1
|
Könnyű B, Szathmáry E, Czárán T, Szilágyi A. Kinetics and coexistence of autocatalytic reaction cycles. Sci Rep 2024; 14:18441. [PMID: 39117739 PMCID: PMC11310475 DOI: 10.1038/s41598-024-69267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Biological reproduction rests ultimately on chemical autocatalysis. Autocatalytic chemical cycles are thought to have played an important role in the chemical complexification en route to life. There are two, related issues: what chemical transformations allow such cycles to form, and at what speed they are operating. Here we investigate the latter question for solitary as well as competitive autocatalytic cycles in resource-unlimited batch and resource-limited chemostat systems. The speed of growth tends to decrease with the length of a cycle. Reversibility of the reproductive step results in parabolic growth that is conducive to competitive coexistence. Reversibility of resource uptake also slows down growth. Unilateral help by a cycle of its competitor tends to favour the competitor (in effect a parasite on the helper), rendering coexistence unlikely. We also show that deep learning is able to predict the outcome of competition just from the topology and the kinetic rate constants, provided the training set is large enough. These investigations pave the way for studying autocatalytic cycles with more complicated coupling, such as mutual catalysis.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Tamás Czárán
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| |
Collapse
|
2
|
Crespo-Hernández CE. Special issue on nucleic acid photophysics. Photochem Photobiol 2024; 100:257-261. [PMID: 38501585 DOI: 10.1111/php.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024]
|
3
|
Pross A, Pascal R. On the Emergence of Autonomous Chemical Systems through Dissipation Kinetics. Life (Basel) 2023; 13:2171. [PMID: 38004311 PMCID: PMC10672272 DOI: 10.3390/life13112171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This work addresses the kinetic requirements for compensating the entropic cost of self-organization and natural selection, thereby revealing a fundamental principle in biology. Metabolic and evolutionary features of life cannot therefore be separated from an origin of life perspective. Growth, self-organization, evolution and dissipation processes need to be metabolically coupled and fueled by low-entropy energy harvested from the environment. The evolutionary process requires a reproduction cycle involving out-of-equilibrium intermediates and kinetic barriers that prevent the reproductive cycle from proceeding in reverse. Model analysis leads to the unexpectedly simple relationship that the system should be fed energy with a potential exceeding a value related to the ratio of the generation time to the transition state lifetime, thereby enabling a process mimicking natural selection to take place. Reproducing life's main features, in particular its Darwinian behavior, therefore requires satisfying constraints that relate to time and energy. Irreversible reaction cycles made only of unstable entities reproduce some of these essential features, thereby offering a physical/chemical basis for the possible emergence of autonomy. Such Emerging Autonomous Systems (EASs) are found to be capable of maintaining and reproducing their kind through the transmission of a stable kinetic state, thereby offering a physical/chemical basis for what could be deemed an epigenetic process.
Collapse
Affiliation(s)
- Addy Pross
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel;
| | - Robert Pascal
- PIIM, Institut Origines, Aix-Marseille Université—CNRS, Service 232, Saint Jérôme, Ave Escadrille Normandie Niemen, 13013 Marseille, France
| |
Collapse
|
4
|
Daga KR, Feray Çoşar M, Lowenkron A, Hao J, Rouillard J. Environmental Stability and Its Importance for the Emergence of Darwinian Evolution. Life (Basel) 2023; 13:1960. [PMID: 37895342 PMCID: PMC10608181 DOI: 10.3390/life13101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of Darwinian evolution represents a central point in the history of life as we know it. However, it is generally assumed that the environments in which life appeared were hydrothermal environments, with highly variable conditions in terms of pH, temperature or redox levels. Are evolutionary processes favored to appear in such settings, where the target of biological adaptation changes over time? How would the first evolving populations compete with non-evolving populations? Using a numerical model, we explore the effect of environmental variation on the outcome of the competition between evolving and non-evolving populations of protocells. Our study found that, while evolving protocells consistently outcompete non-evolving populations in stable environments, they are outcompeted in variable environments when environmental variations occur on a timescale similar to the average duration of a generation. This is due to the energetic burden represented by adaptation to the wrong environmental conditions. Since the timescale of temperature variation in natural hydrothermal settings overlaps with the average prokaryote generation time, the current work indicates that a solution must have been found by early life to overcome this threshold.
