1
|
Polovnikov KE, Slavov B, Belan S, Imakaev M, Brandão HB, Mirny LA. Crumpled polymer with loops recapitulates key features of chromosome organization. PHYSICAL REVIEW. X 2023; 13:041029. [PMID: 38774252 PMCID: PMC11108028 DOI: 10.1103/physrevx.13.041029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Chromosomes are exceedingly long topologically-constrained polymers compacted in a cell nucleus. We recently suggested that chromosomes are organized into loops by an active process of loop extrusion. Yet loops remain elusive to direct observations in living cells; detection and characterization of myriads of such loops is a major challenge. The lack of a tractable physical model of a polymer folded into loops limits our ability to interpret experimental data and detect loops. Here, we introduce a new physical model - a polymer folded into a sequence of loops, and solve it analytically. Our model and a simple geometrical argument show how loops affect statistics of contacts in a polymer across different scales, explaining universally observed shapes of the contact probability. Moreover, we reveal that folding into loops reduces the density of topological entanglements, a novel phenomenon we refer as "the dilution of entanglements". Supported by simulations this finding suggests that up to ~ 1 - 2Mb chromosomes with loops are not topologically constrained, yet become crumpled at larger scales. Our theoretical framework allows inference of loop characteristics, draws a new picture of chromosome organization, and shows how folding into loops affects topological properties of crumpled polymers.
Collapse
Affiliation(s)
- Kirill E. Polovnikov
- Current address: Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Paris, France
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Sergey Belan
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- National Research University Higher School of Economics, Faculty of Physics, Moscow, Russia
| | - Maxim Imakaev
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hugo B. Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Leonid A. Mirny
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Martínez‐García B, Dyson S, Segura J, Ayats A, Cutts EE, Gutierrez‐Escribano P, Aragón L, Roca J. Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage. EMBO J 2023; 42:e111913. [PMID: 36533296 PMCID: PMC9890231 DOI: 10.15252/embj.2022111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP-mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of -0.4. This ∆Lk increases to -0.8 during ATP binding and resets to -0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin-DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a "pinch and merge" mechanism implies that two DNA-binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.
Collapse
Affiliation(s)
| | - Sílvia Dyson
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Joana Segura
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Alba Ayats
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Erin E Cutts
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | | | - Luís Aragón
- DNA Motors GroupMRC London Institute of Medical Sciences (LMS)LondonUK
| | - Joaquim Roca
- DNA Topology LabMolecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
3
|
Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biol 2022; 23:247. [PMID: 36451166 PMCID: PMC9710047 DOI: 10.1186/s13059-022-02815-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
DNA loop extrusion emerges as a key process establishing genome structure and function. We introduce MoDLE, a computational tool for fast, stochastic modeling of molecular contacts from DNA loop extrusion capable of simulating realistic contact patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in concordance with existing molecular dynamics approaches and with Micro-C data and does so orders of magnitude faster than existing approaches. MoDLE runs efficiently on machines ranging from laptops to high performance computing clusters and opens up for exploratory and predictive modeling of 3D genome structure in a wide range of settings.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Vipin Kumar
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
4
|
Tišma M, Panoukidou M, Antar H, Soh YM, Barth R, Pradhan B, Barth A, van der Torre J, Michieletto D, Gruber S, Dekker C. ParB proteins can bypass DNA-bound roadblocks via dimer-dimer recruitment. SCIENCE ADVANCES 2022; 8:eabn3299. [PMID: 35767606 PMCID: PMC9242446 DOI: 10.1126/sciadv.abn3299] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ParABS system is essential for prokaryotic chromosome segregation. After loading at parS on the genome, ParB (partition protein B) proteins rapidly redistribute to distances of ~15 kilobases from the loading site. It has remained puzzling how this large-distance spreading can occur along DNA loaded with hundreds of proteins. Using in vitro single-molecule fluorescence imaging, we show that ParB from Bacillus subtilis can load onto DNA distantly of parS, as loaded ParB molecules themselves are found to be able to recruit additional ParB proteins from bulk. Notably, this recruitment can occur in cis but also in trans, where, at low tensions within the DNA, newly recruited ParB can bypass roadblocks as it gets loaded to spatially proximal but genomically distant DNA regions. The data are supported by molecular dynamics simulations, which show that cooperative ParB-ParB recruitment can enhance spreading. ParS-independent recruitment explains how ParB can cover substantial genomic distance during chromosome segregation, which is vital for the bacterial cell cycle.
