1
|
Singh SB, Carroll-Portillo A, Lin HC. Desulfovibrio in the Gut: The Enemy within? Microorganisms 2023; 11:1772. [PMID: 37512944 PMCID: PMC10383351 DOI: 10.3390/microorganisms11071772] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Desulfovibrio (DSV) are sulfate-reducing bacteria (SRB) that are ubiquitously present in the environment and as resident commensal bacteria within the human gastrointestinal tract. Though they are minor residents of the healthy gut, DSV are opportunistic pathobionts that may overgrow in the setting of various intestinal and extra-intestinal diseases. An increasing number of studies have demonstrated a positive correlation between DSV overgrowth (bloom) and various human diseases. While the relationship between DSV bloom and disease pathology has not been clearly established, mounting evidence suggests a causal role for these bacteria in disease development. As DSV are the most predominant genera of SRB in the gut, this review summarizes current knowledge regarding the relationship between DSV and a variety of diseases. In this study, we also discuss the mechanisms by which these bacteria may contribute to disease pathology.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Henry C Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
2
|
Jin L, Dang H, Wu J, Yuan L, Chen X, Yao J. Supplementation of Weizmannia coagulans BC2000 and Ellagic Acid Inhibits High-Fat-Induced Hypercholesterolemia by Promoting Liver Primary Bile Acid Biosynthesis and Intestinal Cholesterol Excretion in Mice. Microorganisms 2023; 11:microorganisms11020264. [PMID: 36838229 PMCID: PMC9964488 DOI: 10.3390/microorganisms11020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The probiotic Weizmannia coagulans (W. coagulans) BC2000 can increase the abundance of intestinal transforming ellagic acid (EA) bacteria and inhibit metabolic disorders caused by hyperlipidemia by activating liver autophagy. This study aimed to investigate the inhibitory effects of W. coagulans BC2000 and EA on hyperlipidemia-induced cholesterol metabolism disorders. C57BL/6J mice (n = 10 in each group) were fed a low-fat diet, high-fat diet (HFD), HFD supplemented with EA, HFD supplemented with EA and W. coagulans BC77, HFD supplemented with EA, and W. coagulans BC2000. EA and W. coagulans BC2000 supplementation prevented HFD-induced hypercholesterolemia and promoted fecal cholesterol excretion. Transcriptome analysis showed that primary bile acid biosynthesis in the liver was significantly activated by EA and W. coagulans BC2000 treatments. EA and W. coagulans BC2000 treatment also significantly increased the intestinal Eggerthellaceae abundance and the liver EA metabolites, iso-urolithin A, Urolithin A, and Urolithin B. Therefore, W. coagulans BC2000 supplementation promoted the intestinal transformation of EA, which led to the upregulation of liver bile synthesis, thus preventing hypercholesterolemia.
Collapse
Affiliation(s)
- Long Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Probiotics Institute, Hefei 230031, China
| | - Hongyang Dang
- College Life Science & Technology, Xinjiang University, Urumqi 830046, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Correspondence: (X.C.); (J.Y.)
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Correspondence: (X.C.); (J.Y.)
| |
Collapse
|
3
|
Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota. Food Res Int 2022; 155:111125. [DOI: 10.1016/j.foodres.2022.111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
|
4
|
Antiproliferative and Antimicrobial Potentials of a Lectin from Aplysia kurodai (Sea Hare) Eggs. Mar Drugs 2021; 19:md19070394. [PMID: 34356819 PMCID: PMC8306185 DOI: 10.3390/md19070394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, there has been considerable interest in lectins from marine invertebrates. In this study, the biological activities of a lectin protein isolated from the eggs of Sea hare (Aplysia kurodai) were evaluated. The 40 kDa Aplysia kurodai egg lectin (or AKL-40) binds to D-galacturonic acid and D-galactose sugars similar to previously purified isotypes with various molecular weights (32/30 and 16 kDa). The N-terminal sequence of AKL-40 was similar to other sea hare egg lectins. The lectin was shown to be moderately toxic to brine shrimp nauplii, with an LC50 value of 63.63 µg/mL. It agglutinated Ehrlich ascites carcinoma cells and reduced their growth, up to 58.3% in vivo when injected into Swiss albino mice at a rate of 2 mg/kg/day. The morphology of these cells apparently changed due to AKL-40, while the expression of apoptosis-related genes (p53, Bax, and Bcl-XL) suggested a possible apoptotic pathway of cell death. AKL-40 also inhibited the growth of human erythroleukemia cells, probably via activating the MAPK/ERK pathway, but did not affect human B-lymphoma cells (Raji) or rat basophilic leukemia cells (RBL-1). In vitro, lectin suppressed the growth of Ehrlich ascites carcinoma and U937 cells by 37.9% and 31.8%, respectively. Along with strong antifungal activity against Talaromyces verruculosus, AKL showed antibacterial activity against Staphylococcus aureus, Shigella sonnei, and Bacillus cereus whereas the growth of Escherichia coli was not affected by the lectin. This study explores the antiproliferative and antimicrobial potentials of AKL as well as its involvement in embryo defense of sea hare.
