 24739681 PMCID: PMC3998056 DOI: 10.1186/1297-9716-45-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/31/2014] [Indexed: 01/23/2023] Open
Abstract
Viruses alter the structure and the function of mitochondria for survival. Electron microscopy analysis of the cells infected with bovine adenovirus 3 revealed extensive damage to the inner mitochondrial membrane characterized by dissolution of the cristae and amorphous appearance of mitochondrial matrix with little or no damage to the outer mitochondrial membrane. There were fewer cristae with altered morphology. Potential patches of protein synthesis machinary around mitochondria could be observed at 12 hours post infection (hpi). At 24 hpi, the multi vascular bodies were evident throughout the infected cell. ATP production, mitochondrial Ca2+ and mitochondrial membrane potential (MMP) peaked at 18 hpi but decreased significantly at 24 hpi. This decrease coincided with the increased production of superoxide (SO) and reactive oxygen species (ROS), at 24 hpi indicating acute oxidative stress in the cells and suggesting a complete failure of the cellular homeostatic machinary. The results reveal an intericate relationship between Ca2+ homeostasis, the ATP generation ability of cells, SO and ROS production, and regulation of MMP following infection by bovine adenovirus 3.
Collapse
Affiliation(s)
| | | | | | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.
| |
Collapse
|