Collapse
Affiliation(s)
- Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Maria Panoukidou
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Hammam Antar
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Young-Min Soh
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Biswajit Pradhan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephan Gruber
- Department of Fundamental Microbiology (DMF), Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
- Corresponding author.
| |
Collapse
|
5
|
Shaltiel IA, Datta S, Lecomte L, Hassler M, Kschonsak M, Bravo S, Stober C, Ormanns J, Eustermann S, Haering CH. A hold-and-feed mechanism drives directional DNA loop extrusion by condensin. Science 2022; 376:1087-1094. [PMID: 35653469 DOI: 10.1126/science.abm4012] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.
Collapse
Affiliation(s)
- Indra A Shaltiel
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Sumanjit Datta
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Léa Lecomte
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Markus Hassler
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marc Kschonsak
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Sol Bravo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Catherine Stober
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jenny Ormanns
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | | | - Christian H Haering
- Department of Biochemistry and Cell Biology, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, EMBL, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Dequeker BJH, Scherr MJ, Brandão HB, Gassler J, Powell S, Gaspar I, Flyamer IM, Lalic A, Tang W, Stocsits R, Davidson IF, Peters JM, Duderstadt KE, Mirny LA, Tachibana K. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 2022; 606:197-203. [PMID: 35585235 PMCID: PMC9159944 DOI: 10.1038/s41586-022-04730-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2022] [Indexed: 12/23/2022]
Abstract
Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.
Collapse
Affiliation(s)
- Bart J H Dequeker
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Hugo B Brandão
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Illumina Inc., San Diego, CA, USA
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Imre Gaspar
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK
| | - Aleksandar Lalic
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany.
- Department of Physics, Technical University of Munich, Garching, Germany.
| | - Leonid A Mirny
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany.
| |
Collapse
|
7
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
8
|
Haase J, Chen R, Parker WM, Bonner MK, Jenkins LM, Kelly AE. The TFIIH complex is required to establish and maintain mitotic chromosome structure. eLife 2022; 11:e75475. [PMID: 35293859 PMCID: PMC8956287 DOI: 10.7554/elife.75475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB rapidly and reversibly induces a complete loss of chromosome structure and prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, inhibiting TFIIH prevents condensation of both mouse and Xenopus nuclei in Xenopus egg extracts, which suggests an evolutionarily conserved mechanism of TFIIH action. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering the chromatin environment to facilitate condensin loading and condensin-dependent loop extrusion.
Collapse
Affiliation(s)
- Julian Haase
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Richard Chen
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Wesley M Parker
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Mary Kate Bonner
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIHBethesdaUnited States
| | - Alexander E Kelly
- Laboratory of Biochemistry & Molecular Biology, National Cancer Institute, NIHBethesdaUnited States
| |
Collapse
|
9
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Choppakatla P, Dekker B, Cutts EE, Vannini A, Dekker J, Funabiki H. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization. eLife 2021; 10:e68918. [PMID: 34406118 PMCID: PMC8416026 DOI: 10.7554/elife.68918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization. In vitro chromatin reconstitution experiments demonstrate that H1.8 inhibits binding of condensins and topo II to nucleosome arrays. Accordingly, H1.8 depletion in Xenopus egg extracts increased condensins and topo II levels on mitotic chromatin. Chromosome morphology and Hi-C analyses suggest that H1.8 depletion makes chromosomes thinner and longer through shortening the average loop size and reducing the DNA amount in each layer of mitotic loops. Furthermore, excess loading of condensins and topo II to chromosomes by H1.8 depletion causes hyper-chromosome individualization and dispersion. We propose that condensins and topo II are essential for chromosome individualization, but their functions are tuned by the linker histone to keep chromosomes together until anaphase.
Collapse
Affiliation(s)
- Pavan Choppakatla
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Bastiaan Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Erin E Cutts
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer ResearchLondonUnited Kingdom
- Fondazione Human Technopole, Structural Biology Research Centre, 20157MilanItaly
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical SchoolWorcesterUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|