1
|
Wimalawansa SJ. Unveiling the Interplay-Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2. BIOLOGY 2024; 13:831. [PMID: 39452140 PMCID: PMC11504239 DOI: 10.3390/biology13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus's harmful effects. Vitamin D's beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1-7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents-angiotensin receptor blockers and ACE inhibitors-may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D.
Collapse
|
2
|
Feng J, Chen J, Li X, Ren X, Chen J, Li Z, Wu Y, Zhang Z, Yang R, Li J, Lu Y, Liu Y. Mendelian randomization and Bayesian model averaging of autoimmune diseases and Long COVID. Front Genet 2024; 15:1383162. [PMID: 39005628 PMCID: PMC11240141 DOI: 10.3389/fgene.2024.1383162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Background Following COVID-19, reports suggest Long COVID and autoimmune diseases (AIDs) in infected individuals. However, bidirectional causal effects between Long COVID and AIDs, which may help to prevent diseases, have not been fully investigated. Methods Summary-level data from genome-wide association studies (GWAS) of Long COVID (N = 52615) and AIDs including inflammatory bowel disease (IBD) (N = 377277), Crohn's disease (CD) (N = 361508), ulcerative colitis (UC) (N = 376564), etc. were employed. Bidirectional causal effects were gauged between AIDs and Long COVID by exploiting Mendelian randomization (MR) and Bayesian model averaging (BMA). Results The evidence of causal effects of IBD (OR = 1.06, 95% CI = 1.00-1.11, p = 3.13E-02), CD (OR = 1.10, 95% CI = 1.01-1.19, p = 2.21E-02) and UC (OR = 1.08, 95% CI = 1.03-1.13, p = 2.35E-03) on Long COVID was found. In MR-BMA, UC was estimated as the highest-ranked causal factor (MIP = 0.488, MACE = 0.035), followed by IBD and CD. Conclusion This MR study found that IBD, CD and UC had causal effects on Long COVID, which suggests a necessity to screen high-risk populations.
Collapse
Affiliation(s)
- Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Xiaoya Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junxu Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyuan Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Máčová L, Bičíková M, Hampl R. Endocrine risk factors for COVID-19 in context of aging. Physiol Res 2021; 70:S153-S159. [PMID: 34913349 DOI: 10.33549/physiolres.934723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aged people are the most susceptible group to COVID-19 infection. Immunosenescence characterized by impairment of immune function with inflamm-aging contributes to pathophysiological alterations, among which endocrine and metabolic diseases are not exception. Diabetes, obesity along with impairment of disorders of thyroid functions are the most frequent ones, the common feature of which is failure of immune system including autoimmune processes. In the minireview we discussed how COVID-19 and aging impact innate and adaptive immunity, diabetes and selected neuroendocrine processes. Mentioned is also beneficial effect of vitamin D for attenuation of these diseases and related epigenetic issues. Particular attention is devoted to the role of ACE2 protein in the light of its intimate link with renin-angiotensin regulating system.
Collapse
Affiliation(s)
- L Máčová
- Institute of Endocrinology, Prague 1, Czech Republic.
| | | | | |
Collapse
|
4
|
Puri A, Bajpai S, Meredith S, Aravind L, Krause PJ, Kumar S. Babesia microti: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Front Microbiol 2021; 12:697669. [PMID: 34539601 PMCID: PMC8446681 DOI: 10.3389/fmicb.2021.697669] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, CT, United States
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
5
|
Torices S, Cabrera R, Stangis M, Naranjo O, Fattakhov N, Teglas T, Adesse D, Toborek M. Expression of SARS-CoV-2-related receptors in cells of the neurovascular unit: implications for HIV-1 infection. J Neuroinflammation 2021; 18:167. [PMID: 34325716 PMCID: PMC8319595 DOI: 10.1186/s12974-021-02210-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular unit (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. METHODS The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B, and cathepsin L was assessed by qPCR, immunoblotting, and immunostaining, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. RESULTS The receptors involved in SARS-CoV-2 infection are co-expressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. CONCLUSIONS These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| | - Rosalba Cabrera
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Michael Stangis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, CEP, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Mhawesh AA, Muneam Hamid D, Ghasemian A. Major epigenetic factors associated with the novel coronavirus disease-2019 (COVID-19) severity. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The worldwide spread and high rate of viral transmission and related morbidity and mortality of Coronavirus disease-19 (COVID-19) is a crisis. Some epigenetic determinants predispose individuals to severe infection. Patients with prior chronic medical illnesses (hypertension, diabetes, lupus, and chronic obstructive lung disease) are highly susceptible to the infection. The aging and diabetes pandemic possibly exacerbate the COVID-19 or SARS-CoV-2 pandemic by enhancing COVID-19 associated comorbidities. COVID-19 utilizes several proteins for tackling the host immune response associated with enhancing comorbidities. The angiotensin-converting enzyme (ACE) is a significant receptor for SARS-CoV-2, which significantly expresses higher among individuals with comorbidities and under stress conditions. Patients with systemic lupus erythematosus are also prone to be susceptible to the disease. Viral infections cause a defect in the DNA methylation in lupus, causing further ACE2 hypomethylation and overexpression, leading to viral binding and cytokine storm and tissue damage during COVID-19 infection. The microRNAs (miRNAs) epigenetics regulations also play a critical role in the suppression of immune responses.
