1
|
Silva MDJ, de Andrade CM, Fiuza BSD, Pinheiro GP, Nova Santana CV, Costa RDS, Barnes K, Cruz ÁA, Figueiredo CA. Genetic variants associated with SARS-CoV-2 infection also affect lung function and asthma severity. Heliyon 2023; 9:e19235. [PMID: 37662742 PMCID: PMC10474403 DOI: 10.1016/j.heliyon.2023.e19235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background Host genetic factors may be associated with COVID-19 unfavourable outcomes. The first genome-wide association study (GWAS) conducted in individuals with respiratory failure due to COVID-19 revealed susceptibility loci close to six genes (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1) and the ABO blood-group gene. We aimed to investigate how polymorphisms in those genes could relate to lung function and severe asthma in a Brazilian population. Methods DNA samples of 784 individuals following the ProAR (Programa para Controle da Asma e Rinite Alérgica da Bahia) were genotyped by the Multi-Ethnic Global Array panel with ∼2 million polymorphisms (Illumina). Polymorphisms in SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1 and the ABO blood-group gene were evaluated. Logistic regression for severe asthma, airway obstruction and lack of FEV1 reversibility was performed using PLINK software 1.9, in the additive model and was adjusted for sex, age and PCA-1. Pairwise Linkage disequilibrium analyses were performed using Haploview 4.2. The haplotypes and gene score analyses were performed in the SNPstat tool. In silico functions of polymorphisms were analysed using rSNPbase and RegulomeDB plataforms. Results We identified the rs8176733 (G allele) and rs8176725 (A allele) in the ABO blood-group gene as risk factors for severe asthma, lower pulmonary obstruction and lack of FEV1 reversibility. Polymorphisms in CCR9 are risk factors for both severe asthma (A allele of rs34338823) and airway obstruction (A allele of rs6806802). The markers rs13079478 (A allele) and rs75817942 (A allele) in FYCO1 are related to more severe asthma and a lack of FEV1 reversibility, respectively. We identified the A allele of both rs35731912 and rs34338823 in LZTFL1 as risk factors for severe asthma. The marker rs6806802 (C allele) was associated with airway obstruction and rs7614952 (A allele), rs7625839 (G allele) and rs112509260 (A allele) are related to a lack of FEV1 reversibility. The A allele of rs2531747 in the SLC6A20 gene is also associated with severe asthma. Conversely, polymorphisms in XCR1 play a protective role in relation to severe asthma (A allele of rs2036295) and airway obstruction (A allele of rs2036295). Additionally, we found that individuals with a higher number of risk alleles have a greater risk of severe asthma, airway obstruction and FEV1 reversibility. Conclusion Our study suggests that polymorphisms in genes associated with respiratory failure in SARS-CoV-2-infected individuals are associated with greater susceptibility to severe asthma and reduced lung function in subjects with asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan dos S. Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Brazil
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Álvaro A. Cruz
- Fundação ProAR and Faculdade de Medicina da Universidade Federal da Bahia, Brazil
| | | |
Collapse
|
2
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Safdari Lord J, Soltani Rezaiezadeh J, Yekaninejad MS, Izadi P. The association of APOE genotype with COVID-19 disease severity. Sci Rep 2022; 12:13483. [PMID: 35931737 PMCID: PMC9356041 DOI: 10.1038/s41598-022-17262-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/22/2022] [Indexed: 01/07/2023] Open
Abstract
COVID-19 has caused the recent pandemic of respiratory infection, which threatened global health. The severity of the symptoms varies among affected individuals, from asymptotic or mild signs to severe or critical illness. Genetic predisposition explains the variation in disease severity among patients who suffer from severe symptoms without any known background risk factors. The present study was performed to show the association between APOE genotype and the severity of COVID-19 disease. The APOE genotype of 201 COVID-19 patients (101 patients with asymptomatic to mild form of the disease as the control group and 100 patients with severe to critical illness without any known background risk factors as the case group) were detected via multiplex tetra-primer ARMS-PCR method. Results showed that the e4 allele increased the risk of the COVID-19 infection severity more than five times and the e4/e4 genotype showed a 17-fold increase in the risk of severe disease. In conclusion, since our study design was based on the exclusion of patients with underlying diseases predisposing to severe form of COVID-19 and diseases related to the APOE gene in the study population, our results showed that the e4 genotype is independently associated with the severity of COVID-19 disease. However, further studies are needed to confirm these findings in other nations and to demonstrate the mechanisms behind the role of these alleles in disease severity.
