1
|
Zhang L, Xu L, Zhang X, Liao J, Kang S, Wu S, Qin Q, Wei J. Singapore grouper iridovirus VP12 evades the host antiviral immune response by targeting the cGAS-STING signalling pathway. J Gen Virol 2024; 105. [PMID: 39392059 DOI: 10.1099/jgv.0.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.
Collapse
Affiliation(s)
- Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, PR China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, Guangzhou, 511400, PR China
| |
Collapse
|
2
|
Xu L, Xu Q, Mo W, Chen H, Wu S, Qin Q, Wei J. Singapore grouper iridovirus VP146 modulates the cGAS-STING signaling pathway to escape the interferon immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109684. [PMID: 38852788 DOI: 10.1016/j.fsi.2024.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that has caused significant economic losses to the grouper aquaculture industry. So far, the structure and function of SGIV proteins have been successively reported. In the present paper, the protein of SGIV VP146 was cloned and identified. VP146 was whole-cell distributed in GS cells. VP146 promoted SGIV replication and inhibited the transcription of interferon-related genes as well as pro-inflammatory cytokines in GS cells. In addition, VP146 was involved in the regulation of the cGAS-STING signaling pathway, and decreased cGAS-STING induced the promoter of ISRE and NF-κB. VP146 interacted with the proteins of cGAS, STING, TBK1, and IRF3 from grouper, but did not affect the binding of grouper STING to grouper TBK1 and grouper IRF3. Interestingly, grouper STING was able to affect the intracellular localization of VP146. Four segment structural domains of grouper STING were constructed, and grouper STING-CTT could affect the intracellular localization of VP146. VP146 had no effect on the self-binding of EcSITNG, nor on the binding of EcSTING to EcTBK1 and EcIRF3. Together, the results demonstrated that SGIV VP146 modulated the cGAS-STING signaling pathway to escape the interferon immune response.
Collapse
Affiliation(s)
- Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China
| | - Weifu Mo
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400, China.
| |
Collapse
|
3
|
Kim E, Kim JY, Kim W, Lee S, Park KH, Yoon JS. Complete genome sequence of an oryctes rhinoceros nudivirus isolated from Korean rhinoceros beetles (Trypoxylus dichotomus) in Korea. Virus Res 2023; 335:199167. [PMID: 37442527 PMCID: PMC10485680 DOI: 10.1016/j.virusres.2023.199167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Nudivirus-infected Korean rhinoceros beetles (Trypoxylus dichotomus) were first identified in 2015, and while a complete genome sequence of the virus has long been uploaded to the NCBI database, it has not been examined in detail. Here, we describe the genomic characteristics of Trypoxylus dichotomus nudivirus (TdNV), which represents a new Oryctes rhinoceros nudivirus (OrNV) strain, isolated from infected T. dichotomus in the Republic of Korea. We examined factors derived by the cross-species infection of OrNV from nucleotide levels to the whole genome level. Our genomic analysis study suggests that TdNV-Korea is highly conserved with other OrNVs in terms of genomic structures and genome size. Our investigation of the genomic structure revealed that TdNV-Korea has the least number of open reading frames (ORFs) of all available OrNV genomes; three hypothetical genes were notably absent only in TdNV-Korea. In addition, the genomic alteration of the nudivirus core genes discloses that various amino acid mutations caused by single-nucleotide polymorphism and short indels (insertion/deletion) were found in most of the nudivirus core genes of TdNV-Korea. Our findings provide a valuable resource for those seeking a greater understanding of cross-species nudivirus transmission and will certainly provide valuable insight for reconstruction and reinterpretation of future and previously identified OrNV strains.
