1
|
Collins KW, Copeland MM, Kundrotas PJ, Vakser IA. Dockground: The resource expands to protein-RNA interactome. J Mol Biol 2025:169014. [PMID: 39956358 DOI: 10.1016/j.jmb.2025.169014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
RNA is a master regulator of cellular processes and will bind to many different proteins throughout its life cycle. Dysregulation of RNA and RNA-binding proteins can lead to various diseases, including cancer. To better understand molecular mechanisms of the cellular processes, it is important to characterize protein-RNA interactions at the structural level. There is a lack of experimental structures available for protein-RNA complexes due to the RNA inherent flexibility, which complicates the experimental structure determination. The scarcity of structures can be made up for with computational modeling. Dockground is a resource for development and benchmarking of structure-based modeling of protein interactions. It contains datasets focusing on different aspects of protein recognition. The foundation of all the datasets is the database of experimentally determined protein complexes, which previously contained only protein-protein assemblies. To further expand the utility of the Dockground resource, we extended the database to protein-RNA interactions. The new functionalities are available on the Dockground website at https://dockground.compbio.ku.edu/. The database can be searched using a number of criteria, including removal of redundancies at various sequence and structure similarity thresholds. The database updates with new structures from the Protein Data Bank on a weekly basis.
Collapse
Affiliation(s)
- Keeley W Collins
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045.
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045; Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045.
| |
Collapse
|
2
|
Shao X, Tian M, Yin J, Duan H, Tian Y, Wang H, Xia C, Wang Z, Zhu Y, Wang Y, Chaihu L, Tan M, Wang H, Huang Y, Wang J, Wang G. Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes. Nat Commun 2024; 15:8633. [PMID: 39366952 PMCID: PMC11452662 DOI: 10.1038/s41467-024-52948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The characterization of protein complex is vital for unraveling biological mechanisms in various life processes. Despite advancements in biophysical tools, the capture of non-covalent complexes and deciphering of their biochemical composition continue to present challenges for low-input samples. Here we introduce SNAP-MS, a Stationary-phase-dissolvable Native Affinity Purification and Mass Spectrometric characterization strategy. It allows for highly efficient purification and characterization from inputs at the pico-mole level. SNAP-MS replaces traditional elution with matrix dissolving during the recovery of captured targets, enabling the use of high-affinity bait-target pairs and eliminates interstitial voids. The purified intact protein complexes are compatible with native MS, which provides structural information including stoichiometry, topology, and distribution of proteoforms, size variants and interaction states. An algorithm utilizes the bait as a charge remover and mass corrector significantly enhances the accuracy of analyzing heterogeneously glycosylated complexes. With a sample-to-data time as brief as 2 hours, SNAP-MS demonstrates considerable versatility in characterizing native complexes from biological samples, including blood samples.
Collapse
Affiliation(s)
- Xinyang Shao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
| | - Meng Tian
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Junlong Yin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haifeng Duan
- CYGNUS Bioscience (Beijing) Co. Ltd, Beijing, China
| | - Ye Tian
- Changping Laboratory, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Changsheng Xia
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, China
| | - Ziwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanxi Zhu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Yifan Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Lingxiao Chaihu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Chemistry & Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Minjie Tan
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yanyi Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Jianbin Wang
- Changping Laboratory, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Guanbo Wang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
| |
Collapse
|
3
|
Chakrabortty A, Mondal S, Bandyopadhyay S. Conformational Properties of Poly(A)-Binding Protein Complexed with Poly(A) RNA. J Phys Chem B 2024; 128:6449-6462. [PMID: 38941243 DOI: 10.1021/acs.jpcb.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Microscopic understanding of protein-RNA interactions is important for different biological activities, such as RNA transport, translation, splicing, silencing, etc. Polyadenine (Poly(A)) binding proteins (PABPs) make up a class of regulatory proteins that play critical roles in protecting the poly(A) tails of cellular mRNAs from nuclease degradation. In this work, we performed molecular dynamics simulations to investigate the conformational modifications of human PABP protein and poly(A) RNA that occur during complexation. It is demonstrated that the intermediate linker domain of the protein transforms from a disordered coil-like structure to a helical form during the recognition process, leading to the formation of the complex. On the other hand, disordered collapsed coil-like RNA on complexation has been found to transform into a rigid extended conformation. Importantly, the binding free energy calculation showed that the thermodynamic stability of the complex is primarily guided by favorable hydrophobic interactions between the protein and the RNA.
