1
|
Bautista C, Gagnon-Arsenault I, Utrobina M, Fijarczyk A, Bendixsen DP, Stelkens R, Landry CR. Hybrid adaptation is hampered by Haldane's sieve. Nat Commun 2024; 15:10319. [PMID: 39609385 PMCID: PMC11604976 DOI: 10.1038/s41467-024-54105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Hybrids between species exhibit plastic genomic architectures that could foster or slow down their adaptation. When challenged to evolve in an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates compared to parents. We find that hybrids and their parents converge onto similar molecular mechanisms of adaptation by mutations in pleiotropic transcription factors, but at a different pace. After 100 generations, mutations in these genes tend to be homozygous in the parents but heterozygous in the hybrids. We hypothesize that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain. Using genome editing, we first demonstrate that mutations display incomplete dominance, requiring homozygosity to show full impact and to entirely circumvent Haldane's sieve, which favors the fixation of dominant mutations. Second, tracking mutations in earlier generations confirmed a different rate of LOH in hybrids. Together, these findings show that Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic architecture that can limit the role of hybridization in adaptive evolution.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Mariia Utrobina
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
| | - Anna Fijarczyk
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada.
| |
Collapse
|
2
|
Raas MWD, Dutheil JY. The rate of adaptive molecular evolution in wild and domesticated Saccharomyces cerevisiae populations. Mol Ecol 2024; 33:e16980. [PMID: 37157166 DOI: 10.1111/mec.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae. Using coalescent analyses, we report that the effective population size of yeast populations decreased since the divergence with S. paradoxus. We fitted models of distributions of fitness effects to infer the rate of adaptive (ω a ) and non-adaptive (ω na ) non-synonymous substitutions in protein-coding genes. We report an overall limited contribution of positive selection to S. cerevisiae protein evolution, albeit with higher rates of adaptive evolution in wild compared to domesticated populations. Our analyses revealed the signature of background selection and possibly Hill-Robertson interference, as recombination was found to be negatively correlated withω na and positively correlated withω a . However, the effect of recombination onω a was found to be labile, as it is only apparent after removing the impact of codon usage bias on the synonymous site frequency spectrum and disappears if we control for the correlation withω na , suggesting that it could be an artefact of the decreasing population size. Furthermore, the rate of adaptive non-synonymous substitutions is significantly correlated with the residue solvent exposure, a relation that cannot be explained by the population's demography. Together, our results provide a detailed characterisation of adaptive mutations in protein-coding genes across S. cerevisiae populations.
Collapse
Affiliation(s)
- Maximilian W D Raas
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Julien Y Dutheil
- Research Group Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Unité Mixte de Recherche 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Garge RK, Geck RC, Armstrong JO, Dunn B, Boutz DR, Battenhouse A, Leutert M, Dang V, Jiang P, Kwiatkowski D, Peiser T, McElroy H, Marcotte EM, Dunham MJ. Systematic Profiling of Ale Yeast Protein Dynamics across Fermentation and Repitching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558736. [PMID: 37790497 PMCID: PMC10543003 DOI: 10.1101/2023.09.21.558736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Renee C. Geck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph O. Armstrong
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Barbara Dunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Daniel R. Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Houston Methodist Research Institute, Houston, Texas, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Vy Dang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Pengyao Jiang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Jagdish T, Nguyen Ba AN. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr Opin Genet Dev 2022; 75:101943. [PMID: 35752001 DOI: 10.1016/j.gde.2022.101943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Experimental evolution with microbial model systems has transformed our understanding of the basic rules underlying ecology and evolution. Experiments leveraging evolution as a central feature put evolutionary theories to the test, and modern sequencing and engineering tools then characterized the molecular basis of adaptation. As theory and experimentations refined our understanding of evolution, a need to increase throughput and experimental complexity has emerged. Here, we summarize recent technologies that have made high-throughput experiments practical and highlight studies that have capitalized on these tools, defining an exciting new era in microbial experimental evolution. Multiple research directions previously limited by experimental scale are now accessible for study and we believe applying evolutionary lessons from in vitro studies onto these applied settings has the potential for major innovations and discoveries across ecology and medicine.
