1
|
Thorarinsson R, Ramstad A, Wolf JC, Sindre H, Skjerve E, Rimstad E, Evensen Ø, Rodriguez JF. Effect of pancreas disease vaccines on infection levels and virus transmission in Atlantic salmon ( Salmo salar) challenged with salmonid alphavirus, genotype 2. Front Immunol 2024; 15:1342816. [PMID: 38515753 PMCID: PMC10955579 DOI: 10.3389/fimmu.2024.1342816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Salmonid alphavirus (SAV) causes pancreas disease (PD), which negatively impacts farmed Atlantic salmon. In this study, fish were vaccinated with a DNA-PD vaccine (DNA-PD) and an oil-adjuvanted, inactivated whole virus PD vaccine (Oil-PD). Controls were two non-PD vaccinated groups. Fish were kept in one tank and challenged by cohabitation with SAV genotype 2 in seawater. Protection against infection and mortality was assessed for 84 days (Efficacy study). Nineteen days post challenge (dpc), subgroups of fish from all treatment groups were transferred to separate tanks and cohabited with naïve fish (Transmission study 1) or fish vaccinated with a homologous vaccine (Transmission study 2), to evaluate virus transmission for 26 days (47 dpc). Viremia, heart RT-qPCR and histopathological scoring of key organs affected by PD were used to measure infection levels. RT-droplet digital PCR quantified shedding of SAV into water for transmission studies. The Efficacy study showed that PD associated growth-loss was significantly lower and clearance of SAV2 RNA significantly higher in the PD-DNA group compared to the other groups. The PD-DNA group had milder lesions in the heart and muscle. Cumulative mortality post challenge was low and not different between groups, but the DNA-PD group had delayed time-to-death. In Transmission study 1, the lowest water levels of SAV RNA were measured in the tanks containing the DNA-PD group at 21 and 34 dpc. Despite this, and irrespective of the treatment group, SAV2 was effectively transmitted to the naïve fish during 26-day cohabitation. At 47 dpc, the SAV RNA concentrations in the water were lower in all tanks compared to 34 dpc. In Transmission study 2, none of the DNA-PD immunized cohabitants residing with DNA-PD-vaccinated, pre-challenged fish got infected. In contrast, Oil-PD immunized cohabitants residing with Oil-PD-vaccinated, pre-challenged fish, showed infection levels similar to the naïve cohabitants in Transmission study 1. The results demonstrate that the DNA-PD vaccine may curb the spread of SAV infection as the DNA-PD vaccinated, SAV2 exposed fish, did not spread the infection to cohabiting DNA-PD vaccinated fish. This signifies that herd immunity may be achieved by the DNA-PD vaccine, a valuable tool to control the PD epizootic in farmed Atlantic salmon.
Collapse
Affiliation(s)
| | | | - Jeffrey C. Wolf
- Experimental Pathology Laboratories Inc., Sterling, VA, United States
| | | | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
2
|
Thorarinsson R, Wolf JC, Inami M, Sindre H, Skjerve E, Evensen Ø, Rimstad E. Effects of a DNA and multivalent oil-adjuvanted vaccines against pancreas disease in Atlantic salmon (Salmo salar) challenged with salmonid alphavirus subtype 3. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100063. [PMID: 36419608 PMCID: PMC9680106 DOI: 10.1016/j.fsirep.2022.100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Efficacy of a DNA- and conventional vaccines against pancreas disease is compared. Higher neutralization antibody levels in the DNA vaccine group compared to controls. Significantly lower viremia levels in the DNA vaccine group than the controls. Efficacy against disease-induced growth loss and damage in target organs is shown . Mortality levels low and not significantly different from the control group.