Collapse
|
5
|
Oyewole OA, Mitchell J, Thresh S, Zinkevich V. The purification and functional study of new compounds produced by Escherichia coli that influence the growth of sulfate reducing bacteria. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/2314808x.2020.1752033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Julian Mitchell
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Sarah Thresh
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Vitaly Zinkevich
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Dendrobii Officinalis, a traditional Chinese edible and officinal plant, accelerates liver recovery by regulating the gut-liver axis in NAFLD mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
7
|
Huang K, Liu Y, Tang H, Qiu M, Li C, Duan C, Wang C, Yang J, Zhou X. Glabridin Prevents Doxorubicin-Induced Cardiotoxicity Through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Front Pharmacol 2019; 10:107. [PMID: 30833897 PMCID: PMC6387923 DOI: 10.3389/fphar.2019.00107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
The chemotherapeutic drug doxorubicin (DOX) provokes a dose-related cardiotoxicity. Thus, there is an urgent need to identify the underlying mechanisms and develop strategies to overcome them. Here we demonstrated that glabridin (GLA), an isoflavone from licorice root, prevents DOX-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization in mice. GLA reduced DOX-induced leakage of myocardial enzymes including aminotransferase, creatine kinase, lactate dehydrogenase, and creatine kinase-MB. GLA downregulated pro-apoptotic proteins (Bax, cleaved-caspase 9 and cleaved-caspase 3) and upregulated anti-apoptotic proteins (HAX-1 and Bcl-2) in the cardiac tissues. In addition, GLA modulated DOX-induced dysbiosis of gut microbiota and thereby decreased the ratio of M1/M2 colonic macrophage, accompanied by the downregulated lipopolysaccharide (LPS) and upregulated butyrate in the feces and peripheral blood. The leakage of myocardial enzymes induced by the DOX was decreased by antibiotics treatment, but not altered by co-treatment with the GLA and antibiotics. The ratio of M1/M2 colonic macrophage and leakage of myocardial enzymes reduced by the GLA were greatly increased by the Desulfovibrio vulgaris or LPS but decreased by the butyrate. Depletion of the macrophage attenuated DOX-induced cardiotoxicity but failed to further affect the effects of GLA. Importantly, GLA decreased production of M1 cytokines (IL-1β and TNF-α) but increased production of M2 cytokines (IL-10 and TGF-β) in the colonic macrophage with the downregulation of NF-κB and the upregulation of STAT6. In summary, GLA prevents DOX-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization, and may serve as a potential therapeutic strategy for the DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Keqing Huang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yanzhuo Liu
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment, Key Laboratory of Cognitive Science, College of Biomedical Engineering, South Central University for Nationalities, Wuhan, China
| | - Honglin Tang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao Qiu
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Shenzhen Stomatological Hospital of Southern Medical University, Shenzhen, China
| | - Chenhong Li
- Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South Central University for Nationalities, Wuhan, China
| | - Chenfan Duan
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chenlong Wang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Fang J, Sun X, Xue B, Fang N, Zhou M. Dahuang Zexie Decoction Protects against High-Fat Diet-Induced NAFLD by Modulating Gut Microbiota-Mediated Toll-Like Receptor 4 Signaling Activation and Loss of Intestinal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:2945803. [PMID: 29259643 PMCID: PMC5702401 DOI: 10.1155/2017/2945803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that intestinal dysbiosis, intestinal barrier dysfunction, and activated Toll-like receptor 4 (TLR4) signaling play key roles in the pathogenesis of NAFLD. Dahuang Zexie Decoction (DZD) has been verified to be effective for treating NAFLD, but the mechanisms remain unclear. In this study, we investigated the effects of DZD on NAFLD rats and determined whether such effects were associated with change of the gut microbiota, downregulated activity of the TLR4 signaling pathway, and increased expressions of tight junction (TJ) proteins in the gut. Male Sprague Dawley rats were fed high-fat diet (HFD) for 16 weeks to induce NAFLD and then given DZD intervention for 4 weeks. We found that DZD reduced body and liver weights of NAFLD rats, improved serum lipid levels and liver function parameters, and relieved NAFLD. We further found that DZD changed intestinal bacterial communities, inhibited the intestinal TLR4 signaling pathway, and restored the expressions of TJ proteins in the gut. Meanwhile ten potential components of DZD had been identified. These findings suggest that DZD may protects against NAFLD by modulating gut microbiota-mediated TLR4 signaling activation and loss of intestinal barrier. However, further studies are needed to clarify the mechanism by which DZD treats NAFLD.
