1
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2025; 26:104-122. [PMID: 39362999 PMCID: PMC11772106 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Balzarini M, Tong J, Gui W, Jayalath IM, Schell BB, Kodadek T. Recruitment to the Proteasome Is Necessary but Not Sufficient for Chemically Induced, Ubiquitin-Independent Degradation of Native Proteins. ACS Chem Biol 2024; 19:2323-2335. [PMID: 39439063 PMCID: PMC11707830 DOI: 10.1021/acschembio.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Targeted protein degradation (TPD) is a promising strategy for drug development. Most degraders function by forcing the association of the target protein (TP) with an E3 Ubiquitin (Ub) ligase, which, in favorable cases, results in the polyubiquitylation of the TP and its subsequent degradation by the 26S proteasome. An alternative strategy would be to create chemical dimerizers that bypass the requirement for polyubiquitylation by recruiting the target protein directly to the proteasome. Direct-to-proteasome degraders (DPDs) may exhibit different characteristics than ubiquitin-dependent degraders, but few studies of this type of TPD have been published, largely due to the dearth of suitable proteasome ligands. To facilitate studies of DPDs, we report here a mammalian cell line in which the HaloTag protein is fused to the proteasome via Rpn13, one of the ubiquitin receptors. In these cells, a chloroalkane serves as a covalent proteasome ligand surrogate. We show that chimeric molecules comprised of a chloroalkane linked to a ligand for the BET family of proteins or the Cdk2/7/9 family of kinases result in ubiquitin-independent degradation of some of these target proteins. We use this system, the first that allows facile degradation of native proteins in a ubiquitin-independent fashion, to probe two issues: the effect of varying the length of the linker connecting the chloroalkane and the target ligand and the selectivity of degradation within the protein families engaged by the target ligand.
Collapse
Affiliation(s)
- Madeline Balzarini
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458. USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| | - Joel Tong
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458. USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| | - Weijun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| | - Isuru M. Jayalath
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| | - Bin-Bin Schell
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458. USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| | - Thomas Kodadek
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458. USA
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458. USA
| |
Collapse
|
3
|
Li H, Ji Z, Paulo JA, Gygi SP, Rapoport TA. Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572403. [PMID: 38187576 PMCID: PMC10769200 DOI: 10.1101/2023.12.20.572403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Most eukaryotic proteins are degraded by the 26S proteasome after modification with a polyubiquitin chain. Substrates lacking unstructured segments cannot be degraded directly and require prior unfolding by the Cdc48 ATPase (p97 or VCP in mammals) in complex with its ubiquitin-binding partner Ufd1-Npl4 (UN). Here, we use purified yeast components to reconstitute Cdc48-dependent degradation of well-folded model substrates by the proteasome. We show that a minimal system consists of the 26S proteasome, the Cdc48-UN ATPase complex, the proteasome cofactor Rad23, and the Cdc48 cofactors Ubx5 and Shp1. Rad23 and Ubx5 stimulate polyubiquitin binding to the 26S proteasome and the Cdc48-UN complex, respectively, allowing these machines to compete for substrates before and after their unfolding. Shp1 stimulates protein unfolding by the Cdc48-UN complex, rather than substrate recruitment. In vivo experiments confirm that many proteins undergo bidirectional substrate shuttling between the 26S proteasome and Cdc48 ATPase before being degraded.
Collapse
|