Collapse
Affiliation(s)
- Arun Chakrabortty
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India
| |
Collapse
|
4
|
de Vries T, Novakovic M, Ni Y, Smok I, Inghelram C, Bikaki M, Sarnowski CP, Han Y, Emmanouilidis L, Padroni G, Leitner A, Allain FHT. Specific protein-RNA interactions are mostly preserved in biomolecular condensates. SCIENCE ADVANCES 2024; 10:eadm7435. [PMID: 38446881 PMCID: PMC10917357 DOI: 10.1126/sciadv.adm7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.
Collapse
Affiliation(s)
- Tebbe de Vries
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Mihajlo Novakovic
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Yinan Ni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Clara Inghelram
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chris P. Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yaning Han
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | - Giacomo Padroni
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser S, Gossert AD, Leitner A, Allain FHT. A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 2023; 51:4555-4571. [PMID: 36928389 PMCID: PMC10201421 DOI: 10.1093/nar/gkad195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.
Collapse
Affiliation(s)
- Giacomo Padroni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Antje C Wolter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Simon H Rüdisser
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Carico C, Cui J, Acton A, Placzek WJ. Polypyrimidine tract binding protein 1 (PTBP1) contains a novel regulatory sequence, the rBH3, that binds the pro-survival protein MCL1. J Biol Chem 2023:104778. [PMID: 37142223 DOI: 10.1016/j.jbc.2023.104778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The maturation of RNA from its nascent transcription to ultimate utilization (e.g., translation, miR-mediated RNA silencing, etc.) involves an intricately coordinated series of biochemical reactions regulated by RNA binding proteins (RBPs). Over the past several decades, there has been extensive effort to elucidate the biological factors that control the specificity and selectivity of RNA target binding and downstream function. Polypyrimidine tract binding protein 1 (PTBP1) is an RBP that is involved in all steps of RNA maturation and serves as a key regulator of alternative splicing, and therefore understanding its regulation is of critical biologic importance. While several mechanisms of RBP specificity have been proposed (e.g., cell-specific expression of RBPs and secondary structure of target RNA), recently protein-protein interactions with individual domains of RBPs have been suggested to be important determinants of downstream function. Here we demonstrate a novel binding interaction between the first RNA recognition motif (RRM1) of PTBP1 and the pro-survival protein MCL1. Using both in silico and in vitro analyses, we demonstrate that MCL1 binds a novel regulatory sequence on RRM1, termed the rBH3. NMR spectroscopy reveals this interaction allosterically perturbs key residues in the RNA binding interface of RRM1 and negatively impacts RRM1 association with target RNA. Furthermore, pulldown of MCL1 by endogenous PTBP1 verifies that these proteins interact in an endogenous cellular environment, establishing the biological relevance of this binding event. Overall, our findings suggest a novel mechanism of regulation of PTBP1 in which a protein-protein interaction with a single RRM can impact RNA association.
Collapse
Affiliation(s)
- Christine Carico
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jia Cui
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Alexus Acton
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294.
| |
Collapse
|
7
|
Bae JW, Kim S, Kim VN, Kim JS. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat Commun 2021; 12:6026. [PMID: 34654832 PMCID: PMC8519950 DOI: 10.1038/s41467-021-26317-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
RNA-protein interaction can be captured by crosslinking and enrichment followed by tandem mass spectrometry, but it remains challenging to pinpoint RNA-binding sites (RBSs) or provide direct evidence for RNA-binding. To overcome these limitations, we here developed pRBS-ID, by incorporating the benefits of UVA-based photoactivatable ribonucleoside (PAR; 4-thiouridine and 6-thioguanosine) crosslinking and chemical RNA cleavage. pRBS-ID robustly detects peptides crosslinked to PAR adducts, offering direct RNA-binding evidence and identifying RBSs at single amino acid-resolution with base-specificity (U or G). Using pRBS-ID, we could profile uridine-contacting RBSs globally and discover guanosine-contacting RBSs, which allowed us to characterize the base-specific interactions. We also applied the search pipeline to analyze the datasets from UVC-based RBS-ID experiments, altogether offering a comprehensive list of human RBSs with high coverage (3,077 RBSs in 532 proteins in total). pRBS-ID is a widely applicable platform to investigate the molecular basis of posttranscriptional regulation.