Collapse
Affiliation(s)
- Tanush Jagdish
- Department of Molecular and Cellular Biology and The Program for Systems Synthetic and Quantitative Biology, Harvard University, Cambridge, United States.
| | - Alex N Nguyen Ba
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Walker ME, Watson TL, Large CRL, Berkovich Y, Lang TA, Dunham MJ, Formby S, Jiranek V. Directed evolution as an approach to increase fructose utilization in synthetic grape juice by wine yeast AWRI 796. FEMS Yeast Res 2022; 22:foac022. [PMID: 35472090 PMCID: PMC9329090 DOI: 10.1093/femsyr/foac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/25/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
In winemaking, slow or stuck alcoholic fermentation can impact processing efficiency and wine quality. Residual fructose in the later stages of fermentation can leave the wine 'out of specification' unless removed, which requires reinoculation or use of a more fructophilic yeast. As such, robust, fermentation efficient strains are still highly desirable to reduce this risk. We report on a combined EMS mutagenesis and Directed Evolution (DE) approach as a 'proof of concept' to improve fructose utilization and decrease fermentation duration. One evolved isolate, Tee 9, was evaluated against the parent, AWRI 796 in defined medium (CDGJM) and Semillon juice. Interestingly, Tee 9 exhibited improved fermentation in CDGJM at several nitrogen contents, but not in juice. Genomic comparison between AWRI 796 and Tee 9 identified 371 mutations, but no chromosomal copy number variation. A total of 95 noncoding and 276 coding mutations were identified in 297 genes (180 of which encode proteins with one or more substitutions). Whilst introduction of two of these, Gid7 (E726K) or Fba1 (G135S), into AWRI 796 did not lead to the fermentation improvement seen in Tee 9, similar allelic swaps with the other mutations are needed to understand Tee 9's adaption to CDGJM. Furthermore, the 378 isolates, potentially mutagenized but with the same genetic background, are likely a useful resource for future phenotyping and genome-wide association studies.
Collapse
Affiliation(s)
- Michelle E Walker
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tommaso L Watson
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Yan Berkovich
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Tom A Lang
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Sean Formby
- Bioinformatics Graduate Program, University of British Columbia, Genome Sciences Centre, BCCA, 100-570 West 7th Avenue, Vancouver, BC, V5Z 4S6, Canada
| | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
7
|
Toyokawa Y, Koonthongkaew J, Takagi H. An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl Microbiol Biotechnol 2021; 105:8059-8072. [PMID: 34622336 DOI: 10.1007/s00253-021-11612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Branched-chain amino acid aminotransferase (BCAT) catalyzes bidirectional transamination in the cell between branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and branched-chain α-keto acids (BCKAs; α-ketoisovalerate, α-ketoisocaproate, and α-keto-β-methylvalerate). Eukaryotic cells contain two types of paralogous BCATs: mitochondrial BCAT (BCATm) and cytosolic BCAT (BCATc). Both isozymes have identical enzymatic functions, so they have long been considered to perform similar physiological functions in the cells. However, many studies have gradually revealed the differences in physiological functions and regulatory mechanisms between them. In this article, we present overviews of BCATm and BCATc in both yeast and human. We also introduce BCAT variants found natively or constructed artificially, which could have significant implications for research into the relationship between the primary structures and protein functions of BCATs. KEY POINTS: • BCAT catalyzes bidirectional transamination in the cell between BCAAs and BCKAs. • BCATm and BCATc are different in the metabolic roles and regulatory mechanisms. • BCAT variants offer insight into a relationship between the structure and function.
Collapse
Affiliation(s)
- Yoichi Toyokawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jirasin Koonthongkaew
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
8
|
Abstract
Consumer demands for new sensory experiences have driven the research of unconventional yeasts in beer. While much research exists on the use of various common Saccharomyces cerevisiae strains as well as non-Saccharomyces yeasts, there exists a gap in knowledge regarding other non-cerevisiae Saccharomyces species in the fermentation of beer, in addition to S. pastorianus. Here, five distinct species of Saccharomyces from the UC Davis Phaff Yeast Culture Collection, as well as one interspecies hybrid from Fermentis, were chosen to ferment 40 L pilot-scale beers. S. kudriavzevii, S. mikatae, S. paradoxus, S. bayanus, and S. uvarum yeasts were used to ferment wort in duplicate pairs, with one fermenter in each pair receiving 10 g/L dry-hop during fermentation. Analytical measurements were made each day of fermentation and compared to controls of SafAle™ US-05 and SafLager™ W 34/70 for commercial brewing parameters of interest. Finished beers were also analyzed for aroma, taste, and mouthfeel to determine the flavor of each yeast as it pertains to brewing potential. All beers exhibited spicy characteristics, likely from the presence of phenols; dry-hopping increased fruit notes while also increasing perceived bitterness and astringency. All of the species in this study displayed great brewing potential, and might be an ideal addition to beer depending on a brewery’s desire to experiment with flavor and willingness to bring a new yeast into their production environment.
Collapse
|
9
|
Smith CA. Macrosynteny analysis between Lentinula edodes and Lentinula novae-zelandiae reveals signals of domestication in Lentinula edodes. Sci Rep 2021; 11:9845. [PMID: 33972587 PMCID: PMC8110776 DOI: 10.1038/s41598-021-89146-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
The basidiomycete fungus Lentinula novae-zelandiae is endemic to New Zealand and is a sister taxon to Lentinula edodes, the second most cultivated mushroom in the world. To explore the biology of this organism, a high-quality chromosome level reference genome of L. novae-zelandiae was produced. Macrosyntenic comparisons between the genome assembly of L. novae-zelandiae, L. edodes and a set of three genome assemblies of diverse species from the Agaricomycota reveal a high degree of macrosyntenic restructuring within L. edodes consistent with signal of domestication. These results show L. edodes has undergone significant genomic change during the course of its evolutionary history, likely a result of its cultivation and domestication over the last 1000 years.