Collapse
Affiliation(s)
- Jing Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqi Sun
- Department of Police Tactics, Nanjing Forest Police College, Nanjing 210023, China
| | - Boyu Xue
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanyuan Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Min Zhou
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
9
|
Obeng EM, Dullah EC, Razak NSA, Danquah MK, Budiman C, Ongkudon CM. Elucidating endotoxin-biomolecule interactions with FRET: extending the frontiers of their supramolecular complexation. J Biol Methods 2017; 4:e71. [PMID: 31453229 PMCID: PMC6706125 DOI: 10.14440/jbm.2017.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Endotoxin has been one of the topical chemical contaminants of major concern to researchers, especially in the field of bioprocessing. This major concern of researchers stems from the fact that the presence of Gram-negative bacterial endotoxin in intracellular products is unavoidable and requires complex downstream purification steps. For instance, endotoxin interacts with recombinant proteins, peptides, antibodies and aptamers and these interactions have formed the foundation for most biosensors for endotoxin detection. It has become imperative for researchers to engineer reliable means/techniques to detect, separate and remove endotoxin, without compromising the quality and quantity of the end-product. However, the underlying mechanism involved during endotoxin-biomolecule interaction is still a gray area. The use of quantitative molecular microscopy that provides high resolution of biomolecules is highly promising, hence, may lead to the development of improved endotoxin detection strategies in biomolecule preparation. Förster resonance energy transfer (FRET) spectroscopy is one of the emerging most powerful tools compatible with most super-resolution techniques for the analysis of molecular interactions. However, the scope of FRET has not been well-exploited in the analysis of endotoxin-biomolecule interaction. This article reviews endotoxin, its pathophysiological consequences and the interaction with biomolecules. Herein, we outline the common potential ways of using FRET to extend the current understanding of endotoxin-biomolecule interaction with the inference that a detailed understanding of the interaction is a prerequisite for the design of strategies for endotoxin identification and removal from protein milieus.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biotechnology Research Institute, University Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | - Elvina C Dullah
- Biotechnology Research Institute, University Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | | | - Michael K Danquah
- Department of Chemical Engineering, Curtin University Sarawak, Miri, Sarawak 98009, Malaysia
| | - Cahyo Budiman
- Biotechnology Research Institute, University Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | - Clarence M Ongkudon
- Biotechnology Research Institute, University Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| |
Collapse
|
10
|
Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions. Int J Mol Sci 2017; 18:ijms18030519. [PMID: 28264491 PMCID: PMC5372535 DOI: 10.3390/ijms18030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species.
Collapse
|
11
|
Zhang-Sun W, Augusto LA, Zhao L, Caroff M. Desulfovibrio desulfuricansisolates from the gut of a single individual: Structural and biological lipid A characterization. FEBS Lett 2014; 589:165-71. [DOI: 10.1016/j.febslet.2014.11.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/05/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
|
12
|
Hotaling NA, Ratner DM, Cummings RD, Babensee JE. Presentation Modality of Glycoconjugates Modulates Dendritic Cell Phenotype. Biomater Sci 2014; 2:1426-1439. [PMID: 26146546 DOI: 10.1039/c4bm00138a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The comparative dendritic cell (DC) response to glycoconjugates presented in soluble, phagocytosable, or non-phagocytosable display modalities is poorly understood. This is particularly problematic, as the probing of immobilized glycans presented on the surface of microarrays is a common screen for potential candidates for glycan-based therapeutics. However, the assumption that carbohydrate-protein interactions on a flat surface can be translatable to development of efficacious therapies, such as vaccines, which are delivered in soluble or phagocytosable particles, has not been validated. Thus, a preliminary investigation was performed in which mannose or glucose was conjugated to cationized bovine serum albumin and presented to DCs in soluble, phagocytosable, or non-phagocytosable display modalities. The functional DC response to the glycoconjugates was assessed via a high throughput assay. Dendritic cell phenotypic outcomes were placed into a multivariate, general linear model (GLM) and shown to be statistically different amongst display modalities when comparing similar surface areas. The GLM showed that glycoconjugates that were adsorbed to wells were the most pro-inflammatory while soluble conjugates were the least. DC interactions with mannose conjugates were found to be calcium dependent and could be inhibited via anti-DC-SIGN antibodies. The results of this study aim to resolve conflicts in reports from multiple laboratories showing differential DC profiles in response to similar, if not identical, ligands delivered via different modalities. Additionally, this study begins to bridge the gap between microarray binding data and functional cell responses by highlighting the phenotypes induced from adsorbed glycoconjugates as compared to those in solution or displayed on microparticles.
Collapse
Affiliation(s)
- N A Hotaling
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, 30332
| | - D M Ratner
- Dept. of Bioengineering, University of Washington, Seattle WA, 98195
| | - R D Cummings
- Dept. of Biochemistry, Emory University, Atlanta GA 30322
| | - J E Babensee
- Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta GA, 30332
| |
Collapse
|