1
|
Papp Z, Nemeth LG, Nzetchouang Siyapndjeu S, Bufa A, Marosvölgyi T, Gyöngyi Z. Classification of Plant-Based Drinks Based on Volatile Compounds. Foods 2024; 13:4086. [PMID: 39767028 PMCID: PMC11675735 DOI: 10.3390/foods13244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing popularity of plant-based drinks has led to an expanded consumer market. However, available quality control technologies for plant-based drinks are time-consuming and expensive. Two alternative quality control methods, gas chromatography with ion mobility spectrometry (GC-IMS) and an electronic nose, were used to assess 111 plant-based drink samples. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to compare 58 volatile organic compound areas of GC-IMS gallery plots and 63 peptide sensors of the electronic nose. PCA results showed that GC-IMS was only able to completely separate one sample, whereas the electronic nose was able to completely separate seven samples. LDA application to GC-IMS analyses resulted in classification accuracies ranging from 15.4% to 100%, whereas application to electronic nose analyses resulted in accuracies ranging from 96.2% to 100%. Both methods were useful for classification, but each had drawbacks, and the electronic nose performed slightly better than GC-IMS. This study represents one of the first studies comparing GC-IMS and an electronic nose for the analysis of plant-based drinks. Further research is necessary to improve these methods and establish a rapid, cost-effective food quality control system based on volatile organic compounds.
Collapse
Affiliation(s)
- Zsigmond Papp
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (Z.P.); (L.G.N.); (S.N.S.)
| | - Laura Gabriela Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (Z.P.); (L.G.N.); (S.N.S.)
- Faculty of Health Sciences, University of Pécs, Vörösmarty u. 4, 7621 Pécs, Hungary
| | - Sandrine Nzetchouang Siyapndjeu
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (Z.P.); (L.G.N.); (S.N.S.)
- Faculty of Health Sciences, University of Pécs, Vörösmarty u. 4, 7621 Pécs, Hungary
- Recherchenité de Recherche Clinique, GHU Paris Centre, Université Paris Cité, 89 rue d’Assas, 75006 Paris, France
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (A.B.); (T.M.)
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (A.B.); (T.M.)
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (Z.P.); (L.G.N.); (S.N.S.)
| |
Collapse
|
2
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
3
|
Agave Syrup: Chemical Analysis and Nutritional Profile, Applications in the Food Industry and Health Impacts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127022. [PMID: 35742286 PMCID: PMC9222424 DOI: 10.3390/ijerph19127022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
Agave syrup (AS), a food product made from agave plant sap, is a vegan sweetener that has become popular for replacing conventional sweeteners such as sucrose. As the demand for naturally derived sweeteners has grown in the last decade, this review paper addresses and discusses, in detail, the most relevant aspects of the chemical AS analysis, applications in the food industry, sustainability issues, safety and quality control and, finally, nutritional profile and health impacts. According to our main research outcome, we can assume that the mid-infrared-principal components analysis, high-performance anion exchange chromatography equipped with a pulsed amperometric detector, and thin-layer chromatography can be used to identify and distinguish syrups from natural sources. The main agave–derived products are juice, leaves, bagasse, and fiber. In sustainability terms, it can be stated that certified organic and free trade agave products are the most sustainable options available on the market because they guarantee products being created without pesticides and according to specific labor standards. The Mexican government and AS producers have also established Mexican guidelines which prohibit using any ingredient, sugar or food additive that derives from sources, apart from agave plants, to produce any commercial AS. Due to its nutritional value, AS is a good source of minerals, vitamins and polyphenols compared to other traditional sweeteners. However, further research into the effects of AS on human metabolism is necessary to back its health claims as a natural sugar substitute.