Salmonid alphavirus (SAV) causes pancreas disease (PD) in Atlantic salmon (Salmo salar). In seawater-farmed salmonids in the southern part of Norway SAV subtype 3 (SAV3) is dominating. PD continues to cause significant economic and fish health concerns in this region despite years of extensive use of oil-adjuvanted vaccines (OAVs) containing inactivated whole virus (IWV) antigens. In the current study, three commercially available PD vaccines were tested. Group A got a DNA vaccine (DNAV) injected intramuscularly (i.m.) plus an OAV without a PD component injected intraperitoneally (i.p.). Groups B and C got different OAV IWV vaccines injected i.p., respectively. The control group was i.p. injected with saline. Approximately 12 weeks after vaccination, the post smolt groups were challenged in seawater with SAV3 by cohabitation. Samples were collected pre-challenge, and at 19, 54 and 83 days post-challenge (dpc). There were no differences in growth or visible intraperitoneal side effects between the immunized groups prior to challenge. Fish in group A had significantly higher SAV3 neutralizing antibody titers than the other groups pre-challenge and significantly lower SAV3 viremia levels than the control group at 19 dpc. Fish in group A had significantly more weight gain than the other groups measured at 54 and 83 dpc. Prevalence and severity of heart necrosis at 19 dpc and loss of exocrine pancreas tissue at 54 and 83 dpc were significantly lower in groups A and B compared to group C and controls. The cumulative mortality in the control group during the challenge period was 10.5%. Group A experienced the lowest mortality (6.4%) albeit not statistically different from the controls. The results suggest that DNAV may reduce the clinical and economic impact of PD by improved protection against SAV3-induced changes in pancreas tissue and growth impairment.
Collapse
|
3
|
Macqueen DJ, Eve O, Gundappa MK, Daniels RR, Gallagher MD, Alexandersen S, Karlsen M. Genomic Epidemiology of Salmonid Alphavirus in Norwegian Aquaculture Reveals Recent Subtype-2 Transmission Dynamics and Novel Subtype-3 Lineages. Viruses 2021; 13:2549. [PMID: 34960818 PMCID: PMC8705410 DOI: 10.3390/v13122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
Viral disease poses a major barrier to sustainable aquaculture, with outbreaks causing large economic losses and growing concerns for fish welfare. Genomic epidemiology can support disease control by providing rapid inferences on viral evolution and disease transmission. In this study, genomic epidemiology was used to investigate salmonid alphavirus (SAV), the causative agent of pancreas disease (PD) in Atlantic salmon. Our aim was to reconstruct SAV subtype-2 (SAV2) diversity and transmission dynamics in recent Norwegian aquaculture, including the origin of SAV2 in regions where this subtype is not tolerated under current legislation. Using nanopore sequencing, we captured ~90% of the SAV2 genome for n = 68 field isolates from 10 aquaculture production regions sampled between 2018 and 2020. Using time-calibrated phylogenetics, we infer that, following its introduction to Norway around 2010, SAV2 split into two clades (SAV2a and 2b) around 2013. While co-present at the same sites near the boundary of Møre og Romsdal and Trøndelag, SAV2a and 2b were generally detected in non-overlapping locations at more Southern and Northern latitudes, respectively. We provide evidence for recent SAV2 transmission over large distances, revealing a strong connection between Møre og Romsdal and SAV2 detected in 2019/20 in Rogaland. We also demonstrate separate introductions of SAV2a and 2b outside the SAV2 zone in Sognefjorden (Vestland), connected to samples from Møre og Romsdal and Trøndelag, respectively, and a likely 100 km Northward transmission of SAV2b within Trøndelag. Finally, we recovered genomes of SAV2a and SAV3 co-infecting single fish in Rogaland, involving novel SAV3 lineages that diverged from previously characterized strains >25 years ago. Overall, this study demonstrates useful applications of genomic epidemiology for tracking viral disease spread in aquaculture.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Oliver Eve
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | | | | | | |
Collapse
|
4
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
5
|
Emergence of Salmonid Alphavirus Genotype 2 in Norway-Molecular Characterization of Viral Strains Circulating in Norway and Scotland. Viruses 2021; 13:v13081556. [PMID: 34452421 PMCID: PMC8402823 DOI: 10.3390/v13081556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreas disease (PD) and sleeping disease (SD), caused by an alphavirus, are endemic in European salmonid aquaculture, causing significant mortality, reduced growth and poor flesh quality. In 2010, a new variant of salmonid alphavirus emerged in Norway, marine salmonid alphavirus genotype 2 (SAV2). As this genotype is highly prevalent in Scotland, transmission through well boat traffic was hypothesized as one possible source of infection. In this study, we performed full-length genome sequencing of SAV2 sampled between 2006 and 2012 in Norway and Scotland, and present the first comprehensive full-length characterization of Norwegian marine SAV2 strains. We analyze their relationship with selected Scottish SAV2 strains and explore the genetic diversity of SAV. Our results show that all Norwegian marine SAV2 share a recent last common ancestor with marine SAV2 circulating in Scotland and a higher level of genomic diversity among the Scottish marine SAV2 strains compared to strains from Norway. These findings support the hypothesis of a single introduction of SAV2 to Norway sometime from 2006-2010, followed by horizontal spread along the coast.