Collapse
Affiliation(s)
- Khushi R. Daga
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Mensura Feray Çoşar
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Abigail Lowenkron
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Jihua Hao
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Joti Rouillard
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Šponer JE, Šponer J, Výravský J, Matyášek R, Kovařík A, Dudziak W, Ślepokura K. Crystallization as a selection force at the polymerization of nucleotides in a prebiotic context. iScience 2023; 26:107600. [PMID: 37664611 PMCID: PMC10470394 DOI: 10.1016/j.isci.2023.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Accumulation and selection of nucleotides is one of the most challenging problems surrounding the origin of the first RNA molecules on our planet. In the current work we propose that guanosine 3',5' cyclic monophosphate could selectively crystallize upon evaporation of an acidic prebiotic pool containing various other nucleotides. The conditions of the evaporative crystallization are fully compatible with the subsequent acid catalyzed polymerization of this cyclic nucleotide reported in earlier studies and may be relevant in a broad range of possible prebiotic environments. Albeit cytidine 3',5' cyclic monophosphate has the ability to selectively accumulate under the same conditions, its crystal structure is not likely to support polymer formation.
Collapse
Affiliation(s)
- Judit E. Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Jakub Výravský
- TESCAN Brno, s.r.o, Libušina třída 1, 62300 Brno, Czech Republic
- Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Wojciech Dudziak
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Katarzyna Ślepokura
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Subbotin V, Fiksel G. Exploring the Lipid World Hypothesis: A Novel Scenario of Self-Sustained Darwinian Evolution of the Liposomes. ASTROBIOLOGY 2023; 23:344-357. [PMID: 36716277 PMCID: PMC9986030 DOI: 10.1089/ast.2021.0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/03/2022] [Indexed: 06/18/2023]
Abstract
According to the Lipid World hypothesis, life on Earth originated with the emergence of amphiphilic assemblies in the form of lipid micelles and vesicles (liposomes). However, the mechanism of appearance of the information molecules (ribozymes/RNA) accompanying that process, considered obligatory for Darwinian evolution, is unclear. We propose a novel scenario of self-sustained Darwinian evolution of the liposomes driven by ever-present natural phenomena: solar UV radiation, day/night cycle, gravity, and the formation of liposomes in an aqueous media. The central tenet of this scenario is the liposomes' encapsulation of the heavy solutes, followed by their gravitational submerging in the water. The submerged liposomes, being protected from the damaging UV radiation, acquire the longevity necessary for autocatalytic replication of amphiphiles, their mutation, and the selection of those amphiphilic assemblies that provide the greatest membrane stability. These two sets of adaptive compositional information (heavy content and amphiphilic assemblies design) generate a population of liposomes with self-replication/reproduction properties, which are amendable to mutation, inheritance, and selection, thereby establishing Darwinian progression. Temporary and spatial expansion of this liposomal population will provide the basis for the next evolutionary step-a transition of accidentally entrapped RNA precursor molecules into complex functional molecules, such as ribozymes/RNA.
Collapse
Affiliation(s)
- Vladimir Subbotin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gennady Fiksel
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Krul SE, Costa GJ, Hoehn SJ, Valverde D, Oliveira LMF, Borin AC, Crespo-Hernández CE. Resolving Ultrafast Photoinitiated Dynamics of the Hachimoji 5-Aza-7-Deazaguanine Nucleobase: Impact of Synthetically Expanding the Genetic Alphabet. Photochem Photobiol 2022; 99:693-705. [PMID: 35938218 DOI: 10.1111/php.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The guanine derivative, 5-aza-7-deazaguanine (5N7C G) has recently been proposed as one of four unnatural bases, termed Hachimoji (8-letter) to expand the genetic code. We apply steady-state and time-resolved spectroscopy to investigate its electronic relaxation mechanism and probe the effect of atom substitution on the relaxation mechanism in polar protic and polar aprotic solvents. Mapping of the excited state potential energy surfaces is performed, from which the critical points are optimized by using the state-of-art Extended Multi-State Complete Active Space Second-Order Perturbation Theory. It is demonstrated that excitation to the lowest energy 1 ππ* state of 5N7C G results in complex dynamics leading to ca. 10 to 30-fold slower relaxation (depending on solvent) compared to guanine. A significant conformational change occurs at the S1 minimum, resulting in a 10-fold greater fluorescence quantum yield compared to guanine. The fluorescence quantum yield and S1 decay lifetime increase going from water to acetonitrile to propanol. The solvent-dependent results are supported by the quantum chemical calculations showing an increase in the energy barrier between the S1 minimum and the S1 /S0 conical intersection going from water to propanol. The longer lifetimes might make 5N7C G more photochemical active to adjacent nucleobases than guanine or other nucleobases within DNA.
