1
|
Lawler JL, Terrell S, Coen DM. The conserved RNP motif of the herpes simplex virus 1 family B DNA polymerase is crucial for viral DNA synthesis but not polymerase activity. Virology 2024; 594:110035. [PMID: 38554655 DOI: 10.1016/j.virol.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
The herpes simplex virus 1 DNA polymerase contains a highly conserved structural motif found in most family B polymerases and certain RNA-binding proteins. To investigate its importance within cells, we constructed a mutant virus with substitutions in two residues of the motif and a rescued derivative. The substitutions resulted in severe impairment of plaque formation, yields of infectious virus, and viral DNA synthesis while not meaningfully affecting expression of the mutant enzyme, its co-localization with the viral single-stranded DNA binding protein at intranuclear punctate sites in non-complementing cells or in replication compartments in complementing cells, or viral DNA polymerase activity. Taken together, our results indicate that the RNA binding motif plays a crucial role in herpes simplex virus 1 DNA synthesis through a mechanism separate from effects on polymerase activity, thus identifying a distinct essential function of this motif with implications for hypotheses regarding its biochemical functions.
Collapse
Affiliation(s)
- Jessica L Lawler
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Shariya Terrell
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Committee on Virology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Acyclovir resistance in herpes simplex viruses: Prevalence and therapeutic alternatives. Biochem Pharmacol 2022; 206:115322. [DOI: 10.1016/j.bcp.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
3
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
4
|
Hayes RP, Heo MR, Mason M, Reid J, Burlein C, Armacost KA, Tellers DM, Raheem I, Shaw AW, Murray E, McKenna PM, Abeywickrema P, Sharma S, Soisson SM, Klein D. Structural understanding of non-nucleoside inhibition in an elongating herpesvirus polymerase. Nat Commun 2021; 12:3040. [PMID: 34031403 PMCID: PMC8144222 DOI: 10.1038/s41467-021-23312-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.
Collapse
Affiliation(s)
- Robert P Hayes
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA.
| | - Mee Ra Heo
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Mark Mason
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - John Reid
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Kira A Armacost
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Izzat Raheem
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Anthony W Shaw
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Edward Murray
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | - Philip M McKenna
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | | | - Sujata Sharma
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Stephen M Soisson
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Daniel Klein
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
5
|
Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234:177-192. [PMID: 28153606 DOI: 10.1016/j.virusres.2017.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. These viruses have the ability to establish lifelong latency into the host and to periodically reactivate. Primary infections and reactivations of herpesviruses cause a large spectrum of diseases and may lead to severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the lytic phase of the infection by herpesviruses. This review focuses on the structures and functions of viral DNA polymerases of herpes simplex virus (HSV) and human cytomegalovirus (HCMV). DNA polymerases of HSV (UL30) and HCMV (UL54) belong to B family DNA polymerases with which they share seven regions of homology numbered I to VII as well as a δ-region C which is homologous to DNA polymerases δ. These DNA polymerases are multi-functional enzymes exhibiting polymerase, 3'-5' exonuclease proofreading and ribonuclease H activities. Furthermore, UL30 and UL54 DNA polymerases form a complex with UL42 and UL44 processivity factors, respectively. The mechanisms involved in their polymerisation activity have been elucidated based on structural analyses of the DNA polymerase of bacteriophage RB69 crystallized under different conformations, i.e. the enzyme alone or in complex with DNA and with both DNA and incoming nucleotide. All antiviral agents currently used for the prevention or treatment of HSV and HCMV infections target the viral DNA polymerases. However, long-term administration of these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (i.e., nucleoside analogues) and/or DNA polymerases.
Collapse
Affiliation(s)
- Karima Zarrouk
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
6
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Colgrove RC, Liu X, Griffiths A, Raja P, Deluca NA, Newman RM, Coen DM, Knipe DM. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology 2015; 487:215-21. [PMID: 26547038 DOI: 10.1016/j.virol.2015.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
A collection of genomic DNA sequences of herpes simplex virus (HSV) strains has been defined and analyzed, and some information is available about genomic stability upon limited passage of viruses in culture. The nature of genomic change upon extensive laboratory passage remains to be determined. In this report we review the history of the HSV-1 KOS laboratory strain and the related KOS1.1 laboratory sub-strain, also called KOS (M), and determine the complete genomic sequence of an early passage stock of the KOS laboratory sub-strain and a laboratory stock of the KOS1.1 sub-strain. The genomes of the two sub-strains are highly similar with only five coding changes, 20 non-coding changes, and about twenty non-ORF sequence changes. The coding changes could potentially explain the KOS1.1 phenotypic properties of increased replication at high temperature and reduced neuroinvasiveness. The study also provides sequence markers to define the provenance of specific laboratory KOS virus stocks.
Collapse
Affiliation(s)
- Robert C Colgrove
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States; Mount Auburn Hospital, Cambridge, MA, United States
| | - Xueqiao Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Anthony Griffiths
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Priya Raja
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Neal A Deluca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruchi M Newman
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. Sci Rep 2015; 5:11767. [PMID: 26123572 PMCID: PMC4485236 DOI: 10.1038/srep11767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 01/15/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with several malignancies, including Burkitt lymphoma and nasopharyngeal carcinoma. To overcome such disorders, understanding the molecular mechanisms of the EBV replication is important. The EBV DNA polymerase (Pol) is one of the essential factors for viral lytic DNA replication. Although it is well known that its C-terminal half, possessing DNA polymerase and 3’-5’ exonuclease activity, is highly conserved among Family B Pols, the NH2-terminal half has yet to be characterized in detail. In this study, we show that a stretch of hydrophobic amino acids within the pre-NH2-terminal domain of EBV Pol plays important role. In addition, we could identify the most essential residue for replication in the motif. These findings will shed light on molecular mechanisms of viral DNA synthesis and will help to develop new herpesviruses treatments.
Collapse
|