Collapse
Affiliation(s)
- Javad Safdari Lord
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Soltani Rezaiezadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ebrahimi S, Ghasemi-Basir HR, Majzoobi MM, Rasouli-Saravani A, Hajilooi M, Solgi G. HLA-DRB1*04 may predict the severity of disease in a group of Iranian COVID-19 patients. Hum Immunol 2021; 82:719-725. [PMID: 34294460 PMCID: PMC8275473 DOI: 10.1016/j.humimm.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Human leukocyte antigen (HLA) genes with extreme diversity can make a contribution for individual variations to the immune response against SARS-COV-2 infection. This study aimed to explore the distributions of HLA class II alleles frequencies and their relations with disease severity in a group of Iranian COVID-19 patients. This prospective and case-control study was conducted on 144 COVID-19 patients including 46 cases with moderate form, 54 cases with severe and 44 cases with critical disease. HLA-DRB1 and -DQB1 allele families were determined by PCR-SSP method and compared between three groups of the patients and in comparison to 153 ethnic-matched healthy controls. The patients group showed lower frequencies of HLA-DRB1*15 (OR = 0.57, P = 0.06), DRB1*15 ~ DQB1*05 haplotype (P = 0.04) and DRB1*15/DRB1*04 genotype (P = 0.04) in compare with healthy controls. Moderate COVID-19 patients had higher frequencies of HLA-DRB1*04 (P = 0.03), HLA-DRB1*10 (P = 0.05) and DRB1*04/DRB1*11 genotype (P = 0.01). Also, a higher significantly frequency of HLA-DRB1*03 allele group was observed in the critical patients versus controls (P = 0.01). Multiple logistic regression analysis revealed that the presence of DRB1*04 allele group was negatively associated with development of severe and critical disease (OR: 0.289, P = 0.005). Our results indicate a possible contribution of some HLA class II alleles in disease severity and clinical features of COVID-19 disease.
Collapse
Affiliation(s)
- Samaneh Ebrahimi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Reza Ghasemi-Basir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hajilooi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Anifandis G, Tempest HG, Oliva R, Swanson GM, Simopoulou M, Easley CA, Primig M, Messini CI, Turek PJ, Sutovsky P, Ory SJ, Krawetz SA. COVID-19 and human reproduction: A pandemic that packs a serious punch. Syst Biol Reprod Med 2021; 67:3-23. [PMID: 33719829 DOI: 10.1080/19396368.2020.1855271] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has led to a worldwide health emergency that has impacted 188 countries at last count. The rapid community transmission and relatively high mortality rates with COVID-19 in modern times are relatively unique features of this flu pandemic and have resulted in an unparalleled global health crisis. SARS-CoV-2, being a respiratory virus, mainly affects the lungs, but is capable of infecting other vital organs, such as brain, heart and kidney. Emerging evidence suggests that the virus also targets male and female reproductive organs that express its main receptor ACE2, although it is as yet unclear if this has any implications for human fertility. Furthermore, professional bodies have recommended discontinuing fertility services during the pandemic such that reproductive services have also been affected. Although increased safety measures have helped to mitigate the propagation of COVID-19 in a number of countries, it seems that there is no predictable timeline to containment of the virus, a goal likely to remain elusive until an effective vaccine becomes available and widely distributed across the globe. In parallel, research on reproduction has been postponed for obvious reasons, while diagnostic tests that detect the virus or antibodies against it are of vital importance to support public health policies, such as social distancing and our obligation to wear masks in public spaces. This review aims to provide an overview of critical research and ethics issues that have been continuously emerging in the field of reproductive medicine as the COVID-19 pandemic tragically unfolds.Abbreviations: ACE2: angiotensin- converting enzyme 2; ART: Assisted reproductive technology; ASRM: American Society for Reproductive Medicine; CCR9: C-C Motif Chemokine Receptor 9; CDC: Centers for Disease Control and Prevention; COVID-19: Coronavirus disease 2019; Ct: Cycle threshold; CXCR6: C-X-C Motif Chemokine Receptor 6; ELISA: enzyme-linked immunosorbent assay; ESHRE: European Society of Human Reproduction and Embryology; ET: Embryo transfer; FSH: Follicle Stimulating Hormone; FFPE: formalin fixed paraffin embedded; FYCO1: FYVE And Coiled-Coil Domain Autophagy Adaptor 1; IFFS: International Federation of Fertility Societies; IUI: Intrauterine insemination; IVF: In vitro fertilization; LH: Luteinizing Hormone; LZTFL1: Leucine Zipper Transcription Factor Like 1; MAR: medically assisted reproduction services; MERS: Middle East Respiratory syndrome; NGS: Next Generation Sequencing; ORF: Open Reading Frame; PPE: personal protective equipment; RE: RNA Element; REDa: RNA Element Discovery algorithm; RT-PCR: Reverse=trascriptase transcriptase-polymerase chain reaction; SARS: Severe acute respiratory syndrome; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2; SLC6A20: Solute Carrier Family 6 Member 20; SMS: Single Molecule Sequencing; T: Testosterone; TMPRSS2: transmembrane serine protease 2; WHO: World Health Organization; XCR1: X-C Motif Chemokine Receptor.
