1
|
Guo Y, Zhou L, Li Y, Chiang GC, Liu T, Chen H, Huang W, de Leon MJ, Wang Y, Chen F. Quantitative transport mapping of multi-delay arterial spin labeling MRI detects early blood perfusion alterations in Alzheimer's disease. Alzheimers Res Ther 2024; 16:156. [PMID: 38978146 PMCID: PMC11229285 DOI: 10.1186/s13195-024-01524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Quantitative transport mapping (QTM) of blood velocity, based on the transport equation has been demonstrated higher accuracy and sensitivity of perfusion quantification than the traditional Kety's method-based cerebral blood flow (CBF). This study aimed to investigate the associations between QTM velocity and cognitive function in Alzheimer's disease (AD) using multiple post-labeling delay arterial spin labeling (ASL) MRI. METHODS A total of 128 subjects (21 normal controls (NC), 80 patients with mild cognitive impairment (MCI), and 27 AD) were recruited prospectively. All participants underwent MRI examination and neuropsychological evaluation. QTM velocity and traditional CBF maps were computed from multiple delay ASL. Regional quantitative perfusion measurements were performed and compared to study group differences. We tested the hypothesis that cognition declines with reduced cerebral blood perfusion with consideration of age and gender effects. RESULTS In cortical gray matter (GM) and the hippocampus, QTM velocity and CBF showed decreased values in the AD group compared to NC and MCI groups; QTM velocity, but not CBF, showed a significant difference between MCI and NC groups. QTM velocity and CBF showed values decreasing with age; QTM velocity, but not CBF, showed a significant gender difference between male and female. QTM velocity and CBF in the hippocampus were positively correlated with cognition, including global cognition, memory, executive function, and language function. CONCLUSION This study demonstrated an increased sensitivity of QTM velocity as compared with the traditional Kety's method-based CBF. Specifically, we observed only in QTM velocity, reduced perfusion velocity in GM and the hippocampus in MCI compared with NC. Both QTM velocity and CBF demonstrated a reduction in AD vs. controls. Decreased QTM velocity and CBF in the hippocampus were correlated with poor cognitive measures. These findings suggest QTM velocity as potential biomarker for early AD blood perfusion alterations and it could provide an avenue for early intervention of AD.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA.
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, New York- Presbyterian Hospital, New York, NY, USA
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 St ST, New York, NY, 10066, USA
| | - Yi Wang
- Department of Radiology, MRI Research Institute (MRIRI), Weill Cornell Medicine, New York, NY, USA
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dic, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
2
|
Guo Y, Zhou L, Li Y, Chiang GC, Liu T, Chen H, Huang W, de Leon MJ, Wang Y, Chen F. Quantitative transport mapping of multi-delay arterial spin labeling MRI detects early blood perfusion alteration in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304481. [PMID: 38562724 PMCID: PMC10984056 DOI: 10.1101/2024.03.18.24304481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Quantitative transport mapping (QTM) of blood velocity, based on the transport equation has been demonstrated higher accuracy and sensitivity of perfusion quantification than the traditional Kety's method-based blood flow (Kety flow). This study aimed to investigate the associations between QTM velocity and cognitive function in Alzheimer's disease (AD) using multiple post-labeling delay arterial spin labeling (ASL) MRI. Methods A total of 128 subjects (21 normal controls (NC), 80 patients with mild cognitive impairment (MCI), and 27 AD) were recruited prospectively. All participants underwent MRI examination and neuropsychological evaluation. QTM velocity and traditional Kety flow maps were computed from multiple delay ASL. Regional quantitative perfusion measurements were performed and compared to study group differences. We tested the hypothesis that cognition declines with reduced cerebral blood flow with consideration of age and gender effects. Results In cortical gray matter (GM) and the hippocampus, QTM velocity and Kety flow showed decreased values in AD group compared to NC and MCI groups; QTM velocity, but not Kety flow, showed a significant difference between MCI and NC groups. QTM velocity and Kety flow showed values decreasing with age; QTM velocity, but not Kety flow, showed a significant gender difference between male and female. QTM velocity and Kety flow in the hippocampus were positively correlated with cognition, including global cognition, memory, executive function, and language function. Conclusion This study demonstrated an increased sensitivity of QTM velocity as compared with the traditional Kety flow. Specifically, we observed only in QTM velocity, reduced perfusion velocity in GM and the hippocampus in MCI compared with NC. Both QTM velocity and Kety flow demonstrated reduction in AD vs controls. Decreased QTM velocity and Kety flow in the hippocampus were correlated with cognitive measures. These findings suggest QTM velocity as an improved biomarker for early AD blood flow alterations.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, New York, United States
| | - Yi Wang
- Department of Radiology, MRI Research Institute (MRIRI), Weill Cornell Medicine, New York, New York, United States
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|