Collapse
|
6
|
Thorarinsson R, Wolf JC, Inami M, Phillips L, Jones G, Macdonald AM, Rodriguez JF, Sindre H, Skjerve E, Rimstad E, Evensen Ø. Effect of a novel DNA vaccine against pancreas disease caused by salmonid alphavirus subtype 3 in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2021; 108:116-126. [PMID: 33285168 DOI: 10.1016/j.fsi.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus subtype 3 (SAV3) is a serious disease with large economic impact on farmed Norwegian Atlantic salmon production despite years of use of oil-adjuvanted vaccines against PD (OAVs). In this study, two commercially available PD vaccines, a DNA vaccine (DNAV) and an OAV, were compared in an experimental setting. At approximately 1040° days (dd) at 12 °C post immunization, the fish were challenged with SAV3 by cohabitation 9 days after transfer to sea water. Sampling was done prior to challenge and at 19, 54, and 83 days post-challenge (dpc). When compared to the OAV and control (Saline) groups, the DNAV group had significantly higher SAV3 neutralizing antibody titers after the immunization period, significantly lower SAV3 viremia levels at 19 dpc, significantly reduced transmission of SAV3 to naïve fish in the latter part of the viremic phase, significantly higher weight gain post-challenge, and significantly reduced prevalence and/or severity of SAV-induced morphologic changes in target organs. The DNAV group had also significantly higher post-challenge survival compared to the Saline group, but not to the OAV group. The data suggest that use of DNAV may reduce the economic impact of PD by protecting against destruction of the pancreas tissue and subsequent growth impairment which is the most common and costly clinical outcome of this disease.
Collapse
Affiliation(s)
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories Inc., 45600 Terminal Drive, Sterling, VA, 20166, USA.
| | - Makoto Inami
- VESO Vikan, Beisvågveien 108, Vikan, N-7810, Namsos, Norway.
| | - Lisa Phillips
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Ginny Jones
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Alicia M Macdonald
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Jose F Rodriguez
- Elanco Canada Ltd., 37 McCarville Street, Charlottetown, PE C1E 2A7, Canada.
| | - Hilde Sindre
- Norwegian Veterinary Institute, Ullevålsveien 68, N-0454, Oslo, Norway.
| | - Eystein Skjerve
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| | - Espen Rimstad
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| | - Øystein Evensen
- Norwegian University of Life Sciences, School of Veterinary Medicine, Ullevålsveien 72, N-0454, Oslo, Norway.
| |
Collapse
|
7
|
Tighe AJ, Gallagher MD, Carlsson J, Matejusova I, Swords F, Macqueen DJ, Ruane NM. Nanopore whole genome sequencing and partitioned phylogenetic analysis supports a new salmonid alphavirus genotype (SAV7). DISEASES OF AQUATIC ORGANISMS 2020; 142:203-211. [PMID: 33331288 DOI: 10.3354/dao03546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.
Collapse
Affiliation(s)
- Andrew J Tighe
- Fish Health Unit, Marine Institute, Oranmore H91 R673, Ireland
| | | | | | | | | | | | | |
Collapse
|
8
|
Hillestad B, Makvandi-Nejad S, Krasnov A, Moghadam HK. Identification of genetic loci associated with higher resistance to pancreas disease (PD) in Atlantic salmon (Salmo salar L.). BMC Genomics 2020; 21:388. [PMID: 32493246 PMCID: PMC7268189 DOI: 10.1186/s12864-020-06788-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreas disease (PD) is a contagious disease caused by salmonid alphavirus (SAV) with significant economic and welfare impacts on salmon farming. Previous work has shown that higher resistance against PD has underlying additive genetic components and can potentially be improved through selective breeding. To better understand the genetic basis of PD resistance in Atlantic salmon, we challenged 4506 smolts from 296 families of the SalmoBreed strain. Fish were challenged through intraperitoneal injection with the most virulent form of the virus found in Norway (i.e., SAV3). Mortalities were recorded, and more than 900 fish were further genotyped on a 55 K SNP array. RESULTS The estimated heritability for PD resistance was 0.41 ± 0.017. The genetic markers on two chromosomes, ssa03 and ssa07, showed significant associations with higher disease resistance. Collectively, markers on these two QTL regions explained about 60% of the additive genetic variance. We also sequenced and compared the cardiac transcriptomics of moribund fish and animals that survived the challenge with a focus on candidate genes within the chromosomal segments harbouring QTL. Approximately 200 genes, within the QTL regions, were found to be differentially expressed. Of particular interest, we identified various components of immunoglobulin-heavy-chain locus B (IGH-B) on ssa03 and immunoglobulin-light-chain on ssa07 with markedly higher levels of transcription in the resistant animals. These genes are closely linked to the most strongly QTL associated SNPs, making them likely candidates for further investigation. CONCLUSIONS The findings presented here provide supporting evidence that breeding is an efficient tool for increasing PD resistance in Atlantic salmon populations. The estimated heritability is one of the largest reported for any disease resistance in this species, where the majority of the genetic variation is explained by two major QTL. The transcriptomic analysis has revealed the activation of essential components of the innate and the adaptive immune responses following infection with SAV3. Furthermore, the complementation of the genomic with the transcriptomic data has highlighted the possible critical role of the immunoglobulin loci in combating PD virus.