Collapse
Affiliation(s)
- Sarah E Krul
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Gustavo J Costa
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| | - Danillo Valverde
- Unité de Chimie Physique Theorique et Structurale, Namur Institute of Structured Matter, Université de Namur, B-5000, Namur, Belgium
| | - Leonardo M F Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000. São Paulo, SP, Brazil
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio, 44106, United States
| |
Collapse
|
8
|
Leveau G, Pfeffer D, Altaner B, Kervio E, Welsch F, Gerland U, Richert C. Enzyme-Free Copying of 12 Bases of RNA with Dinucleotides. Angew Chem Int Ed Engl 2022; 61:e202203067. [PMID: 35445525 PMCID: PMC9401581 DOI: 10.1002/anie.202203067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/08/2022]
Abstract
The synthesis of complementary strands is the reaction underlying the replication of genetic information. It is likely that the earliest self-replicating systems used RNA as genetic material. How RNA was copied in the absence of enzymes and what sequences were most likely to have supported replication is not clear. Here we show that mixtures of dinucleotides with C and G as bases copy an RNA sequence of up to 12 nucleotides in dilute aqueous solution. Successful enzyme-free copying occurred with in situ activation at 4 °C and pH 6.0. Dimers were incorporated in favor of monomers when both competed as reactants, and little misincorporation was detectable in mass spectra. Simulations using experimental rate constants confirmed that mixed C/G sequences are good candidates for successful replication with dimers. Because dimers are intermediates in the synthesis of longer strands, our results support evolutionary scenarios encompassing formation and copying of RNA strands in enzyme-free fashion.
Collapse
Affiliation(s)
- Gabrielle Leveau
- Institute of Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Daniel Pfeffer
- Institute of Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Bernhard Altaner
- Physics of Complex BiosystemsTechnical University Munich85748GarchingGermany
| | - Eric Kervio
- Institute of Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Franziska Welsch
- Institute of Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Ulrich Gerland
- Physics of Complex BiosystemsTechnical University Munich85748GarchingGermany
| | - Clemens Richert
- Institute of Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| |
Collapse
|
9
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
10
|
Richert C, Leveau G, Pfeffer D, Altaner B, Kervio E, Gerland U, Welsch F. Enzyme‐Free Copying of 12 Bases of RNA with Dinucleotides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Clemens Richert
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart GERMANY
| | - Gabrielle Leveau
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Daniel Pfeffer
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | | | - Eric Kervio
- University of Stuttgart: Universitat Stuttgart Chemistry GERMANY
| | - Ulrich Gerland
- TU Munchen: Technische Universitat Munchen Physics GERMANY
| | | |
Collapse
|
11
|
Ravoni A. Impact of composition on the dynamics of autocatalytic sets. Biosystems 2020; 198:104250. [PMID: 32927011 DOI: 10.1016/j.biosystems.2020.104250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Autocatalytic sets are sets of entities that mutually catalyse each other's production through chemical reactions from a basic food source. Recently, the reflexively autocatalytic and food generated theory has introduced a formal definition of autocatalytic sets which has provided promising results in the context of the origin of life. However, the link between the structure of autocatalytic sets and the possibility of different long-term behaviours is still unclear. In this work, we study how different interactions among autocatalytic sets affect the emergent dynamics. To this aim, we develop a model in which interactions are presented through composition operations among networks, and the dynamics of the networks is reproduced via stochastic simulations. We find that the dynamical emergence of the autocatalytic sets depends on the adopted composition operations. In particular, operations involving entities that are sources for autocatalytic sets can promote the formation of different autocatalytic subsets, opening the door to various long-term behaviours.
Collapse
Affiliation(s)
- Alessandro Ravoni
- Department of Mathematics and Physics, University of Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy.