Collapse
|
4
|
|
5
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
6
|
Escobedo-García S, Salas-Tovar JA, Flores-Gallegos AC, Contreras-Esquivel JC, González-Montemayor ÁM, López MG, Rodríguez-Herrera R. Functionality of Agave Bagasse as Supplement for the Development of Prebiotics-Enriched Foods. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:96-102. [PMID: 31853903 DOI: 10.1007/s11130-019-00785-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Agave bagasse is a fibrous-like material obtained during aguamiel extraction, which is also in contact with indigenous microbiota of agave plant during aguamiel fermentation. This plant is a well-known carrier of the prebiotic fructan-type carbohydrates, which have multiple ascribable health benefits. In the present work, the potential of ashen and green agave bagasse as functional ingredients in supplemented cookies was studied. For its application, the chemical, functional, properties of agave bagasses and formulated cookies were evaluated, as well as the physical properties of cookies. Chemical characterization was carried out by the proximate analysis of both bagasses and cookies, besides, the analysis of oligosaccharides was made by thin-layer chromatography and high-performance anion-exchange chromatography. In the same way, functional properties such as oil holding capacity, organic molecule absorption capacity, swelling capacity, and water holding capacity were analyzed in both agave bagasses and supplemented cookies. Finally, modifications in color and texture due to bagasse addition was studied through an analysis of total color difference and a penetrometric test, respectively. In this sense, ashen and green agave bagasses demonstrated chemical and functional properties for use in the food industry, since they increased oil holding capacity of cookies and transferred prebiotic fructooligosaccharides to both agave bagasse formulations, which remain active as a prebiotic ingredient in cookies after in vitro digestion and cookie manufacture, including thermal treatment. Hence, agave bagasse could be considered a valuable alternative for the addition of the nutritionally-relevant dietary fiber in healthier foods.
Collapse
Affiliation(s)
- Sarai Escobedo-García
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - Jesús A Salas-Tovar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - Adriana C Flores-Gallegos
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - Juan C Contreras-Esquivel
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - Ángela M González-Montemayor
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico
| | - Mercedes G López
- Biotechnology and Biochemistry Department, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, 36821 Irapuato, Guanajuato, Mexico
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza and José Cárdenas s/n, República Oriente, 25280, Saltillo, Coahuila, Mexico.
| |
Collapse
|
7
|
González-Montemayor ÁM, Flores-Gallegos AC, Serrato-Villegas LE, Ruelas-Chacón X, López MG, Rodríguez-Herrera R. Processing temperature effect on the chemical content of concentrated aguamiel syrups obtained from two different Agave species. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Aldrete-Herrera PI, López MG, Medina-Torres L, Ragazzo-Sánchez JA, Calderón-Santoyo M, González-Ávila M, Ortiz-Basurto RI. Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods 2019; 8:E404. [PMID: 31547254 PMCID: PMC6770228 DOI: 10.3390/foods8090404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, we characterize fructan extracts from five wild agave varieties at three ages to identify their potential use in the food industry. Physicochemical parameters (solids soluble total and pH), sugar content and fructan distribution profiles by high-performance anion-exchange chromatography (HPAEC) were evaluated. We found that the ages and variety influenced the carbohydrate content and also fructan dispersion. Two- to four-year-old plants exhibited the highest concentrations of free sugars and fructans, with a low apparent degree of polymerization (DPa) of ≤9 monomers, which highlights their potential use as prebiotics. Conversely, 10- to 12-year-old plants presented a low concentration of free sugars and fructans with a maximum DPa of 70 monomers, which can be used to obtain fractions with high, intermediate and low DPa. These fractions have a potential use in the food industry as prebiotic, soluble fibers, stabilizers and sweeteners, among others. The agave varieties Agave spp., Agave salmiana, and Agave atrovirens showed mainly fructooligosaccharides (FOSs). Due to the presence of these low molecular carbohydrates, prebiotics, fermented products and/or syrups could be obtained. A. salmiana spp. crassipina and Agave tequilana variety cenizo presented DPa ≤50 and DPa ≤70, respectively, which could be useful in the production of fructan fractions of different DPa. These fractions might be used as functional ingredients in the manufacture of a wide range of food products.
