1
|
Kalter N, Gulati S, Rosenberg M, Ayaz Q, Nguyen J, Wang S, Schroeder B, Li CY, Hendel A. Precise measurement of CRISPR genome editing outcomes through single-cell DNA sequencing. Mol Ther Methods Clin Dev 2025; 33:101449. [PMID: 40225018 PMCID: PMC11987616 DOI: 10.1016/j.omtm.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Gene therapy for clinical applications necessitates a comprehensive, accurate, and precise measurement of gene-edited drug products. State-of-the-art pipelines for evaluating editing outcomes rely primarily on bulk sequencing approaches, which are limited to population-level assessment. Here, we leveraged Tapestri, a single-cell sequencing technology for an in-depth analysis of editing outcomes. Using this platform, we characterized the genotype of triple-edited cells simultaneously at more than 100 loci, including editing zygosity, structural variations, and cell clonality. Our findings revealed a unique editing pattern in nearly every edited cell, highlighting the importance of single-cell resolution measurement to ensure the highest safety standards.
Collapse
Affiliation(s)
- Nechama Kalter
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Saurabh Gulati
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Michael Rosenberg
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Qawer Ayaz
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Joanne Nguyen
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Shu Wang
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Benjamin Schroeder
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Chieh-Yuan Li
- Mission Bio, 400 E Jamie Ct, Suite 100, South San Francisco, CA 94080, USA
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| |
Collapse
|
2
|
Mays JC, Mei S, Kogenaru M, Quysbertf HM, Bosco N, Zhao X, Bianchi JJ, Goldberg A, Kidiyoor GR, Holt LJ, Fenyö D, Davoli T. KaryoTap Enables Aneuploidy Detection in Thousands of Single Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.555746. [PMID: 39386620 PMCID: PMC11463636 DOI: 10.1101/2023.09.08.555746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Investigating chromosomal instability and aneuploidy within tumors is essential for understanding tumorigenesis and developing diagnostic and therapeutic strategies. Single-cell DNA sequencing technologies have enabled such analyses, revealing aneuploidies specific to individual cells within the same tumor. However, it has been difficult to scale the throughput of these methods to detect rare aneuploidies while maintaining high sensitivity. To overcome this deficit, we developed KaryoTap, a method combining custom targeted DNA sequencing panels for the Tapestri platform with a computational framework to enable detection of chromosome- and chromosome arm-scale aneuploidy (gains or losses) and copy number neutral loss of heterozygosity in all human chromosomes across thousands of single cells simultaneously. KaryoTap allows detecting gains and losses with an average accuracy of 83% for arm events and 91% for chromosome events. Importantly, together with chromosomal copy number, our system allows us to detect barcodes and gRNAs integrated into the cells' genome, thus enabling pooled CRISPR- or ORF-based functional screens in single cells. As a proof of principle, we performed a small screen to expand the chromosomes that can be targeted by our recently described CRISPR-based KaryoCreate system for engineering aneuploidy in human cells. KaryoTap will prove a powerful and flexible approach for the study of aneuploidy and chromosomal instability in both tumors and normal tissues.
Collapse
Affiliation(s)
- Joseph C Mays
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sally Mei
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Helberth M Quysbertf
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA. Current Address: Volastra Therapeutics, New York, NY 10027, USA
| | - Xin Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joy J Bianchi
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aleah Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gururaj Rao Kidiyoor
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Teresa Davoli
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|