Collapse
Affiliation(s)
| | | | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), P.O. Box 6122, Muninbakken 9-13, Breivika, Langnes, N-9291, Tromsø, Norway
| | - Hooman K Moghadam
- Benchmark Genetics Norway AS, Sandviksboder 3A, N-5035, Bergen, Norway.
| |
Collapse
|
9
|
Gallagher MD, Karlsen M, Petterson E, Haugland Ø, Matejusova I, Macqueen DJ. Genome Sequencing of SAV3 Reveals Repeated Seeding Events of Viral Strains in Norwegian Aquaculture. Front Microbiol 2020; 11:740. [PMID: 32390982 PMCID: PMC7193772 DOI: 10.3389/fmicb.2020.00740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Understanding the dynamics of pathogen transfer in aquaculture systems is essential to manage and mitigate disease outbreaks. The goal of this study was to understand recent transmission dynamics of salmonid alphavirus (SAV) in Norway. SAV causes significant economic impacts on farmed salmonids in European aquaculture. SAV is classified into six subtypes, with Norway having ongoing epidemics of SAV subtypes 2 and 3. These two viral subtypes are present in largely distinct geographic regions of Norway, with SAV2 present in Trondelag, SAV3 in Rogaland, Sogn og Fjordane, and Hordaland, and Møre og Romsdal having outbreaks of both subtypes. To determine likely transmission routes of Norwegian SAV an established Nanopore amplicon sequencing approach was used in the current study. After confirming the accuracy of this approach for distinguishing subtype level co-infections of SAV2 and SAV3, a hypothetical possibility in regions of neighboring epidemics, twenty-four SAV3 genomes were sequenced to characterize the current genetic diversity of SAV3 in Norwegian aquaculture. Sequencing was performed on naturally infected heart tissues originating from a range of geographic locations sampled between 2016 and 2019. Phylogenetic analyses revealed that the currently active SAV3 strains sampled comprise several distinct lineages sharing an ancestor that existed ∼15 years ago (95% HPD, 12.51-17.7 years) and likely in Hordaland. At least five of these lineages have not shared a common ancestor for 7.85 years (95% HPD, 5.39-10.96 years) or more. Furthermore, the ancestor of the strains that were sampled outside of Hordaland (Sogn of Fjordane and Rogaland) existed less than 8 years ago, indicating a lack of long-term viral reservoirs in these counties. This evident lack of geographically distinct subclades is compatible with a source-sink transmission dynamic explaining the long-term movements of SAV around Norway. Such anthropogenic transport of the virus indicates that at least for sink counties, biosecurity strategies might be effective in mitigating the ongoing SAV epidemic. Finally, genomic analyses of SAV sequences were performed, offering novel insights into the prevalence of SAV genomes containing defective deletions. Overall, this study improves our understanding of the recent transmission dynamics and biology of the SAV epidemic affecting Norwegian aquaculture.
