1
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Stich J, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. Proc Natl Acad Sci U S A 2024; 121:e2306382121. [PMID: 38640347 PMCID: PMC11047068 DOI: 10.1073/pnas.2306382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/27/2024] [Indexed: 04/21/2024] Open
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Gariel Grant
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Robert Machold
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Erica R. Nebet
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Guoling Tian
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Joshua Stich
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Monica Hanani
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Uppsala län752 37, Sweden
| | - Richard W. Tsien
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
2
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538511. [PMID: 37162922 PMCID: PMC10168348 DOI: 10.1101/2023.04.27.538511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single cell transcriptome analyses have provided a comprehensive Sst-IN subtype census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were both necessary and sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare (OLM) INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gariel Grant
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Machold
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Erica R. Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guoling Tian
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala 752 37, Uppsala län, Sweden
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
3
|
Gamlin CR, Schneider-Mizell CM, Mallory M, Elabbady L, Gouwens N, Williams G, Mukora A, Dalley R, Bodor A, Brittain D, Buchanan J, Bumbarger D, Kapner D, Kinn S, Mahalingam G, Seshamani S, Takeno M, Torres R, Yin W, Nicovich PR, Bae JA, Castro MA, Dorkenwald S, Halageri A, Jia Z, Jordan C, Kemnitz N, Lee K, Li K, Lu R, Macrina T, Mitchell E, Mondal SS, Mu S, Nehoran B, Popovych S, Silversmith W, Turner NL, Wong W, Wu J, Yu S, Berg J, Jarsky T, Lee B, Seung HS, Zeng H, Reid RC, Collman F, da Costa NM, Sorensen SA. Integrating EM and Patch-seq data: Synaptic connectivity and target specificity of predicted Sst transcriptomic types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533857. [PMID: 36993629 PMCID: PMC10055412 DOI: 10.1101/2023.03.22.533857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types 1 . Neural cell types have previously been defined by morphology 2, 3 , electrophysiology 4, 5 , transcriptomic expression 6-8 , connectivity 9-13 , or even a combination of such modalities 14-16 . More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells 17-20 . Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex 21 . It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type 22, 23 known to be Somatostatin positive (Sst+) 24, 25 , were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types.
Collapse
|