| |
Collapse
|
12
|
|
13
|
Maraldi NM. In search of a primitive signaling code. Biosystems 2019; 183:103984. [PMID: 31201829 DOI: 10.1016/j.biosystems.2019.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Cells must have preceded by simpler chemical systems (protocells) that had the capacity of a spontaneous self-assembly process and the ability to confine chemical reaction networks together with a form of information. The presence of lipid molecules in the early Earth conditions is sufficient to ensure the occurrence of spontaneous self-assembly processes, not defined by genetic information, but related to their chemical amphiphilic nature. Ribozymes are plausible molecules for early life, being the first small polynucleotides made up of random oligomers or formed by non-enzymatic template copying. Compartmentalization represents a strategy for the evolution of ribozymes; the attachment of ribozymes to surfaces, such as formed by lipid micellar aggregates may be particular relevant if the surface itself catalyzes RNA polymerization.It is conceivable that the transition from pre-biotic molecular aggregates to cellular life required the coevolution of the RNA world, capable of synthesizing specific, instead of statistical proteins, and of the Lipid world, with a transition from micellar aggregates to semipermeable vesicles. Small molecules available in the prebiotic inventory might promote RNA stability and the evolution of hydrophobic micellar aggregates into membrane-delimited vesicles. The transition from ribozymes catalyzing the assembly of statistical polypeptides to the synthesis of proteins, required the appearance of the genetic code; the transition from hydrophobic platforms favoring the stability of ribozymes and of nascent polypeptides to the selective transport of reagents through a membrane, required the appearance of the signal transduction code.A further integration between the RNA and Lipid worlds can be advanced, taking into account the emerging roles of phospholipid aggregates not only in ensuring stability to ribozymes by compartmentalization, but also in a crucial step of evolution through natural selection mechanisms, based on signal transduction pathways that convert environmental changes into biochemical responses that could vary according to the context. Here I present evidences on the presence of traces of the evolution of a signal transduction system in extant cells, which utilize a phosphoinositide signaling system located both at nucleoplasmic level as well as at the plasma membrane, based on the very same molecules but responding to different rules. The model herewith proposed is based on the following assumptions on the biomolecules of extant organisms: i) amphiphils can be converted into structured aggregates by hydrophobic forces thus giving rise to functional platforms for the interaction of other biomolecules and to their compartmentalization; ii) fundamental biochemical pathways, including protein synthesis, can be sustained by natural ribozymes of ancient origin; iii) ribozymes and nucleotide-derived coenzymes could have existed long before protein enzymes emerged; iv) signaling molecules, both derived from phospholipids and from RNAs could have guided the evolution of complex metabolic processes before the emergence of proteins.
Collapse
Affiliation(s)
- Nadir M Maraldi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
14
|
Shapshak P. Astrovirology, Astrobiology, Artificial Intelligence: Extra-Solar System Investigations. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7120930 DOI: 10.1007/978-3-030-29022-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This chapter attempts to encompass and tackle a large problem in Astrovirology and Astrobiology. There is a huge anthropomorphic prejudice that although life is unlikely, the just-right Goldilocks terrestrial conditions mean that the just-right balance of minerals and basic small molecules inevitably result in life as we know it throughout our solar system, galaxy, and the rest of the universe. Moreover, when such conditions on planets such as ours may not be quite right for the origin of life, it is popularly opined that asteroids and comets magically produce life or at the very least, the important, if not crucial components of terrestrial life so that life then blooms, when their fragments cruise the solar system, stars, and galaxies, and plummet onto appropriately bedecked planets and moons. It is no longer extraordinary to detect extraterrestrial solar systems. Moreover, since extra-solar system space exploration has commenced, this provides the problem of detecting life with enhanced achievability. Small organisms, which replicate outside of a living cell or host, would not be catalogued as viruses. How about viruses that cohabit with life? On the Earth, viruses are a major, if underestimated, condition of life – will that be the case elsewhere? Detection of extra-solar system viruses, if they exist, requires finding life, since viruses necessitate life to replicate. (It should be noted, though, that viruses could be detected through various types of portable ultra-microscopes, including Electron Microscopes (EM) (scanning and transmission) as well as Atomic Force Microscopes (AFM).) However, extra-solar system detection of life does not oblige that viruses exist ubiquitously. Viruses are important potential components of biospheres because of their multiple interactions and influence on evolution, although viruses are small and obligatory parasitic. In addition, nanotechnology – living or replicating nano-synthetic machine organisms might also be present out there, and require consideration as well. An imposing caveat is that, if found, could some extraterrestrial viruses and synthetic nanotechnological microorganisms infect humans? Possibly, intelligence and cognition may at times be contemporaneous with life. Concomitantly, life and viruses that may be detected, could well be impacted upon by intelligences existing on such exoplanets (and vice versa). Coming to an understanding of the plurality of extraterrestrial intelligence is an optimal objective, in order to avoid causing harm on exoplanets, as well as avoiding conflict and possible human devastation. This is especially the case if we encounter greatly advanced galactic-level