Collapse
Affiliation(s)
- Eunsun Kim
- Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Ji-Young Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea
| | - Wontae Kim
- Research Policy Planning Division, RDA, Jeonju, 54875, Republic of Korea
| | - Seokhyun Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54596, Republic of Korea
| | - Kwan-Ho Park
- Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - June-Sun Yoon
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Gao X, Yang X, Wang Y, Wang W, Huang X, Qin Q, Huang Y. Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. J Virol 2022; 96:e0068222. [PMID: 36190239 PMCID: PMC9599571 DOI: 10.1128/jvi.00682-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaolin Gao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinmei Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
5
|
Guo X, Wang W, Zheng Q, Qin Q, Huang Y, Huang X. Comparative transcriptomic analysis reveals different host cell responses to Singapore grouper iridovirus and red-spotted grouper nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:136-147. [PMID: 35921938 DOI: 10.1016/j.fsi.2022.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) are important pathogens that cause high mortality and heavy economic losses in grouper aquaculture. Interestingly, SGIV infection in grouper cells induces paraptosis-like cell death, while RGNNV infection induces autophagy and necrosis characterized morphologically by vacuolation of lysosome. Here, a comparative transcriptomic analysis was carried out to identify the different molecular events during SGIV and RGNNV infection in grouper spleen (EAGS) cells. The functional enrichment analysis of DEGs suggested that several signaling pathways were involved in CPE progression and host immune response against SGIV or RGNNV. Most of DEGs featured in the KEGG "lysosome pathway" were up-regulated in RGNNV-infected cells, indicating that RGNNV induced lysosomal vacuolization and autophagy might be due to the disturbance of lysosomal function. More than 100 DEGs in cytoskeleton pathway and mitogen-activated protein kinase (MAPK) signal pathway were identified during SGIV infection, providing additional evidence for the roles of cytoskeleton remodeling in cell rounding during CPE progression and MAPK signaling in SGIV induced cell death. Of note, consistent with changes at the transcriptional levels, the post-translational modifications of MAPK signaling-related proteins were also detected during RGNNV infection, and the inhibitors of extracellular signal-regulated kinase (ERK) and p38 MAPK significantly suppressed viral replication and virus induced vacuoles formation. Moreover, the majority of DEGs in interferon and inflammation signaling were obviously up-regulated during RGNNV infection, but down-regulated during SGIV infection, suggesting that SGIV and RGNNV differently manipulated host immune response in vitro. In addition, purine and pyrimidine metabolism pathways were also differently regulated in SGIV and RGNNV-infection cells. Taken together, our data will provide new insights into understanding the potential mechanisms underlying different host cell responses against fish DNA and RNA virus.
Collapse
Affiliation(s)
- Xixi Guo
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenji Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaohong Huang
- Lingnan Guangdong Laboratory of Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Xu X, Liu L, Feng J, Li X, Zhang J. Comparative transcriptome analysis reveals potential anti-viral immune pathways of turbot (Scophthalmus maximus) subverted by megalocytivirus RBIV-C1 for immune evasion. FISH & SHELLFISH IMMUNOLOGY 2022; 122:153-161. [PMID: 35150827 DOI: 10.1016/j.fsi.2022.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Successful viral infection and multiplication chiefly rely on virus subversion mechanisms against host anti-viral immune responses. In this study, in order to reveal the anti-viral immune-related pathways suppressed by megalocytivirus infection, transcriptome analysis was performed on the head-kidney of turbot (Scophthalmus maximus) infected with lethal dose of RBIV-C1 at 3, 6 and 9 days post challenge (dpc). The results showed that, compared to unchallenged groups, 190, 1220, and 3963 DEGs were detected in RBIV-C1 infected groups at 3, 6 and 9 dpc, respectively, of which, DEGs of complement components and pattern recognition proteins were up-regulated at 3 dpc and down-regulated at 6 and 9 dpc, DEGs of cytokines were up-regulated at 6 dpc and down-regulated at 9 dpc. Expression trend analysis revealed that DEGs of profiles 9 and 13 featured decreased expression patterns and were significantly enriched into 10 immune-related pathways, i.e., complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling pathway, B/T cell receptor signaling pathway, antigen processing and presentation, and so on. Further co-expression network analysis (WGCNA) revealed positive correlated innate immune related pathways at 3 and 6 dpc, and negative correlated innate and adaptive immune related pathways at 9 dpc. This study revealed a set of anti-viral immune genes/pathways that would also be potential targets subverted by RBIV-C1 for immune evasion, which can serve as a valuable resource for future studies on the molecular mechanisms of anti-viral immune defense of turbot and immune escape of megalocytivirus.