Collapse
|
10
|
Liu H, Wu S, Li A, Ruan J. SMARTdenovo: a de novo assembler using long noisy reads. GIGABYTE 2021; 2021:gigabyte15. [PMID: 36824332 PMCID: PMC9632051 DOI: 10.46471/gigabyte.15] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. It has also been widely used to study structural variants, phase haplotypes and more. Here, we introduce the assembler SMARTdenovo, a single-molecule sequencing (SMS) assembler that follows the overlap-layout-consensus (OLC) paradigm. SMARTdenovo (RRID: SCR_017622) was designed to be a rapid assembler, which, unlike contemporaneous SMS assemblers, does not require highly accurate raw reads for error correction. It has performed well in the evaluation of congeneric assemblers and has been successfully users for various assembly projects. It is compatible with Canu for assembling high-quality genomes, and several of the assembly strategies in this program have been incorporated into subsequent popular assemblers. The assembler has been in use since 2015; here we provide information on the development of SMARTdenovo and how to implement its algorithms into current projects.
Collapse
Affiliation(s)
- Hailin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shigang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
11
|
Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A great deal of research in the alcoholic beverage industry was done on non-Saccharomyces yeast strains in recent years. The increase in research interest could be attributed to the changing of consumer tastes and the search for new beer sensory experiences, as well as the rise in popularity of mixed-fermentation beers. The search for unique flavors and aromas, such as the higher alcohols and esters, polyfunctional thiols, lactones and furanones, and terpenoids that produce fruity and floral notes led to the use of non-cerevisiae Saccharomyces species in the fermentation process. Additionally, a desire to invoke new technologies and techniques for making alcoholic beverages also led to the use of new and novel yeast species. Among them, one of the most widely used non-cerevisiae strains is S. pastorianus, which was used in the production of lager beer for centuries. The goal of this review is to focus on some of the more distinct species, such as those species of Saccharomyces sensu stricto yeasts: S. kudriavzevii, S. paradoxus, S. mikatae, S. uvarum, and S. bayanus. In addition, this review discusses other Saccharomyces spp. that were used in alcoholic fermentation. Most importantly, the factors professional brewers might consider when selecting a strain of yeast for fermentation, are reviewed herein. The factors include the metabolism and fermentation potential of carbon sources, attenuation, flavor profile of fermented beverage, flocculation, optimal temperature range of fermentation, and commercial availability of each species. While there is a great deal of research regarding the use of some of these species on a laboratory scale wine fermentation, much work remains for their commercial use and efficacy for the production of beer.
Collapse
|
12
|
Effect of the Ala234Asp replacement in mitochondrial branched-chain amino acid aminotransferase on the production of BCAAs and fusel alcohols in yeast. Appl Microbiol Biotechnol 2020; 104:7915-7925. [PMID: 32776205 DOI: 10.1007/s00253-020-10800-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the mitochondrial branched-chain amino acid (BCAA) aminotransferase Bat1 plays an important role in the synthesis of BCAAs (valine, leucine, and isoleucine). Our upcoming study (Large et al. bioRχiv. 10.1101/2020.06.26.166157, Large et al. 2020) will show that the heterozygous tetraploid beer yeast strain, Wyeast 1056, which natively has a variant causing one amino acid substitution of Ala234Asp in Bat1 on one of the four chromosomes, produced higher levels of BCAA-derived fusel alcohols in the brewer's wort medium than a derived strain lacking this mutation. Here, we investigated the physiological role of the A234D variant Bat1 in S. cerevisiae. Both bat1∆ and bat1A234D cells exhibited the same phenotypes relative to the wild-type Bat1 strain-namely, a repressive growth rate in the logarithmic phase; decreases in intracellular valine and leucine content in the logarithmic and stationary growth phases, respectively; an increase in fusel alcohol content in culture medium; and a decrease in the carbon dioxide productivity. These results indicate that amino acid change from Ala to Asp at position 234 led to a functional impairment of Bat1, although homology modeling suggests that Asp234 in the variant Bat1 did not inhibit enzymatic activity directly. KEY POINTS: • Yeast cells expressing Bat1A234D exhibited a slower growth phenotype. • The Val and Leu levels were decreased in yeast cells expressing Bat1A234D. • The A234D substitution causes a loss-of-function in Bat1. • The A234D substitution in Bat1 increased fusel alcohol production in yeast cells.
Collapse
|