Collapse
Affiliation(s)
- Michael D. Gallagher
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Iveta Matejusova
- Marine Laboratory, Marine Scotland Science, Aberdeen, United Kingdom
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Nylund A, Brattespe J, Plarre H, Kambestad M, Karlsen M. Wild and farmed salmon (Salmo salar) as reservoirs for infectious salmon anaemia virus, and the importance of horizontal- and vertical transmission. PLoS One 2019; 14:e0215478. [PMID: 30990853 PMCID: PMC6467415 DOI: 10.1371/journal.pone.0215478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
The infectious salmon anaemia virus (ISAV) is an important pathogen on farmed salmon in Europe. The virus occurs as low- and high virulent variants where the former seem to be a continuous source of new high virulent ISAV. The latter are controlled in Norway by stamping out infected populations while the former are spreading uncontrolled among farmed salmon. Evidence of vertical transmission has been presented, but there is still an ongoing discussion of the importance of circulation of ISAV via salmon brood fish. The only known wild reservoirs are in trout (Salmo trutta) and salmon (Salmo salar). This study provides the first ISAV sequences from wild salmonids in Norway and evaluates the importance of this reservoir with respect to outbreaks of ISA among farmed salmon. Phylogenetic analyses of the surface protein hemagglutinin-esterase gene from nearly all available ISAV from Norway, Faeroe Islands, Scotland, Chile and wild salmonids in Norway show that they group into four major clades. Including virulent variants in the analysis show that they belong in the same four clades supporting the hypothesis that there is a high frequency of transition from low to high virulent variants in farmed populations of salmon. There is little support for a hypothesis suggesting that the wild salmonids feed the virus into farmed populations. This study give support to earlier studies that have documented local horizontal transmission of high virulent ISAV, but the importance of transition from low- to high virulent variants has been underestimated. Evidence of vertical transmission and long distance spreading of ISAV via movement of embryos and smolt is presented. We recommend that the industry focus on removing the low virulent ISAV from the brood fish and that ISAV-free brood fish salmon are kept in closed containment systems (CCS).
Collapse
Affiliation(s)
- Are Nylund
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
- * E-mail:
| | - Jarle Brattespe
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | - Heidrun Plarre
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | - Martha Kambestad
- University of Bergen, Fish Diseases Research Group, Bergen, Norway
| | | |
Collapse
|
11
|
Ruane NM, Swords D, Morrissey T, Geary M, Hickey C, Collins EM, Geoghegan F, Swords F. Isolation of salmonid alphavirus subtype 6 from wild-caught ballan wrasse, Labrus bergylta (Ascanius). JOURNAL OF FISH DISEASES 2018; 41:1643-1651. [PMID: 30051469 DOI: 10.1111/jfd.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The use of cleaner fish as a biological control for sea lice in Atlantic salmon aquaculture has increased in recent years. Wild-caught wrasse are commonly used as cleaner fish in Europe. In Ireland, samples of wrasse from each fishing area are screened for potential pathogens prior to their deployment into sea cages. Salmonid alphavirus was isolated from a pooled sample of ballan wrasse, showing no signs of disease, caught from the NW of Ireland. Partial sequencing of the E2 and nsP3 genes showed that it was closely related to the previously reported SAV subtype 6. This represents only the second isolation of this subtype and the first from a wild fish species, namely ballan wrasse.
Collapse
Affiliation(s)
- Neil M Ruane
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - David Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | - Michelle Geary
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | - Cathy Hickey
- Fish Health Unit, Marine Institute, County Galway, Ireland
| | | | | | - Fiona Swords
- Fish Health Unit, Marine Institute, County Galway, Ireland
| |
Collapse
|
12
|
Shi W, Wang Y, Ren X, Gao S, Hua X, Guo M, Tang L, Xu Y, Ren T, Li Y, Liu M. EvaGreen-based real-time PCR assay for sensitive detection of salmonid alphavirus. Mol Cell Probes 2018; 39:7-13. [DOI: 10.1016/j.mcp.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
13
|
Røsaeg MV, Sindre H, Persson D, Breck O, Knappskog D, Olsen AB, Taksdal T. Ballan wrasse (Labrus bergylta Ascanius) is not susceptible to pancreas disease caused by salmonid alphavirus subtype 2 and 3. JOURNAL OF FISH DISEASES 2017; 40:975-978. [PMID: 27859355 DOI: 10.1111/jfd.12572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Affiliation(s)
- M V Røsaeg
- SalMar ASA, Kverva, Norway
- Norwegian University of Life Sciences, Oslo, Norge
| | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norge
| | - D Persson
- Norwegian University of Life Sciences, Oslo, Norge
- FoMas - Fiskehelse og miljø, Haugesund, Norway
| | - O Breck
- Marine Harvest Norway AS, Bergen, Norway
| | - D Knappskog
- MSD Animal Health, Bergen, Norway
- Vaxxinova Norway AS, Bergen, Norway
| | - A B Olsen
- Norwegian Veterinary Institute, Oslo, Norge
| | - T Taksdal
- Norwegian Veterinary Institute, Oslo, Norge
| |
Collapse
|
14
|
