1
|
Iravanpour F, Farrokhi MR, Jafarinia M, Oliaee RT. The effect of SARS-CoV-2 on the development of Parkinson's disease: the role of α-synuclein. Hum Cell 2024; 37:1-8. [PMID: 37735344 DOI: 10.1007/s13577-023-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) can lead to various neurological complications in infected people. These neurological effects include problems in both central nervous system (CNS) and peripheral nervous system (PNS). Hyposmia, a PNS symptom of COVID-19, frequently manifests in the early stages of Parkinson's disease (PD) and serves as an early warning sign of the condition. In addition, the olfactory system is recognized as an early site for the onset of α-synuclein pathology, the pathological hallmark of PD. PD is characterized by accumulation and aggregation of misfolded α-synuclein (α-Syn) into Lewy bodies and Lewy neurites, resulting in the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Previous research has also shown the involvement of α-Syn in the innate immune response following viral infections. Consequently, the potential link between viral infections and development of PD has gained attention in recent years. However, it's still too early to definitively conclude whether COVID-19 can cause Parkinsonism. Nevertheless, we can explore the likelihood of this connection by examining past studies and possible mechanisms to better understand how COVID-19 might potentially lead to PD following the infection. Based on the various pieces of evidence discussed in this review, we can infer that SARS-CoV-2 promotes the aggregation of α-Syn and, ultimately, leads to PD through at least two mechanisms: the stable binding of the S1 protein to proteins prone to aggregation like α-Syn, and the upregulation of α-Syn as part of the immune response to the infection.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Olímpio F, Andreata-Santos R, Rosa PC, Santos W, Oliveira C, Aimbire F. Lactobacillus rhamnosus Restores Antiviral Signaling and Attenuates Cytokines Secretion from Human Bronchial Epithelial Cells Exposed to Cigarette Smoke and Infected with SARS-CoV-2. Probiotics Antimicrob Proteins 2023; 15:1513-1528. [PMID: 36346611 PMCID: PMC9643982 DOI: 10.1007/s12602-022-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.
Collapse
Affiliation(s)
- Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Robert Andreata-Santos
- Department of Microbiology, Immunology, and Parasitology, Lab. Retrovirology, Federal University of São Paulo, Rua Botucatu 862 - 6° Andar, Vila Clementino, São Paulo, SP, 04023-062, Brazil
| | - Paloma Cristina Rosa
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Wellington Santos
- Nucleus of Research in Biotechnology - State University of Piaui, Teresina, PI, CEP, 64003-120, Brazil
| | - Carlos Oliveira
- Department of Science and Technology, Postgraduate Program in Biomedical Engineering, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720 - 2° Andar, Vila Clementino, São Paulo, SP, 04039-002, Brazil.
- Department of Science and Technology, Lab. Immunopharmacology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
3
|
Fearon C, Fasano A. Parkinson's Disease and the COVID-19 Pandemic. JOURNAL OF PARKINSONS DISEASE 2021; 11:431-444. [PMID: 33492244 PMCID: PMC8150477 DOI: 10.3233/jpd-202320] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies focusing on the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19), and Parkinson’s disease (PD) have provided conflicting results. We review the literature to investigate: 1) Are PD patients at higher risk for contracting COVID-19 and are there specific contributing factors to that risk? 2) How does COVID-19 affect PD symptoms? 3) How does COVID-19 present in PD patients? 4) What are the outcomes in PD patients who contract COVID-19? 5) What is the impact of COVID-19 on PD care? 6) Does COVID-19 increase the risk of developing PD? A literature search was performed from 1979 to 2020 using the terms: ‘Parkinson’s disease’ and ‘parkinsonism’ combined with: ‘COVID-19’; ‘SARS-CoV-2’ and ‘coronavirus’. It does not appear that PD is a specific risk factor for COVID-19. There is evidence for direct/indirect effects of SARS-CoV-2 on motor/non-motor symptoms of PD. Although many PD patients present with typical COVID-19 symptoms, some present atypically with isolated worsening of parkinsonian symptoms, requiring increased anti-PD therapy and having worse outcomes. Mortality data on PD patients with COVID-19 is inconclusive (ranging from 5.2%to 100%). Patients with advanced PD appear to be particularly vulnerable. Single cases of acute hypokinetic-rigid syndrome have been described but no other convincing data has been reported. The rapidity with which COVID-19 has swept across the globe has favored the proliferation of studies which lack scientific rigor and the PD literature has not been immune. A coordinated effort is required to assimilate data and answer these questions in larger PD cohorts.
Collapse
Affiliation(s)
- Conor Fearon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|