Collapse
Affiliation(s)
- Pamela I Aldrete-Herrera
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Av. Tecnológico 2595 Fracc. Lagos del Country, 63175 Tepic, Nayarit, Mexico.
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del IPN. Km. 9.6 Libramiento Norte Carretera Irapuato León, 36821 Irapuato, Guanajuato, Mexico.
| | - Luis Medina-Torres
- Facultad de Química de la Universidad Nacional Autónoma de México, Circuito Exterior S/N, Coyoacán, Cd. Universitaria, 04510 México city, Mexico.
| | - Juan A Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Av. Tecnológico 2595 Fracc. Lagos del Country, 63175 Tepic, Nayarit, Mexico.
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Av. Tecnológico 2595 Fracc. Lagos del Country, 63175 Tepic, Nayarit, Mexico.
| | - Marisela González-Ávila
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco, Av. Normalistas 800, Colinas de La Normal, 44270 Guadalajara, Jalisco, Mexico.
| | - Rosa I Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Av. Tecnológico 2595 Fracc. Lagos del Country, 63175 Tepic, Nayarit, Mexico.
| |
Collapse
|
9
|
Grajales-Lagunes A, Rivera-Bautista C, Loredo-García I, González-García R, González-Chávez M, Schmidt S, Ruiz-Cabrera M. Using model food systems to develop mathematical models for construction of state diagrams of fruit products. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Sandoval-González RS, Jiménez-Islas H, Navarrete-Bolaños JL. Design of a fermentation process for agave fructooligosaccharides production using endo-inulinases produced in situ by Saccharomyces paradoxus. Carbohydr Polym 2018; 198:94-100. [PMID: 30093047 DOI: 10.1016/j.carbpol.2018.06.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Abstract
Saccharomyces paradoxus, a native microorganism of the aguamiel, was used successfully for endoinulinase synthesis for agave fructooligasaccharide (FOS) production. We optimized the fermentation parameters to maximize the enzyme synthesis, and we performed enzyme kinetics studies to achieve agave fructans hydrolysis. The results showed that under constant operating conditions (pH 7.7, 40 °C, 175 rpm of agitation, and 0.005 VVM of aeration) results in the production of an enzymatic extract with 49.57 mg/L. This enzymatic extract, when mixed with an agave fructans solution containing 37.8 g/L, allowed us to obtain products with 18% more FOS content the original concentration. The mass spectrum plot shows that the hydrolyzed product contains FOS with a degree of polymerization from 5 to 9 hexose units. These results are promising because they show FOS production from agave and confirm that importance of using native strains in the design of directed fermentation processes.
Collapse
Affiliation(s)
- R S Sandoval-González
- Departamento de Ingeniería Bioquímica-Ciencias de la Ingeniería, Instituto Tecnológico de Celaya, Av. Tecnológico s/n, CP 38010, Celaya Gto, México
| | - H Jiménez-Islas
- Departamento de Ingeniería Bioquímica-Ciencias de la Ingeniería, Instituto Tecnológico de Celaya, Av. Tecnológico s/n, CP 38010, Celaya Gto, México
| | - J L Navarrete-Bolaños
- Departamento de Ingeniería Bioquímica-Ciencias de la Ingeniería, Instituto Tecnológico de Celaya, Av. Tecnológico s/n, CP 38010, Celaya Gto, México.
