1
|
Adero J, Wokorach G, Stomeo F, Yao N, Machuka E, Njuguna J, Byarugaba DK, Kreuze J, Yencho GC, Otema MA, Yada B, Kitavi M. Next Generation Sequencing and Genetic Analyses Reveal Factors Driving Evolution of Sweetpotato Viruses in Uganda. Pathogens 2024; 13:833. [PMID: 39452705 PMCID: PMC11510311 DOI: 10.3390/pathogens13100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.) is an essential food crop globally, especially for farmers facing resource limitations. Like other crops, sweetpotato cultivation faces significant production challenges due to viral infections. This study aimed to identify and characterize viruses affecting sweetpotato crops in Uganda, mostly those associated with sweetpotato virus disease (SPVD). Infected leaf samples were collected from farmers' fields in multiple districts spanning three regions in Uganda. MiSeq, a next-generation sequencing platform, was used to generate reads from the viral nucleic acid. The results revealed nine viruses infecting sweetpotato crops in Uganda, with most plants infected by multiple viral species. Sweet potato pakakuy and sweet potato symptomless virus_1 are reported in Uganda for the first time. Phylogenetic analyses demonstrated that some viruses have evolved to form new phylogroups, likely due to high mutations and recombination, particularly in the coat protein, P1 protein, cylindrical inclusion, and helper component proteinase regions of the potyvirus. The sweet potato virus C carried more codons under positive diversifying selection than the closely related sweet potato feathery mottle virus, particularly in the P1 gene. This study provides valuable insights into the viral species infecting sweetpotato crops, infection severity, and the evolution of sweet potato viruses in Uganda.
Collapse
Affiliation(s)
- Joanne Adero
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Godfrey Wokorach
- Department of Biology, Faculty of Science, Muni University, Arua P.O. Box 725, Uganda;
| | - Francesca Stomeo
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Nasser Yao
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Eunice Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709, Kenya; (F.S.); (N.Y.); (E.M.); (J.N.)
| | - Denis K. Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Jan Kreuze
- International Potato Centre, CIP Headquarters Lima, Avenida La Molina 1895, La Molina Apartado Postal 1558, Lima 15024, Peru;
| | - G. Craig Yencho
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, P.O. Box 7609, Raleigh, NC 27695, USA;
| | - Milton A. Otema
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
| | - Benard Yada
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala P.O. Box 7084, Uganda; (M.A.O.); (B.Y.)
| | - Mercy Kitavi
- International Potato Centre, SSA Regional Office, Nairobi P.O. Box 25171, Kenya
| |
Collapse
|
2
|
Disease Pandemics and Major Epidemics Arising from New Encounters between Indigenous Viruses and Introduced Crops. Viruses 2020; 12:v12121388. [PMID: 33291635 PMCID: PMC7761969 DOI: 10.3390/v12121388] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023] Open
Abstract
Virus disease pandemics and epidemics that occur in the world’s staple food crops pose a major threat to global food security, especially in developing countries with tropical or subtropical climates. Moreover, this threat is escalating rapidly due to increasing difficulties in controlling virus diseases as climate change accelerates and the need to feed the burgeoning global population escalates. One of the main causes of these pandemics and epidemics is the introduction to a new continent of food crops domesticated elsewhere, and their subsequent invasion by damaging virus diseases they never encountered before. This review focusses on providing historical and up-to-date information about pandemics and major epidemics initiated by spillover of indigenous viruses from infected alternative hosts into introduced crops. This spillover requires new encounters at the managed and natural vegetation interface. The principal virus disease pandemic examples described are two (cassava mosaic, cassava brown streak) that threaten food security in sub-Saharan Africa (SSA), and one (tomato yellow leaf curl) doing so globally. A further example describes a virus disease pandemic threatening a major plantation crop producing a vital food export for West Africa (cacao swollen shoot). Also described are two examples of major virus disease epidemics that threaten SSA’s food security (rice yellow mottle, groundnut rosette). In addition, brief accounts are provided of two major maize virus disease epidemics (maize streak in SSA, maize rough dwarf in Mediterranean and Middle Eastern regions), a major rice disease epidemic (rice hoja blanca in the Americas), and damaging tomato tospovirus and begomovirus disease epidemics of tomato that impair food security in different world regions. For each pandemic or major epidemic, the factors involved in driving its initial emergence, and its subsequent increase in importance and geographical distribution, are explained. Finally, clarification is provided over what needs to be done globally to achieve effective management of severe virus disease pandemics and epidemics initiated by spillover events.
