1
|
Elsedawy NB, Nace RA, Russell SJ, Schulze AJ. Oncolytic Activity of Targeted Picornaviruses Formulated as Synthetic Infectious RNA. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:484-495. [PMID: 32529026 PMCID: PMC7276391 DOI: 10.1016/j.omto.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Infectious nucleic acid has been proposed as a superior formulation for oncolytic virus therapy. Oncolytic picornaviruses can be formulated as infectious RNA (iRNA), and their unwanted tropisms eliminated by microRNA (miRNA) detargeting. However, genomic insertion of miRNA target sequences into coxsackievirus A21 (CVA21) iRNA compromised its specific infectivity, negating further development as a novel oncolytic virus formulation. To address this limitation, we substituted a muscle-specific miRNA response element for the spacer region downstream of the internal ribosomal entry site in the 5′ non-coding region of CVA21 iRNA, thereby preserving genome length while avoiding the disruption of known surrounding RNA structural elements. This new iRNA (R-CVA21) retained high specific infectivity, rapidly generating replicating miRNA-detargeted viruses following transfection in H1-HeLa cells. Further, in contrast with alternatively configured iRNAs that were tested in parallel, intratumoral administration of R-CVA21 generated a spreading oncolytic infection that was curative in treated animals without associated myotoxicity. Moreover, R-CVA21 also exhibited superior miRNA response element stability in vivo. This novel formulation is a promising agent for clinical translation.
Collapse
Affiliation(s)
- Noura B Elsedawy
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Rebecca A Nace
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Stephen J Russell
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Autumn J Schulze
- Department of Molecule Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| |
Collapse
|
2
|
Screening of a Library of FDA-Approved Drugs Identifies Several Enterovirus Replication Inhibitors That Target Viral Protein 2C. Antimicrob Agents Chemother 2016; 60:2627-38. [PMID: 26856848 PMCID: PMC4862474 DOI: 10.1128/aac.02182-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
Enteroviruses (EVs) represent many important pathogens of humans. Unfortunately, no antiviral compounds currently exist to treat infections with these viruses. We screened the Prestwick Chemical Library, a library of approved drugs, for inhibitors of coxsackievirus B3, identified pirlindole as a potent novel inhibitor, and confirmed the inhibitory action of dibucaine, zuclopenthixol, fluoxetine, and formoterol. Upon testing of viruses of several EV species, we found that dibucaine and pirlindole inhibited EV-B and EV-D and that dibucaine also inhibited EV-A, but none of them inhibited EV-C or rhinoviruses (RVs). In contrast, formoterol inhibited all enteroviruses and rhinoviruses tested. All compounds acted through the inhibition of genome replication. Mutations in the coding sequence of the coxsackievirus B3 (CV-B3) 2C protein conferred resistance to dibucaine, pirlindole, and zuclopenthixol but not formoterol, suggesting that 2C is the target for this set of compounds. Importantly, dibucaine bound to CV-B3 protein 2C in vitro, whereas binding to a 2C protein carrying the resistance mutations was reduced, providing an explanation for how resistance is acquired.
Collapse
|
3
|
Cellular Proteins Act as Bridge Between 5' and 3' Ends of the Coxsackievirus B3 Mediating Genome Circularization During RNA Translation. Curr Microbiol 2015; 71:387-95. [PMID: 26139182 DOI: 10.1007/s00284-015-0866-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 01/19/2023]
Abstract
The positive single-stranded RNA genome of the Coxsackievirus B3 (CVB3) contains a 5' untranslated region (UTR) which hosts the internal ribosome entry site (IRES) element that governs cap-independent translation initiation and a polyadenylated 3' UTR which is required for stimulating the IRES activity. Viral RNA genomes could circularize to regulate initiation of translation and RNA synthesis at 5' and 3' ends. Interactions could either take place by direct RNA-RNA contacts, through cellular protein bridges mediating RNA circularization or both. Accordingly, we aimed to assess the nature of molecular interactions between these two regions and to evaluate cellular factors required for mRNA 3' end-mediated stimulation of CVB3 IRES-driven translation. By gel shift assays, we have showed that combining, in vitro, 5' and 3' UTR fragments had no discernible effect on the structures of RNAs, arguing against the presence of specific canonical RNA-RNA cyclization sequences between these two regions. Competitive UV crosslinking assays using BHK-21 cell extract showed common cellular proteins eIF3b, PTB, and La binding to both 5'- and 3' end RNAs. PCBP 1-2 and PABP were shown to bind, respectively, to 5' and 3' UTR probes. Taking together, these data suggest that CVB3 5'-3' end bridging occurs through 5' UTR-protein-protein-3' UTR interactions and not through RNA-RNA direct contact. The dual involvement of the 3' and 5' UTRs in controlling viral translation and RNA synthesis highlights the relevance of these regions in the infectious virus life cycle, making them suitable candidates for targeted CVB3 antiviral therapy.