civilizations, compared to terrestrial civilizations. Their machine and bionic technologies on the Dyson engineering civilization scale may be prominently superior to ours; their biological expertise may be similarly critically radical. For example, they may use viruses for purposes for which we are barely aware, and which could be utterly deadly for humans. A series of steps is being taken in space exploration. Scientists hypothesize and claim that types of life may be near the Earth, in the solar system, and outside the solar system, similar to ours in the sense that only such conditions, Goldilocks conditions, are key sine qua non requirements, based on our terrestrial chemistry and biochemistry. If detected within the solar system, will life or its remnants resemble terrestrial life? Outside the solar system a similar chauvinism exists, although the likelihood for life, in any event, remains probably low, according to more cautious approaches to the problem. The study of our solar system includes planets, asteroids, comets, and other planetesimals that have been in overall contiguity during several billion years; anthropomorphisms claims life consequently has been developing along terrestrial-type mechanisms. However, a non-anthropomorphic view would surmise, probably not, especially for extra-solar system locales. The prime warning and admonition in all these deliberations is the contamination and damage, which current and past practice and procedures has caused and continues, due to insufficient biocontainment concepts and technology to date. Advances in the development of robotics, artificial intelligence (AI), and high capacity ultrafast quantum computers (QC) greatly enhance the sophisticated control and logical development of extra-solar system studies. Consequently, future long-range manned space exploration seems unwarranted. Clearly, reduced dangers to human health and safety, will result from the use of intelligent machine-based investigations and besides, with increased cost-effectiveness. Space exploration comes at great cost to humanity as a whole and utilizes global resources. Consequently, appropriate organizational measures and planning/cooperation need to be in place. Moreover, the bottom line is that despite all the slogans and claims, there have been next to no financial benefits to our planet as a whole. Such financial and heedless difficulties need to be addressed, the sooner the better. In addition, prior to exposure to exoplanetary life, deep understanding of the problems of infectious diseases and immune dysfunction risks are needed. In addition, global efforts should avoid serendipity and stochasticity as this work should be directed with long-term organization, commitment, scientific, and technological methodology. This chapter briefly reviews such questions assuming a new paradigm for oversight of extrasolar system viral investigations including intelligence and life. Finances are included as an essential adjunct.
Collapse
|
15
|
Abstract
Background This essay highlights critical aspects of the plausibility of pre-Darwinian evolution. It is based on a critical review of some better-known open, far-from-equilibrium system-based scenarios supposed to explain processes that took place before Darwinian evolution had emerged and that resulted in the origin of the first systems capable of Darwinian evolution. The researchers’ responses to eight crucial questions are reviewed. The majority of the researchers claim that there would have been an evolutionary continuity between chemistry and “biology”. A key question is how did this evolution begin before Darwinian evolution had begun? In other words the question is whether pre-Darwinian evolution is plausible. Results Strengths and weaknesses of the reviewed scenarios are presented. They are distinguished between metabolism-first, replicator-first and combined metabolism-replicator models. The metabolism-first scenarios show major issues, the worst concerns heredity and chirality. Although the replicator-first scenarios answer the heredity question they have their own problems, notably chirality. Among the reviewed combined metabolism-replicator models, one shows the fewest issues. In particular, it seems to answer the chiral question, and eventually implies Darwinian evolution from the very beginning. Its main hypothesis needs to be validated with experimental data. Conclusion From this critical review it is that the concept of “pre-Darwinian evolution” appears questionable, in particular because it is unlikely if not impossible that any evolution in complexity over time may work without multiplication and heritability allowing the emergence of genetically and ecologically diverse lineages on which natural selection may operate. Only Darwinian evolution could have led to such an evolution. Thus, Pre-Darwinian evolution is not plausible according to the author. Surely, the answer to the question posed in the title is a prerequisite to the understanding of the origin of Darwinian evolution. Reviewers This article was reviewed by Purificacion Lopez-Garcia, Anthony Poole, Doron Lancet, and Thomas Dandekar.
Collapse
|
16
|
Pérez-Villa A, Saitta AM, Georgelin T, Lambert JF, Guyot F, Maurel MC, Pietrucci F. Synthesis of RNA Nucleotides in Plausible Prebiotic Conditions from ab Initio Computer Simulations. J Phys Chem Lett 2018; 9:4981-4987. [PMID: 30107125 DOI: 10.1021/acs.jpclett.8b02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, de novo and salvage nucleotide enzymatic synthesis combines 5-phospho-α-d-ribose-1-diphosphate (α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio molecular dynamics simulations with recently developed reaction exploration and enhanced sampling methods, we show that nucleobases and α-PRPP should spontaneously combine, under mild hydrothermal conditions, with an exothermic reaction and a facile mechanism, forming both purine and pyrimidine ribonucleotides. Surprisingly, this mechanism is very similar to the biological one and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. Mass spectrometry experiments performed on solutions of adenine and PRPP in similar conditions support the formation of AMP. These results suggest that natural selection might have optimized, through enzymes, a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.