Collapse
|
3
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
4
|
Kushawaha AK, Dasgupta I. Infectivity of cloned begomoviral DNAs: an appraisal. Virusdisease 2018; 30:13-21. [PMID: 31143828 DOI: 10.1007/s13337-018-0453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 04/18/2018] [Indexed: 11/28/2022] Open
Abstract
Infectivity of cloned begomoviral DNAs is an important criterion to establish the etiology of the disease it causes, to study viral gene functions and host-virus interactions. Three main methods have been employed to study infectivity; mechanical inoculation with cloned viral DNA using abrasives, Agrobacterium-mediated inoculation (agroinoculation) of cloned viral DNA and bombardment using microprojectiles coated with cloned viral DNA (biolistics). Each method has its own advantages and disadvantages and the adoption of one over the other for demonstrating infectivity depends on various factors. This review compares the various features associated with the above three methods.
Collapse
Affiliation(s)
- Akhilesh Kumar Kushawaha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
5
|
Sobrinho RR, Xavier CAD, Pereira HMDB, Lima GSDA, Assunção IP, Mizubuti ESG, Duffy S, Zerbini FM. Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 2014; 95:2540-2552. [DOI: 10.1099/vir.0.067009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated plants play a crucial epidemiological role, acting as begomovirus reservoirs and as ‘mixing vessels' where recombination can occur. Previous work suggests a higher degree of genetic variability in begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess this supposed host effect on the genetic variability of begomovirus populations, cultivated (common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated (Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212 full-length DNA-A genome segments were sequenced from samples collected between 2005 and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus species, similar genetic variation between populations infecting cultivated and non-cultivated hosts, indicating that the presumed genetic variability of the host did not a priori affect viral variability. We observed a higher degree of genetic variation in isolates from MaYSV populations than BGMV populations, which was explained by numerous recombination events in MaYSV. MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population (but not MaYSV) being structured by both host and geography.
Collapse
Affiliation(s)
- Roberto Ramos Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | | | | | | - Iraíldes Pereira Assunção
- Departamento de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil
| | | | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University Of New Jersey, New Brunswick, NJ 08901, USA
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
6
|
High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Res 2014; 186:87-96. [DOI: 10.1016/j.virusres.2013.12.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 11/20/2022]
|
7
|
Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Lima ATM, Sobrinho RR, González-Aguilera J, Rocha CS, Silva SJC, Xavier CAD, Silva FN, Duffy S, Zerbini FM. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 2013; 94:418-431. [DOI: 10.1099/vir.0.047241-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.
Collapse
Affiliation(s)
- Alison T. M. Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Roberto R. Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Jorge González-Aguilera
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Carolina S. Rocha
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Sarah J. C. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - César A. D. Xavier
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Fábio N. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| |
Collapse
|
9
|
Aloyce RC, Tairo F, Sseruwagi P, Rey MEC, Ndunguru J. A single-tube duplex and multiplex PCR for simultaneous detection of four cassava mosaic begomovirus species in cassava plants. J Virol Methods 2012; 189:148-56. [PMID: 23174160 DOI: 10.1016/j.jviromet.2012.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/26/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022]
Abstract
A single-tube duplex and multiplex PCR was developed for the simultaneous detection of African cassava mosaic virus (ACMV), East African cassava mosaic Cameroon virus (EACMCV), East African cassava mosaic Malawi virus (EACMMV) and East African cassava mosaic Zanzibar virus (EACMZV), four cassava mosaic begomoviruses (CMBs) affecting cassava in sub-Saharan Africa. Co-occurrence of the CMBs in cassava synergistically enhances disease symptoms and complicates their detection and diagnostics. Four primer pairs were designed to target DNA-A component sequences of cassava begomoviruses in a single tube PCR amplification using DNA extracted from dry-stored cassava leaves. Duplex and multiplex PCR enabled the simultaneous detection and differentiation of the four CMBs, namely ACMV (940bp), EACMCV (435bp), EACMMV (504bp) and EACMZV (260bp) in single and mixed infections, and sequencing results confirmed virus identities according to the respective published sequences of begomovirus species. In addition, we report here a modified Dellapotra et al. (1983) protocol, which was used to extract DNA from dry and fresh cassava leaves with comparable results. Using the duplex and multiplex techniques, time was saved and amount of reagents used were reduced, which translated into reduced cost of the diagnostics. This tool can be used by cassava breeders screening for disease resistance; scientists doing virus diagnostic studies; phytosanitary officers checking movement of diseased planting materials, and seed certification and multipliers for virus indexing.