Meanwhile, viral proteins interplays with the host cell are conferred primarily through TGF-β and HIF-1 signaling, endocytosis, autophagy, and Toll-like receptor signaling RIG-I signaling, Il-17 signaling, and fatty acid oxidation/degradation. Furthermore, the COVID19 patient's metabolic states determine the infection severity. Noticeably, ten human metabolic proteins, including SGTA, SPECC1, FGL2, PHB, STAT3, BCL2L1, CAV1, JUN, PPP1CA, and XPO1, interact with the SARSE-CoV-2. Interactions between SARSCoV's spike protein-containing lipid-rich membrane compartments and epigenetic modulations are considered targets to inhibit the viral infection. Therefore, it seems that epigenetics plays a substantial role in the COVID-19 severity. Future in-depth studies will be promising. Vaccine design, particularly regarding ACE viral receptor monoclonal antibodies, is a proposal alongside adhering to personal hygiene.
Collapse
Affiliation(s)
- Ahmed A Mhawesh
- Dept. of Med. and Mol. Biotech., College of Biotechnology, Alnahrain Univesirt, Baghdad, Iraq
| | - Daniah Muneam Hamid
- DNA Forensic center for research and training, Alnahrain University, Baghdad, Iraq
| | | |
Collapse
|
7
|
Tariq S, Van Eeden C, Tervaert JWC, Osman MS. COVID-19, rheumatic diseases and immune dysregulation-a perspective. Clin Rheumatol 2021; 40:433-442. [PMID: 33411143 PMCID: PMC7788381 DOI: 10.1007/s10067-020-05529-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has resulted in widespread hospitalisations and deaths around the world. As patients with rheumatic diseases generally have increased risk of infections and complications, understandably, there is significant concern of the impact of SARS-CoV-2 on these patients. However, there is a paucity of data in rheumatic patients. We review mechanisms through which SARS-CoV-2 results in infection, including ACE2 receptor, and complications (including immune dysregulation, thrombosis and complement activation). We assess these pathways in patients with rheumatic disease and those on immune modulating therapy. Although data thus far does not appear to show worse outcomes in rheumatic patients as a whole, given alterations in the underlying immune pathways in certain diseases (such as systemic lupus erythematosus), we posit that the risk is not equal in all rheumatic patients. We also discuss the benefit of underlying disease control with respect to COVID-19 risk reduction and potential increased risk of disease flares following viral infection from an immune standpoint.
Collapse
Affiliation(s)
- Shahna Tariq
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Charmaine Van Eeden
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada
| | - Mohammed S Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, 8-130 Clinical Sciences Building, Edmonton, Alberta, T6G 2B7, Canada.
| |
Collapse
|
8
|
SARS-CoV-2 and cancer: Are they really partners in crime? Cancer Treat Rev 2020; 89:102068. [PMID: 32731090 PMCID: PMC7351667 DOI: 10.1016/j.ctrv.2020.102068] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of the SARS-CoV-2 pandemic has overwhelmed health care systems in many countries. The clinical presentation of the SARS-CoV-2 varies between a subclinical or flu-like syndrome to that of severe pneumonia with multi-organ failure and death. Initial reports have suggested that cancer patients may have a higher susceptibility to get infected by the SARS-CoV-2 virus but current evidence remains poor as it is biased by important confounders. Patients with ongoing or recent cancer treatment for advanced active disease, metastatic solid tumors and hematological malignancies are at higher risk of developing severe COVID-19 respiratory disease that requires hospitalization and have a poorer disease outcome compared to individuals without cancer. However it is not clear whether these are independent risk factors, or mainly driven by male gender, age, obesity, performance status, uncontrolled diabetes, cardiovascular disease and various other medical conditions. These often have a greater influence on the probability to die due to SARS-CoV-2 then cancer. Delayed diagnosis and suboptimal cancer management due to the pandemic results in disease upstaging and has considerable impact cancer on specific death rates. Surgery during the peak of the pandemic seems to increase mortality, but there is no convincing evidence that adjuvant systemic cancer therapy and radiotherapy are contraindicated, implicating that cancer treatment can be provided safely after individual risk/benefit assessment and some adaptive measures. Underlying immunosuppression, elevated cytokine levels, altered expression of the angiotensin converting enzyme (ACE-2) and TMPRSS2, and a prothrombotic status may fuel the effects of a SARS-CoV-2 in some cancer patients, but have the potential to be used as biomarkers for severe disease and therapeutic targets. The rapidly expanding literature on COVID-19 should be interpreted with care as it is often hampered by methodological and statistical flaws.
Collapse
|