Collapse
|
4
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
5
|
Romero-López C, Berzal-Herranz A. Unmasking the information encoded as structural motifs of viral RNA genomes: a potential antiviral target. Rev Med Virol 2013; 23:340-354. [PMID: 23983005 PMCID: PMC7169113 DOI: 10.1002/rmv.1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/05/2023]
Abstract
RNA viruses show enormous capacity to evolve and adapt to new cellular and molecular contexts, a consequence of mutations arising from errors made by viral RNA-dependent RNA polymerase during replication. Sequence variation must occur, however, without compromising functions essential for the completion of the viral cycle. RNA viruses are safeguarded in this respect by their genome carrying conserved information that does not code only for proteins but also for the formation of structurally conserved RNA domains that directly perform these critical functions. Functional RNA domains can interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. They are therefore potential targets for novel therapeutic strategies. This review summarises our knowledge of the functional RNA domains of human RNA viruses and examines the achievements made in the design of antiviral compounds that interfere with their folding and therefore their function.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, PTS Granada, Armilla, Granada, Spain
| | | |
Collapse
|
6
|
Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis. J Virol 2011; 86:2869-73. [PMID: 22190724 DOI: 10.1128/jvi.05712-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ability to extinguish a viral population of fixed reproductive capacity by causing small changes in the mutation rate is referred to as lethal mutagenesis and is a corollary of population genetics theory. Here we show that coxsackievirus B3 (CVB3) exhibits reduced mutational robustness relative to poliovirus, manifesting in enhanced sensitivity of CVB3 to lethal mutagens that is dependent on the size of the viral population. We suggest that mutational robustness may be a useful measure of the sensitivity of a virus to lethal mutagenesis.
Collapse
|
7
|
Zoll J, Heus HA, van Kuppeveld FJM, Melchers WJG. The structure-function relationship of the enterovirus 3'-UTR. Virus Res 2008; 139:209-16. [PMID: 18706945 DOI: 10.1016/j.virusres.2008.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/02/2008] [Indexed: 12/25/2022]
Abstract
Essential processes in living cells are carried out by large complex assemblies, which typically consist of a large number of proteins and frequently also contain nucleic acids, mostly RNA [Alberts, B., 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294]. These large biomolecular complexes carry out biological processes in highly sophisticated ways: molecules do not move around randomly in the cell and interact by chance, but are guided to these "macromolecular machines", in which the number of possible collisions is restricted to a few possibilities, based, e.g., on the specificity of protein-RNA recognition. While the coding capacity of RNA lies within its sequence, the shape of an RNA molecule determines other functionalities such as stability, intra- and intermolecular interactions, catalytic activity, regulation of cellular processes, etc. [Doudna, J.A., 2000. Structural genomics of RNA. Nat. Struct. Biol. 7, 954-956; Cech, T.R. 2000. Structural biology. The ribosome is a ribozyme. Science 289, 878-879]. RNA structures in macromolecular machines are important features in assembly, target recognition and activity. Viral RNA molecules contain cis- and/or trans-acting control elements that, as exemplified by internal ribosomal entry sites and origins of genome replication, consist of complex multidomain structures [Andino, R., Rieckhof, G.E., Achacoso, P.L., Baltimore D., 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5'-end of viral RNA. EMBO J. 12, 3587-3598; Melchers, W.J.G., Hoenderop, J.G.J., Bruins Slot, H.J., Pleij, C.W.A., Pilipenko, E.V., Agol, V.I., Galama, J.M.D., 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71, 686-696]. The formation of these structures is involved in the specific recognition of ligands or serves to support the structural integrity of the whole element. The replication of the enterovirus RNA is carried out by a large biomolecular complex formed by cis-acting RNA elements found in the 5'- and 3'-UTR of the virus genome and several cellular and viral proteins. This review will focus on RNA elements in the 3'-UTR of enteroviruses.