Collapse
Affiliation(s)
- Xiudan Xu
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Ling Liu
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jixing Feng
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Xuepeng Li
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jian Zhang
- School of Ocean, Yantai University, 30 Qingquan Road, Yantai, 264005, China.
| |
Collapse
|
7
|
Jia Z, Wu N, Jiang X, Li H, Sun J, Shi M, Li C, Ge Y, Hu X, Ye W, Tang Y, Shan J, Cheng Y, Xia XQ, Shi L. Integrative Transcriptomic Analysis Reveals the Immune Mechanism for a CyHV-3-Resistant Common Carp Strain. Front Immunol 2021; 12:687151. [PMID: 34290708 PMCID: PMC8287582 DOI: 10.3389/fimmu.2021.687151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.
Collapse
Affiliation(s)
- Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lianyu Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| |
Collapse
|
8
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
9
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Yu Y, Huang Y, Ni S, Zhou L, Liu J, Zhang J, Zhang X, Hu Y, Huang X, Qin Q. Singapore grouper iridovirus (SGIV) TNFR homolog VP51 functions as a virulence factor via modulating host inflammation response. Virology 2017; 511:280-289. [PMID: 28689858 DOI: 10.1016/j.virol.2017.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Virus encoded tumor necrosis factor receptor (TNFR) homologues are usually involved in immune evasion by regulating host immune response or cell death. Singapore grouper iridovirus (SGIV) is a novel ranavirus which causes great economic losses in aquaculture industry. Previous studies demonstrated that SGIV VP51, a TNFR-like protein regulated apoptotic process in VP51 overexpression cells. Here, we developed a VP51-deleted recombinant virus Δ51-SGIV by replacing VP51 with puroR-GFP. Deletion of VP51 resulted in the decrease of SGIV virulence, evidenced by the reduced replication in vitro and the decreased cumulative mortalities in Δ51-SGIV challenged grouper compared to WT-SGIV. Moreover, VP51 deletion significantly increased virus induced apoptosis, and reduced the expression of pro-inflammatory cytokines in vitro. In addition, the expression of several pro-inflammatory genes were decreased in Δ51-SGIV infected grouper compared to WT-SGIV. Thus, we speculate that SGIV VP51 functions as a critical virulence factor via regulating host cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingcheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yin Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|
11
|
Liu L, Hu Y, Shen YF, Wang GX, Zhu B. Evaluation on antiviral activity of coumarin derivatives against spring viraemia of carp virus in epithelioma papulosum cyprini cells. Antiviral Res 2017. [PMID: 28624462 DOI: 10.1016/j.antiviral.2017.06.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As one of the most serious pathogens in the freshwater aquatic environment, spring viraemia of carp virus (SVCV) induces a high mortality rate in several cyprinid fishes. In this study, we designed and synthesized a total of 44 coumarin derivatives to evaluate the anti-SVCV activity. By comparing the inhibitory concentration at half-maximal activity (IC50), two imidazole coumarins (B4 and C2) were selected, with maximum inhibitory rates on SVCV more than 90%. Mechanistically, B4 or C2 did not affect viral adhesion and delivery from endosomes to the cytosol. Further, B4 and C2 could decline the apoptosis in SVCV-infected cells and the viral activated caspase-3, 8, 9 activities. Other results showed that SVCV induced the cytoskeletal structure to be a circumferential ring of microtubules near the nucleus, with occurring a disrupted microfilament organization. In comparison, cytoskeleton structure in drug-treated cells kept complete. In addition, the cellular microstructure in drug treatments showed no significant change; while SVCV-infected cells were seriously shrunk, and observed typical apoptotic features including cell shrinkage, volume reduction and cell blebbing. More importantly, B4 and C2 enhanced anti-oxidative enzyme gene expression and triggered the Nrf-2 pathway to keep balance of intracellular redox state. Therefore, the use of two imidazole coumarins (B4 and C2) could be a viable way of preventing and controlling SVCV infection.
Collapse
Affiliation(s)
- Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Yang Hu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Yu-Feng Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Visualization of Assembly Intermediates and Budding Vacuoles of Singapore Grouper Iridovirus in Grouper Embryonic Cells. Sci Rep 2016; 6:18696. [PMID: 26727547 PMCID: PMC4698634 DOI: 10.1038/srep18696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response.
Collapse
|