Collapse
Affiliation(s)
- Andrea Pérez-Villa
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matriaux et de Cosmochimie, IMPMC, F-75005 Paris , France
| | - A Marco Saitta
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matriaux et de Cosmochimie, IMPMC, F-75005 Paris , France
| | - Thomas Georgelin
- Sorbonne Université, CNRS UMR 7197, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris , France
- Centre de Biophysique Moléculaire, CNRS UPR 4301, F-45071 Orléans , France
| | - Jean-François Lambert
- Sorbonne Université, CNRS UMR 7197, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris , France
| | - François Guyot
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matriaux et de Cosmochimie, IMPMC, F-75005 Paris , France
| | - Marie-Christine Maurel
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS MNHN UMR 7205, Institut de Systématique, Evolution, Biodiversité, ISyEB, F-75005 Paris , France
| | - Fabio Pietrucci
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matriaux et de Cosmochimie, IMPMC, F-75005 Paris , France
| |
Collapse
|
17
|
Ball R, Brindley J. Toy trains, loaded dice and the origin of life: dimerization on mineral surfaces under periodic drive with Gaussian inputs. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170141. [PMID: 29291048 PMCID: PMC5717622 DOI: 10.1098/rsos.170141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
In a major extension of previous work, we model the putative hydrothermal rock pore setting for the origin of life on Earth as a series of coupled continuous flow units (the toy train). Perfusing through this train are reactants that set up thermochemical and pH oscillations, and an activated nucleotide that produces monomer and dimer monophosphates. The dynamical equations that model this system are thermally self-consistent. In an innovative step that breaks some new ground, we build stochasticity of the inputs into the model. The computational results infer various constraints and conditions on, and insights into, chemical evolution and the origin of life and its physical setting: long, interconnected porous structures with longitudinal non-uniformity would have been favourable, and the ubiquitous pH dependences of biology may have been established in the prebiotic era. We demonstrate the important role of Gaussian fluctuations of the inputs in driving polymerization, evolution and diversification. In particular, we find that the probability distribution of the resulting output fluctuations is left-skewed and right-weighted (the loaded dice), which could favour chemical evolution towards a living RNA world. We tentatively name this distribution 'Goldilocks'. These results also vindicate the general approach of constructing and running a simple model to learn important new information about a complex system.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute and Research School of Chemistry, The Australian National University, Canberra 2602, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
18
|
Hordijk W. Autocatalytic Sets and RNA Secondary Structure. J Mol Evol 2017; 84:153-158. [PMID: 28378190 DOI: 10.1007/s00239-017-9787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Abstract
The dominant paradigm in origin of life research is that of an RNA world. However, despite experimental progress towards the spontaneous formation of RNA, the RNA world hypothesis still has its problems. Here, we introduce a novel computational model of chemical reaction networks based on RNA secondary structure and analyze the existence of autocatalytic sub-networks in random instances of this model, by combining two well-established computational tools. Our main results are that (i) autocatalytic sets are highly likely to exist, even for very small reaction networks and short RNA sequences, and (ii) sequence diversity seems to be a more important factor in the formation of autocatalytic sets than sequence length. These findings could shed new light on the probability of the spontaneous emergence of an RNA world as a network of mutually collaborative ribozymes.
Collapse
Affiliation(s)
- Wim Hordijk
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| |
Collapse
|
19
|
|
20
|
Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat Chem 2017. [DOI: 10.1038/nchem.2703] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Hordijk W, Steel M. Chasing the tail: The emergence of autocatalytic networks. Biosystems 2016; 152:1-10. [PMID: 28027958 DOI: 10.1016/j.biosystems.2016.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
A ubiquitous feature of all living systems is their ability to sustain a biochemistry in which all reactions are coordinated by catalysts, and all reactants (along with the catalysts) are either produced by the system itself or are available from the environment. This led to the hypothesis that 'autocatalytic networks' play a key role in both the origin and the organization of life, which was first proposed in the early 1970s, and has been enriched in recent years by a combination of experimental studies and the application of mathematical and computational techniques. The latter have allowed a formalization and detailed analysis of such networks, by means of RAF theory. In this review, we describe the development of these ideas, from pioneering early work of Stuart Kauffman through to more recent theoretical and experimental studies. We conclude with some suggestions for future work.