Collapse
Affiliation(s)
- Jan Zoll
- Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Martínez-Salas E, Pacheco A, Serrano P, Fernandez N. New insights into internal ribosome entry site elements relevant for viral gene expression. J Gen Virol 2008; 89:611-626. [PMID: 18272751 DOI: 10.1099/vir.0.83426-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family Picornaviridae initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5' UTR. IRES elements consist of cis-acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA-RNA contacts between the 5' and 3' ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Almudena Pacheco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Paula Serrano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | - Noemi Fernandez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| |
Collapse
|
9
|
Cheung P, Lim T, Yuan J, Zhang M, Chau D, McManus B, Yang D. Specific interaction of HeLa cell proteins with coxsackievirus B3 3'UTR: La autoantigen binds the 3' and 5'UTR independently of the poly(A) tail. Cell Microbiol 2007; 9:1705-15. [PMID: 17346312 DOI: 10.1111/j.1462-5822.2007.00904.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coxsackievirus B3 (CVB3) is a positive, single-stranded RNA virus. The secondary structure of the 3' untranslated region (3'UTR) of CVB3 RNA consists of three stem-loops and is followed by a poly(A) tail sequence. These stem-loop structures have been suggested to participate in the regulation of viral replication through interaction with cellular proteins that are yet to be identified. In this study, by competitive UV cross-linking using mutated 3'UTR probes we have demonstrated that the poly(A) tail is essential for promoting HeLa cell protein interactions with the 3'UTR because deletion of this sequence abolished most of the protein interactions. Unexpectedly, mutations that disrupted the tertiary loop-loop interactions without affecting the stem-loops did not apparently affect these protein interactions, indicating that secondary structure rather than the high-order structure may play a major role in recruiting these RNA binding proteins. Among the observed 3'UTR RNA binding proteins, we have confirmed a 52 kDa protein as the human La autoantigen by using purified recombinant protein and a polyclonal La antibody. This protein can interact with both the 3' and 5'UTRs independently of the poly(A) tail. Further analysis by two-stage UV cross-linking, we found that the 3' and 5'UTR sequences may share the same binding site on the La protein.
Collapse
Affiliation(s)
- Paul Cheung
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-St. Paul's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Serrano P, Pulido MR, Sáiz M, Martínez-Salas E. The 3' end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5' end region. J Gen Virol 2006; 87:3013-3022. [PMID: 16963760 DOI: 10.1099/vir.0.82059-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The untranslated regions (UTRs) of the foot-and-mouth disease virus (FMDV) genome contain multiple functional elements. In the 5' UTR, the internal ribosome entry site (IRES) element governs cap-independent translation initiation, whereas the S region is presumably involved in RNA replication. The 3' UTR, composed of two stem-loops and a poly(A) tract, is required for viral infectivity and stimulates IRES activity. Here, it was found that the 3' end established two distinct strand-specific, long-range RNA-RNA interactions, one with the S region and another with the IRES element. These interactions were not observed with the 3' UTR of a different picornavirus. Several results indicated that different 3' UTR motifs participated in IRES or S region interactions. Firstly, a high-order structure adopted by both the entire IRES and the 3' UTR was essential for RNA interaction. In contrast, the S region interacted with each of the stem-loops. Secondly, S-3' UTR interaction but not IRES-3' UTR interaction was dependent on a poly(A)-dependent conformation. However, no other complexes were observed in mixtures containing the three transcripts, suggesting that these regions did not interact simultaneously with the 3' UTR probe. Cellular proteins have been found to bind the S region and one of these also binds to the 3' UTR in a competitive manner. Our data suggest that 5'-3'-end bridging through both direct RNA-RNA contacts and RNA-protein interactions may play an essential role in the FMDV replication cycle.
Collapse
Affiliation(s)
- Paula Serrano
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | | | - Margarita Sáiz
- CISA-INIA, Valdeolmos, 28130 Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Wessels E, Notebaart RA, Duijsings D, Lanke K, Vergeer B, Melchers WJG, van Kuppeveld FJM. Structure-Function Analysis of the Coxsackievirus Protein 3A. J Biol Chem 2006; 281:28232-43. [PMID: 16867984 DOI: 10.1074/jbc.m601122200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coxsackievirus B3 3A protein forms homodimers and plays important roles in both viral RNA (vRNA) replication and the viral inhibition of intracellular protein transport. The molecular determinants that are required for each of these functions are yet poorly understood. Based on the NMR structure of the closely related poliovirus 3A protein, a molecular model of the coxsackievirus B3 3A protein was constructed. Using this structural model, specific mutants were designed to study the structure-function relationship of 3A. The mutants were tested for their capacity to dimerize, support vRNA replication, and block protein transport. A hydrophobic interaction between the monomers and an intermolecular salt bridge were identified as major determinants required for dimerization. We show that dimerization is important for both efficient vRNA replication and inhibition of protein transport. In addition, determinants were identified that were not required for dimerization but that were essential for either one of the biological functions of 3A. The combination of the in silico and in vivo results obtained in this study provides important insights in both the structural and functional aspects of 3A.
Collapse
Affiliation(s)
- Els Wessels
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|