Collapse
Affiliation(s)
- R C Aloyce
- Mikocheni Agriculture Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania.
| | | | | | | | | |
Collapse
|
10
|
Ramkat RC, Calari A, Maghuly F, Laimer M. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas. Virol J 2011; 8:386. [PMID: 21812981 PMCID: PMC3163225 DOI: 10.1186/1743-422x-8-386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. RESULTS A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. CONCLUSION Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.
Collapse
Affiliation(s)
- Rose C Ramkat
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Alberto Calari
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Fatemeh Maghuly
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Margit Laimer
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| |
Collapse
|
11
|
Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J Virol Methods 2011; 171:394-400. [DOI: 10.1016/j.jviromet.2010.09.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022]
|
12
|
Abstract
Nanoviruses are multipartite single-stranded DNA (ssDNA) plant viruses that cause important diseases of leguminous crops and banana. Little has been known about the variability and molecular evolution of these viruses. Here we report on the variability of faba bean necrotic stunt virus (FBNSV), a nanovirus from Ethiopia. We found mutation frequencies of 7.52 x 10(-4) substitutions per nucleotide in a field population of the virus and 5.07 x 10(-4) substitutions per nucleotide in a laboratory-maintained population derived thereof. Based on virus propagation for a period of more than 2 years, we determined a nucleotide substitution rate of 1.78 x 10(-3) substitutions per nucleotide per year. This high molecular evolution rate places FBNSV, as a representative of the family Nanoviridae, among the fastest-evolving ssDNA viruses infecting plants or vertebrates.
Collapse
|
13
|
Patil BL, Fauquet CM. Cassava mosaic geminiviruses: actual knowledge and perspectives. MOLECULAR PLANT PATHOLOGY 2009; 10:685-701. [PMID: 19694957 PMCID: PMC6640248 DOI: 10.1111/j.1364-3703.2009.00559.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Cassava mosaic disease (CMD) caused by cassava mosaic geminiviruses (CMGs) is one of the most devastating crop diseases and a major constraint for cassava cultivation. CMD has been reported only from the African continent and Indian subcontinent despite the large-scale cultivation of cassava in Latin America and several South-East Asian countries. Seven CMG species have been reported from Africa and two from the Indian subcontinent and, in addition, several strains have been recognized. Recombination and pseudo-recombination between CMGs give rise not only to different strains, but also to members of novel virus species with increased virulence and a new source of biodiversity, causing severe disease epidemics. CMGs are known to trigger gene silencing in plants and, in order to counteract this natural host defence, geminiviruses have evolved suppressor proteins. Temperature and other environmental factors can affect silencing and suppression, and thus modulate the symptoms. In the case of mixed infections of two or more CMGs, there is a possibility for a synergistic interaction as a result of the presence of differential and combinatorial suppressor proteins. In this article, we provide the status of recent research findings with regard to the CMD complex, present the molecular biology knowledge of CMGs with reference to other geminiviruses, and highlight the mechanisms by which CMGs have exploited nature to their advantage.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- International Laboratory for Tropical Agricultural Biotechnology (ILTAB), Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA
| | | |
Collapse
|