Shi W, Song A, Gao S, Wang Y, Tang L, Xu Y, Ren T, Li Y, Liu M. Rapid and sensitive detection of salmonid alphavirus using TaqMan real-time PCR. Mol Cell Probes 2017; 34:13-20. [PMID: 28433811 DOI: 10.1016/j.mcp.2017.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/29/2022]
Abstract
Salmonid alphavirus (SAV) infection has led to the spread of salmon pancreas disease (PD) and sleeping disease (SD) to salmonids in several countries in Europe, resulting in tremendous economic losses to the fish farming industry. Recently, with increases in the fish import trade, many countries in which SAV has been unreported, such as China, may be seriously threatened by these diseases. It is therefore necessary to develop efficient detection methods for the prevention and diagnosis of SAV infection. In this study, a rapid and sensitive TaqMan real-time PCR method was established and assessed for this purpose. A specificity assay showed no cross-reactions with other common RNA viruses. Regression analysis and standard curves calculated from the Ct values of 10-fold serial dilutions of the standard plasmid showed that the assay was highly reproducible over a wide range of RNA input concentrations. The real-time PCR assay was able to detect SAV at a concentration as low as 1.5 × 101 copies, indicating that it is 107 times more sensitive than the approved conventional RT-PCR method (detection limit, 1.5 × 107 copies) after use on the same samples. Assessment of infected fish samples showed that this assay has a higher sensitivity than the previously reported Q_nsP1 assay. Thus, this TaqMan real-time PCR assay provides a rapid, sensitive, and specific detection method for SAV, offering improved technical support for the clinical diagnosis and epidemiology of SAV.
Collapse
Affiliation(s)
- Wen Shi
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aochen Song
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Gao
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuting Wang
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lijie Tang
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yigang Xu
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tong Ren
- Beijing Entry-exit Inspection and Quarantine Bureau, Beijing 100026, People's Republic of China
| | - Yijing Li
- Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Liu
- Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
15
|
Jansen MD, Bang Jensen B, McLoughlin MF, Rodger HD, Taksdal T, Sindre H, Graham DA, Lillehaug A. The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge. JOURNAL OF FISH DISEASES 2017; 40:141-155. [PMID: 27136332 DOI: 10.1111/jfd.12478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) is a viral disease caused by Salmonid alphavirus (SAV) that affects farmed Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss (Walbaum)) in the seawater phase. Since its first description in Scotland in 1976, a large number of studies have been conducted relating to the disease itself and to factors contributing to agent spread and disease occurrence. This paper summarizes the currently available, scientific information on the epidemiology of PD and its associated mitigation and control measures. Available literature shows infected farmed salmonids to be the main reservoir of SAV. Transmission between seawater sites occurs mainly passively by water currents or actively through human activity coupled with inadequate biosecurity measures. All available information suggests that the current fallowing procedures are adequate to prevent agent survival within the environment through the fallowing period and thus that a repeated disease outbreak at the same site is due to a new agent introduction. There has been no scientific evaluation of currently used on-site biosecurity measures, and there is limited information on the impact of available mitigation measures and control strategies.
Collapse
Affiliation(s)
- M D Jansen
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | - H D Rodger
- Vet-Aqua International, Oranmore, Ireland
| | - T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| | - D A Graham
- Animal Health Ireland, Carrick on Shannon, Ireland
| | - A Lillehaug
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
16
|
Analysis of complete genomes of the rubella virus genotypes 1E and 2B which circulated in China, 2000-2013. Sci Rep 2016; 6:39025. [PMID: 27959338 PMCID: PMC5154293 DOI: 10.1038/srep39025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Rubella viruses of genotypes 1E and 2B are currently the most frequently detected wild-type viruses in the world. Genotype 1E viruses from China have been genetically distinct from genotype 1E viruses found elsewhere, while genotype 2B viruses found in China are not distinguishable from genotype 2B viruses from other areas. Genetic clusters of viruses of both genotypes were defined previously using sequences of the 739-nt genotyping window. Here we report phylogenic analysis using whole genomic sequences from seven genotype 1E and three genotype 2B viruses which were isolated in China between 2000 and 2013 and confirm the subgrouping of current circulating genotypes 1E and 2B viruses. In addition, the whole genomic characterization of Chinese rubella viruses was clarified. The results indicated that the Chinese rubella viruses were highly conserved at the genomic level, and no predicted amino acid variations were found at positions where functional domains of the proteins were identified. Therefore, it gives us the idea that the rubella control and elimination goal should be achieved if vaccine immunization coverage continues maintaining at the high level.