Collapse
Affiliation(s)
- George Anifandis
- Department of Obstetrics and Gynecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat De Barcelona, and Hospital Clinic from Barcelona, Spain
| | - Grace M Swanson
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mara Simopoulou
- Department of Experimental Physiology, School of Health Sciences, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece, Athens, Greece
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Michael Primig
- Inserm, EHESP, Irset (Institut De Recherche En Santé, Environnement Et Travail), Rennes, France
| | - Christina I Messini
- Department of Obstetrics and Gynecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Paul J Turek
- It is a private Clinic, The Turek Clinic, Beverly Hills, CA, USA
| | - Peter Sutovsky
- Division of Animal Sciences and the Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Steve J Ory
- It is a private Clinic, IVF Florida Reproductive Institutes, Margate, FL, USA.,Department of Obstetrics and Gynecology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and Center of Molecular Medicine and Genetics, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
6
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
7
|
Gomes CP, Fernandes DE, Casimiro F, da Mata GF, Passos MT, Varela P, Mastroianni-Kirsztajn G, Pesquero JB. Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Front Cell Infect Microbiol 2020; 10:589505. [PMID: 33364201 PMCID: PMC7753008 DOI: 10.3389/fcimb.2020.589505] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemics is a challenge without precedent for the modern science. Acute Respiratory Discomfort Syndrome (ARDS) is the most common immunopathological event in SARS-CoV-2, SARS-CoV, and MERS-CoV infections. Fast lung deterioration results of cytokine storm determined by a robust immunological response leading to ARDS and multiple organ failure. Here, we show cysteine protease Cathepsin L (CatL) involvement with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 from different points of view. CatL is a lysosomal enzyme that participates in numerous physiological processes, including apoptosis, antigen processing, and extracellular matrix remodeling. CatL is implicated in pathological conditions like invasion and metastasis of tumors, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, viral infection, and other diseases. CatL expression is up-regulated during chronic inflammation and is involved in degrading extracellular matrix, an important process for SARS-CoV-2 to enter host cells. In addition, CatL is probably involved in processing SARS-CoV-2 spike protein. As its inhibition is detrimental to SARS-CoV-2 infection and possibly exit from cells during late stages of infection, CatL could have been considered a valuable therapeutic target. Therefore, we describe here some drugs already in the market with potential CatL inhibiting capacity that could be used to treat COVID-19 patients. In addition, we discuss the possible role of host genetics in the etiology and spreading of the disease.
Collapse
Affiliation(s)
- Caio P. Gomes
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo E. Fernandes
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fernanda Casimiro
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo F. da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle T. Passos
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Patricia Varela
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - João Bosco Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Wang F, Huang S, Gao R, Zhou Y, Lai C, Li Z, Xian W, Qian X, Li Z, Huang Y, Tang Q, Liu P, Chen R, Liu R, Li X, Tong X, Zhou X, Bai Y, Duan G, Zhang T, Xu X, Wang J, Yang H, Liu S, He Q, Jin X, Liu L. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov 2020; 6:83. [PMID: 33298875 PMCID: PMC7653987 DOI: 10.1038/s41421-020-00231-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic has accounted for millions of infections and hundreds of thousand deaths worldwide in a short-time period. The patients demonstrate a great diversity in clinical and laboratory manifestations and disease severity. Nonetheless, little is known about the host genetic contribution to the observed interindividual phenotypic variability. Here, we report the first host genetic study in the Chinese population by deeply sequencing and analyzing 332 COVID-19 patients categorized by varying levels of severity from the Shenzhen Third People's Hospital. Upon a total of 22.2 million genetic variants, we conducted both single-variant and gene-based association tests among five severity groups including asymptomatic, mild, moderate, severe, and critical ill patients after the correction of potential confounding factors. Pedigree analysis suggested a potential monogenic effect of loss of function variants in GOLGA3 and DPP7 for critically ill and asymptomatic disease demonstration. Genome-wide association study suggests the most significant gene locus associated with severity were located in TMEM189-UBE2V1 that involved in the IL-1 signaling pathway. The p.Val197Met missense variant that affects the stability of the TMPRSS2 protein displays a decreasing allele frequency among the severe patients compared to the mild and the general population. We identified that the HLA-A*11:01, B*51:01, and C*14:02 alleles significantly predispose the worst outcome of the patients. This initial genomic study of Chinese patients provides genetic insights into the phenotypic difference among the COVID-19 patient groups and highlighted genes and variants that may help guide targeted efforts in containing the outbreak. Limitations and advantages of the study were also reviewed to guide future international efforts on elucidating the genetic architecture of host-pathogen interaction for COVID-19 and other infectious and complex diseases.