Collapse
Affiliation(s)
- Wim Hordijk
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
22
|
Stephenson JD, Popović M, Bristow TF, Ditzler MA. Evolution of ribozymes in the presence of a mineral surface. RNA (NEW YORK, N.Y.) 2016; 22:1893-1901. [PMID: 27793980 PMCID: PMC5113209 DOI: 10.1261/rna.057703.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche.
Collapse
Affiliation(s)
- James D Stephenson
- NASA Postdoctoral Program, NASA Ames Research Center, Moffett Field, California 94035, USA
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Milena Popović
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
- Blue Marble Space Institute of Science, Seattle, Washington 98145, USA
| | - Thomas F Bristow
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Mark A Ditzler
- Space Science and Astrobiology Division, Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, USA
| |
Collapse
|
23
|
Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect 2016. [DOI: 10.1002/slct.201600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - André Brack
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| |
Collapse
|
24
|
Ross DS, Deamer D. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis. Life (Basel) 2016; 6:life6030028. [PMID: 27472365 PMCID: PMC5041004 DOI: 10.3390/life6030028] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life’s origins: (i) how did the polymers arise in an aqueous prebiotic world; and (ii) once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H2O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier’s principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5–10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly “ratchets up” the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers.
Collapse
Affiliation(s)
- David S Ross
- Retired, Formerly SRI International, Menlo Park, CA 94025, USA.
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
25
|
Lavado N, Ávalos M, Babiano R, Cintas P, Light ME, Jiménez JL, Palacios JC. On the Plausibility of Pseudosugar Formation in Cometary Ices and Oxygen-rich Tholins. ORIGINS LIFE EVOL B 2016; 46:31-49. [PMID: 26428515 DOI: 10.1007/s11084-015-9456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
We revisit herein the formation and structure of dihydroxy dioxanes, which can be obtained from prebiotically available precursors and can be regarded as primeval sugar surrogates. Previous studies dealing with the heterogeneous composition of interstellar bodies point to the existence of significant amounts of small polyalcohols along with oxygen-containing oligomers. Even though such derivatives did not give rise to nucleosides and oligonucleotides, nor they were incorporated into subsequent metabolic routes, molecular chimeras based on sugar-like species could be opportunistic scaffolds in pre-evolutionary scenarios. We could figure out that pseudosugars, assembled by hemiacetalic bonds from available precursors in both interstellar and terrestrial scenarios, were presumably more abundant than thought. Moreover, these species share some key features with naturally-occurring sugar rings, such as anomeric preferences, coordinating ability, and the prevalent occurrence of racemic compounds.
Collapse
Affiliation(s)
- Nieves Lavado
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain.
| | - Martín Ávalos
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain
| | - Mark E Light
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - José Luis Jiménez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain
| | - Juan C Palacios
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, Avenida de Elvas s/n, E-06006, Badajoz, Spain
| |
Collapse
|
26
|
Sutherland JD. The Origin of Life--Out of the Blue. Angew Chem Int Ed Engl 2015; 55:104-21. [PMID: 26510485 DOI: 10.1002/anie.201506585] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 01/28/2023]
Abstract
Either to sustain autotrophy, or as a prelude to heterotrophy, organic synthesis from an environmentally available C1 feedstock molecule is crucial to the origin of life. Recent findings augment key literature results and suggest that hydrogen cyanide--"Blausäure"--was that feedstock.
Collapse
Affiliation(s)
- John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (UK).
| |
Collapse
|
27
|
|
28
|
Carels N, Ponce de Leon M. An Interpretation of the Ancestral Codon from Miller's Amino Acids and Nucleotide Correlations in Modern Coding Sequences. Bioinform Biol Insights 2015; 9:37-47. [PMID: 25922573 PMCID: PMC4401237 DOI: 10.4137/bbi.s24021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Miguel Ponce de Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
29
|
Rios AC, Tor Y. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution. Isr J Chem 2013; 53:469-483. [PMID: 25284884 PMCID: PMC4181368 DOI: 10.1002/ijch.201300009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature "decide" upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases.