Collapse
|
17
|
Petterson E, Guo TC, Evensen Ø, Mikalsen AB. Experimental piscine alphavirus RNA recombination in vivo yields both viable virus and defective viral RNA. Sci Rep 2016; 6:36317. [PMID: 27805034 PMCID: PMC5090867 DOI: 10.1038/srep36317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
RNA recombination in non-segmented RNA viruses is important for viral evolution and documented for several virus species through in vitro studies. Here we confirm viral RNA recombination in vivo using an alphavirus, the SAV3 subtype of Salmon pancreas disease virus. The virus causes pancreas disease in Atlantic salmon and heavy losses in European salmonid aquaculture. Atlantic salmon were injected with a SAV3 6K-gene deleted cDNA plasmid, encoding a non-viable variant of SAV3, together with a helper cDNA plasmid encoding structural proteins and 6K only. Later, SAV3-specific RNA was detected and recombination of viral RNA was confirmed. Virus was grown from plasmid-injected fish and shown to infect and cause pathology in salmon. Subsequent cloning of PCR products confirming recombination, documented imprecise homologous recombination creating RNA deletion variants in fish injected with cDNA plasmid, corresponding with deletion variants previously found in SAV3 from the field. This is the first experimental documentation of alphavirus RNA recombination in an animal model and provides new insight into the production of defective virus RNA.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Tz-Chun Guo
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Aase B Mikalsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
18
|
Hjortaas MJ, Jensen BB, Taksdal T, Olsen AB, Lillehaug A, Trettenes E, Sindre H. Genetic characterization of salmonid alphavirus in Norway. JOURNAL OF FISH DISEASES 2016; 39:249-57. [PMID: 25683753 DOI: 10.1111/jfd.12353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD), caused by salmonid alphavirus subtype 3 (SAV3), emerged in Norwegian aquaculture in the 1980s and is now endemic along the south-western coast. In 2011, the first cases of PD caused by marine salmonid alphavirus subtype 2 (SAV2) were reported. This subtype has spread rapidly among the fish farms outside the PD-endemic zone and is responsible for disease outbreaks at an increasing numbers of sites. To describe the geographical distribution of salmonid alphavirus (SAV), and to assess the time and site of introduction of marine SAV2 to Norway, an extensive genetic characterization including more than 200 SAV-positive samples from 157 Norwegian marine production sites collected from May 2007 to December 2012 was executed. The first samples positive for marine SAV2 originated from Romsdal, in June 2010. Sequence analysis of the E2 gene revealed that all marine SAV2 included in this study were nearly identical, suggesting a single introduction into Norwegian aquaculture. Further, this study provides evidence of a separate geographical distribution of two subtypes in Norway. SAV3 is present in south-western Norway, and marine SAV2 circulates in north-western and Mid-Norway, a geographical area which since 2010 constitutes the endemic zone for marine SAV2.
Collapse
Affiliation(s)
| | | | - T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | - A B Olsen
- Norwegian Veterinary Institute, Bergen, Norway
| | - A Lillehaug
- Norwegian Veterinary Institute, Oslo, Norway
| | - E Trettenes
- Norwegian Veterinary Institute, Oslo, Norway
| | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
19
|
Taksdal T, Jensen BB, Böckerman I, McLoughlin MF, Hjortaas MJ, Ramstad A, Sindre H. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. JOURNAL OF FISH DISEASES 2015; 38:1047-61. [PMID: 25322679 DOI: 10.1111/jfd.12312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
Pancreas disease (PD) caused by salmonid alphavirus (SAV) has a significant negative economic impact in the salmonid fish farming industry in northern Europe. Until recently, only SAV subtype 3 was present in Norwegian fish farms. However, in 2011, a marine SAV 2 subtype was detected in a fish farm outside the PD-endemic zone. This subtype has spread rapidly among fish farms in mid-Norway. The PD mortality in several farms has been lower than expected, although high mortality has also been reported. In this situation, the industry and the authorities needed scientific-based information about the virulence of the marine SAV 2 strain in Norway to decide how to handle this new situation. Atlantic salmon post-smolts were experimentally infected with SAV 2 and SAV 3 strains from six different PD cases in Norway. SAV 3-infected fish showed higher mortality than SAV 2-infected fish. Among the SAV 3 isolates, two isolates gave higher mortality than the third one. At the end of the experiment, fish in all SAV-infected groups had significantly lower weight than the uninfected control fish. This is the first published paper on PD to document that waterborne infection produced significantly higher mortality than intraperitoneal injection.