| |
Collapse
|
11
|
González-Llanes MD, Hernández-Calderón OM, Rios-Iribe EY, Alarid-García C, Castro Montoya AJ, Escamilla-Silva EM. Fermentable sugars production by enzymatic processing of agave leaf juice. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.22959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcos D. González-Llanes
- Departamento de Ingeniería Química; Instituto Tecnológico de Celaya; Av. Tecnológico y Antonio García Cubas S/N, 38010; Celaya Guanajuato México
| | - Oscar M. Hernández-Calderón
- Facultad de Ciencias Químico Biológicas; Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios; Ciudad Universitaria; 80013 Culiacán Sinaloa México
| | - Erika Y. Rios-Iribe
- Facultad de Ciencias Químico Biológicas; Universidad Autónoma de Sinaloa; Av. de las Américas y Blvd. Universitarios; Ciudad Universitaria; 80013 Culiacán Sinaloa México
| | - Cristian Alarid-García
- Departamento de Ingeniería Química; Instituto Tecnológico de Celaya; Av. Tecnológico y Antonio García Cubas S/N, 38010; Celaya Guanajuato México
| | - Agustín J. Castro Montoya
- Facultad de Ingeniería Química; Universidad Michoacana de San Nicolás de Hidalgo; Francisco J. Mújica s/n Col. Felicitas del Río CP 58060 Morelia Michoacán México
| | - Eleazar M. Escamilla-Silva
- Departamento de Ingeniería Química; Instituto Tecnológico de Celaya; Av. Tecnológico y Antonio García Cubas S/N, 38010; Celaya Guanajuato México
| |
Collapse
|
12
|
Reynoso-Ponce H, Grajales-Lagunes A, Castillo-Andrade A, González-García R, Ruiz-Cabrera MA. Integration of nanofiltration and spray drying processes for enhancing the purity of powdered fructans from Agave salmiana juice. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Moreno-Vilet L, Bostyn S, Flores-Montaño JL, Camacho-Ruiz RM. Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans. Food Chem 2017; 237:833-840. [DOI: 10.1016/j.foodchem.2017.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
|
14
|
Enzymatic Hydrolysis of Agavins to Generate Branched Fructooligosaccharides (a-FOS). Appl Biochem Biotechnol 2017; 184:25-34. [PMID: 28584965 DOI: 10.1007/s12010-017-2526-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Recently, agavins (branched neo-fructans) of short degree of polymerization have shown beneficial effects on the health of both healthy and overweight individuals. Therefore, the aim of the present work was to investigate the potential use of Agave angustifolia agavins on the generation of branched fructooligosacharides (a-FOS). A. angustifolia agavins were hydrolyzed using exo-, endo-inulinase, and a mixture of both (25 and 75%, respectively). Exo- and the inulinase mixture degraded quickly the agavins in relation to endo-inulinase treatment. Only endo-inulinase and the inulinase mixture generated a-FOS formation. Endo-inulinase degraded 31% of agavins, yielding approximately 20% of a-FOS after 48 h, whereas the inulinase mixture hydrolyzed 33% of agavins in just 90 min, but only yielded 10% of a-FOS. These results suggest that agave plants could be an abundant raw material for a-FOS production, which might have a huge prebiotic potential as new branched fructooligosaccharides with many applications in the alimentary and pharmaceutical industry.
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
16
|
Velázquez-Martínez JR, González-Cervantes RM, Hernández-Gallegos MA, Mendiola RC, Aparicio ARJ, Ocampo MLA. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization. Molecules 2014; 19:12660-75. [PMID: 25153877 PMCID: PMC6271457 DOI: 10.3390/molecules190812660] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 08/05/2014] [Indexed: 01/02/2023] Open
Abstract
Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions.
Collapse
Affiliation(s)
| | - Rina M González-Cervantes
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán 04960, D.F., Mexico.
| | - Minerva Aurora Hernández-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo 11340, D.F., Mexico.
| | - Roberto Campos Mendiola
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, P.O. Box 24, Yautepec 62730, Morelos, Mexico.
| | - Antonio R Jiménez Aparicio
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, P.O. Box 24, Yautepec 62730, Morelos, Mexico.
| | - Martha L Arenas Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, P.O. Box 24, Yautepec 62730, Morelos, Mexico.
| |
Collapse
|