Collapse
Affiliation(s)
- Fang Wang
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Shujia Huang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Rongsui Gao
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Yuwen Zhou
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Changxiang Lai
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Zhichao Li
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Wenjie Xian
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Xiaobo Qian
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Zhiyu Li
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Yushan Huang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Qiyuan Tang
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Panhong Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518083, China
| | - Ruikun Chen
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Rong Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xuan Li
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Xin Tong
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xuan Zhou
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Yong Bai
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Gang Duan
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- James D. Watson Institute of Genome Science, Hangzhou, Zhejiang, 310008, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- James D. Watson Institute of Genome Science, Hangzhou, Zhejiang, 310008, China
| | - Siyang Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | - Qing He
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China.
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Lei Liu
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China.
| |
Collapse
|
9
|
Dobrindt K, Hoagland DA, Seah C, Kassim B, O’Shea CP, Iskhakova M, Fernando MB, Deans PM, Powell SK, Javidfar B, Murphy A, Peter C, Møeller R, Garcia MF, Kimura M, Iwasawa K, Crary J, Kotton DN, Takebe T, Huckins LM, tenOever BR, Akbarian S, Brennand KJ. Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.20.300574. [PMID: 32995783 PMCID: PMC7523109 DOI: 10.1101/2020.09.20.300574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant inter-individual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly render healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants also impact vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR-engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single nucleotide polymorphism (rs4702), common in the population at large, and located in the 3'UTR of the protease FURIN, impacts alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can impact viral infection, and thus contribute to clinical heterogeneity in SARS-CoV-2. Ongoing genetic studies will help to better identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs that might treat disease.
Collapse
Affiliation(s)
- Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daisy A. Hoagland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Carina Seah
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Bibi Kassim
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Callan P. O’Shea
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marina Iskhakova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael B. Fernando
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - P.J. Michael Deans
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Samuel K. Powell
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ben Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aleta Murphy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Cyril Peter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rasmus Møeller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Meilin Fernandez Garcia
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition; Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center; Center for Stem Cell and Organoid Medicine (CuSTOM); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition; Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center; Center for Stem Cell and Organoid Medicine (CuSTOM); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - John Crary
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition; Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center; Center for Stem Cell and Organoid Medicine (CuSTOM); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
10
|
Schurr TG. Host genetic factors and susceptibility toSARS‐CoV‐2 infection. Am J Hum Biol 2020; 32:e23497. [PMID: 32876373 DOI: 10.1002/ajhb.23497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Theodore G. Schurr
- Department of Anthropology University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
11
|
Lebeau G, Vagner D, Frumence É, Ah-Pine F, Guillot X, Nobécourt E, Raffray L, Gasque P. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int J Mol Sci 2020; 21:E5932. [PMID: 32824753 PMCID: PMC7460647 DOI: 10.3390/ijms21165932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Damien Vagner
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Platform CYROI, 2 rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Étienne Frumence
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Service d’anatomo-Pathologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
| | - Xavier Guillot
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Service de Rhumatologie, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| | - Estelle Nobécourt
- Service d’endocrinologie Diabétologie, Centre Hospitalier Universitaire Sud Réunion, 97410 Saint Pierre, France;
- Université de Formation et de Recherche Santé, Université de la Réunion, 97400 Saint-Denis, France
| | - Loïc Raffray
- Service de Médecine Interne, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques, Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France; (D.V.); (É.F.); (X.G.); (P.G.)
- Laboratoire de Biologie, Secteur Laboratoire d’immunologie Clinique et Expérimentale de la Zone de l’océan Indien (LICE-OI), Centre Hospitalier Universitaire La Réunion Site Félix Guyon, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
12
|
Gromova O, Torshin I, Semenov V, Putilina M, Chuchalin A. Direct and indirect neurological manifestations of COVID-19. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:11-21. [DOI: 10.17116/jnevro202012011111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|