Collapse
Affiliation(s)
- T Taksdal
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - I Böckerman
- Norwegian Veterinary Institute, Oslo, Norway
| | | | | | | | - H Sindre
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
20
|
Petterson E, Guo TC, Evensen Ø, Haugland Ø, Mikalsen AB. In vitro adaptation of SAV3 in cell culture correlates with reduced in vivo replication capacity and virulence to Atlantic salmon (Salmo salar L.) parr. J Gen Virol 2015; 96:3023-3034. [PMID: 26297344 DOI: 10.1099/jgv.0.000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonid alphavirus (SAV) is the causative agent of pancreas disease affecting Atlantic salmon and rainbow trout and causes a major burden to the aquaculture industry. This study describes a Norwegian subtype SAV3 virus isolate (SAV3-H10) subjected to serial passages in Chinook salmon embryo cells (CHSE-214) followed by Asian Grouper skin cells (AGK). Two passages from CHSE and one after transfer to AGK cells were chosen for further investigation, based on variation in degree and development of cytopathic effect (CPE). After plaque purification, several in vitro studies were performed. Cell viability after infection, viral replication and ability to cause morphological changes in CHSE and AGK cells was studied for the three isolates. The AGK-transferred isolate was identified with the strongest abilities to reduce cell viability, replicate more and cause more CPE in cell culture when compared with the early and late CHSE-grown isolates. Subsequently, the isolates were tested in an experimental fish challenge, showing higher viral load and higher pathological score for the least cell-cultured isolate. Full-length sequencing of the viral genome of the three isolates revealed divergence in four amino acid positions and the AGK-grown isolate also had a 3 nt deletion in the 3'UTR. In conclusion, we show that cell culture of SAV3-H10 selects for strains inducing earlier CPE in vitro with increased viral replication. In vivo, the effect is reversed, with lower replication levels and lower pathology scores in target organs. This study outlines a path to identify potential virulence motifs of SAV3.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Aase B Mikalsen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
21
|
Karlsen M, Andersen L, Blindheim SH, Rimstad E, Nylund A. A naturally occurring substitution in the E2 protein of Salmonid alphavirus subtype 3 changes viral fitness. Virus Res 2014; 196:79-86. [PMID: 25445347 DOI: 10.1016/j.virusres.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
Phylogenetic analyses of the Salmonid alphavirus subtype 3 (SAV3) epizootic have suggested that a substitution from proline to serine in the receptor binding protein E2 position 206 has occurred after the introduction of virus from a wild reservoir to farmed salmonid fish in Norway. We modelled the 3D structure of P62, the uncleaved E3-E2 precursor, of SAVH20/03 based on its sequence homology to the Chikungunya virus (CHIKV), and studied in vitro and in vivo effects of the mutation using reverse genetics. E2(206) is located on the surface of the B-domain of E2, which is associated with receptor attachment in alphaviruses. Recombinant virus expressing the E2(206S) codon replicated slower and produced significantly less genomic copies than virus expressing the ancestral E2(206P) codon in vitro in Bluegill Fry (BF2) cells. The E2(206S) mutant was out-competed by the E2(206P) mutant after 5 passages in an in vitro competition assay, confirming that the substitution negatively affects the efficacy of virus multiplication in cell culture. Both mutants were highly infectious to Atlantic salmon (Salmo salar), produced similar viral RNA loads in gills, heart, kidney and brain, and induced similar histopathologic changes in these organs. The E2(206S) mutant produced a less persistent infection in salmon and was shed more rapidly to water than the E2(206P) mutant. Reduced generation time through more rapid shedding could therefore explain why a serine in this position became dominant in the viral population after SAV3 was introduced to farmed salmon from the wild reservoir.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway.
| | - Linda Andersen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Steffen H Blindheim
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. 8146 Dep, 0033 Oslo, Norway
| | - Are Nylund
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| |
Collapse
|
22
|
Guo TC, Johansson DX, Haugland Ø, Liljeström P, Evensen Ø. A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 2014; 9:e100184. [PMID: 25009976 PMCID: PMC4091863 DOI: 10.1371/journal.pone.0100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/23/2014] [Indexed: 01/13/2023] Open
Abstract
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.
Collapse
Affiliation(s)
- Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Daniel X. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| |
Collapse
|