Collapse
Affiliation(s)
- Andro C. Rios
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), phone: (+1) 8585346401, fax: (+1) 858534 0202
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358 (USA), phone: (+1) 8585346401, fax: (+1) 858534 0202
| |
Collapse
|
30
|
Fixation and accumulation of thermotolerant catalytic competence of a pair of ligase ribozymes through complex formation and cross ligation. J Mol Evol 2013; 76:48-58. [PMID: 23288433 DOI: 10.1007/s00239-012-9536-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In the early stages of the hypothetical RNA world, some primitive RNA catalysts (ribozymes) may have emerged through self-assembly of short RNA oligomers. Although they may be unstable against temperature fluctuations and other environmental changes, ligase ribozymes (ribozymes with RNA strand-joining activity) may resolve structural instability of self-assembling RNAs by converting them to the corresponding unimolecular formats. To investigate this possibility, we constructed a model system using a cross-ligation system composed of a pair of self-assembling ligase ribozymes. Their abilities to act as catalysts, substrates, and a cross-ligation system were analyzed with or without thermal pretreatment before the reactions. A pair of self-assembling ligase ribozymes, each of which can form multiple conformations, demonstrated that thermotolerance was acquired and accumulated through complex-formation that stabilized the active forms of the bimolecular ribozymes and also cross-ligation that produced the unimolecular ribozymes.
Collapse
|
31
|
Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)(a). Biol Direct 2012; 7:23. [PMID: 22793875 PMCID: PMC3495036 DOI: 10.1186/1745-6150-7-23] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 01/16/2023] Open
Abstract
The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or complete, is the best we currently have to help understand the backstory to contemporary biology.
Collapse
Affiliation(s)
- Harold S Bernhardt
- Department of Biochemistry, University of Otago, P,O, Box 56, Dunedin, New Zealand.
| |
Collapse
|
32
|
Abstract
There are two RNA worlds. The first is the primordial RNA world, a hypothetical era when RNA served as both information and function, both genotype and phenotype. The second RNA world is that of today's biological systems, where RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins, in regulating gene expression, and in the constant battle between infectious agents trying to subvert host defense systems and host cells protecting themselves from infection. This second RNA world is not at all hypothetical, and although we do not have all the answers about how it works, we have the tools to continue our interrogation of this world and refine our understanding. The fun comes when we try to use our secure knowledge of the modern RNA world to infer what the primordial RNA world might have looked like.
Collapse
Affiliation(s)
- Thomas R Cech
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA.
| |
Collapse
|
33
|
Ferré-D'Amaré AR. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules. Philos Trans R Soc Lond B Biol Sci 2012; 366:2942-8. [PMID: 21930586 DOI: 10.1098/rstb.2011.0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, MSC-8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
34
|
Abstract
Background In addition to providing phylogenetic relationships, tree making procedures such as parsimony and maximum likelihood can make specific predictions of actual historical sequences. Resurrection of such sequences can be used to understand early events in evolution. In the case of RNA, the nature of parsimony is such that when applied to multiple RNA sequences it typically predicts ancestral sequences that satisfy the base pairing constraints associated with secondary structure. The case for such sequences being actual ancestors is greatly improved, if they can be shown to be biologically functional. Results A unique common ancestral sequence of 28 Vibrio 5S ribosomal RNA sequences predicted by parsimony was resurrected and found to be functional in the context of the E. coli cellular environment. The functionality of various point variants and intermediates that were constructed as part of the resurrection were examined in detail. When separately introduced the changes at single stranded positions and individual double variants at base-paired positions were also viable. An additional double variant was examined at a different base-paired position and it was also valid. Conclusions The results show that at least in the case of the 5S rRNAs considered here, ancestors predicted by parsimony are likely to be realistic when the prediction is not overly influenced by single outliers. It is especially noteworthy that the phenotype of the predicted ancestors could be anticipated as a cumulative consequence of the phenotypes of the individual variants that comprised them. Thus, point mutation data is potentially useful in evaluating the reasonableness of ancestral sequences predicted by parsimony or other methods. The results also suggest that in the absence of significant tertiary structure constraints double variants that preserve pairing in stem regions will typically be accepted. Overall, the results suggest that it will be feasible to resurrect additional meaningful 5S rRNA ancestors as well as ancestral sequences of many different types of RNA.
Collapse
Affiliation(s)
- Qing Lu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | |
Collapse
|
35
|
Yarus M. Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003590. [PMID: 20719875 DOI: 10.1101/cshperspect.a003590] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A little-noted result of the confirmation of multiple premises of the RNA-world hypothesis is that we now know something about the dawn organisms that followed the origin of life, perhaps over 4 billion years ago. We are therefore in an improved position to reason about the biota just before RNA times, during the era of the first replicators, the first Darwinian creatures on Earth. An RNA congener still prominent in modern biology is a plausible descendent of these first replicators.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado.
| |
Collapse
|