Collapse
Affiliation(s)
- Jong Woo Bae
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | | | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
8
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
9
|
Rapidly Growing Protein-Centric Technologies to Extensively Identify Protein-RNA Interactions: Application to the Analysis of Co-Transcriptional RNA Processing. Int J Mol Sci 2021; 22:ijms22105312. [PMID: 34070162 PMCID: PMC8158511 DOI: 10.3390/ijms22105312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
During mRNA transcription, diverse RNA-binding proteins (RBPs) are recruited to RNA polymerase II (RNAP II) transcription machinery. These RBPs bind to distinct sites of nascent RNA to co-transcriptionally operate mRNA processing. Recent studies have revealed a close relationship between transcription and co-transcriptional RNA processing, where one affects the other’s activity, indicating an essential role of protein–RNA interactions for the fine-tuning of mRNA production. Owing to their limited amount in cells, the detection of protein–RNA interactions specifically assembled on the transcribing RNAP II machinery still remains challenging. Currently, cross-linking and immunoprecipitation (CLIP) has become a standard method to detect in vivo protein–RNA interactions, although it requires a large amount of input materials. Several improved methods, such as infrared-CLIP (irCLIP), enhanced CLIP (eCLIP), and target RNA immunoprecipitation (tRIP), have shown remarkable enhancements in the detection efficiency. Furthermore, the utilization of an RNA editing mechanism or proximity labeling strategy has achieved the detection of faint protein–RNA interactions in cells without depending on crosslinking. This review aims to explore various methods being developed to detect endogenous protein–RNA interaction sites and discusses how they may be applied to the analysis of co-transcriptional RNA processing.
Collapse
|
10
|
Bae JW, Kwon SC, Na Y, Kim VN, Kim JS. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat Struct Mol Biol 2020; 27:678-682. [PMID: 32514175 DOI: 10.1038/s41594-020-0436-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
RNA-binding sites (RBSs) can be identified by liquid chromatography and tandem mass spectrometry analyses of the protein-RNA conjugates created by crosslinking, but RBS mapping remains highly challenging due to the complexity of the formed RNA adducts. Here, we introduce RBS-ID, a method that uses hydrofluoride to fully cleave RNA into mono-nucleosides, thereby minimizing the search space to drastically enhance coverage and to reach single amino acid resolution. Moreover, the simple mono-nucleoside adducts offer a confident and quantitative measure of direct RNA-protein interaction. Using RBS-ID, we profiled ~2,000 human RBSs and probed Streptococcus pyogenes Cas9 to discover residues important for genome editing.
Collapse
Affiliation(s)
- Jong Woo Bae
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea. .,School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea. .,School of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
11
|
Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics. J Mol Biol 2020; 432:2913-2929. [DOI: 10.1016/j.jmb.2020.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
|
12
|
Musashi-1: An Example of How Polyalanine Tracts Contribute to Self-Association in the Intrinsically Disordered Regions of RNA-Binding Proteins. Int J Mol Sci 2020; 21:ijms21072289. [PMID: 32225071 PMCID: PMC7177541 DOI: 10.3390/ijms21072289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
RNA-binding proteins (RBPs) have intrinsically disordered regions (IDRs) whose biophysical properties have yet to be explored to the same extent as those of the folded RNA interacting domains. These IDRs are essential to the formation of biomolecular condensates, such as stress and RNA granules, but dysregulated assembly can be pathological. Because of their structural heterogeneity, IDRs are best studied by NMR spectroscopy. In this study, we used NMR spectroscopy to investigate the structural propensity and self-association of the IDR of the RBP Musashi-1. We identified two transient α-helical regions (residues ~208–218 and ~270–284 in the IDR, the latter with a polyalanine tract). Strong NMR line broadening in these regions and circular dichroism and micrography data suggest that the two α-helical elements and the hydrophobic residues in between may contribute to the formation of oligomers found in stress granules and implicated in Alzheimer’s disease. Bioinformatics analysis suggests that polyalanine stretches in the IDRs of RBPs may have evolved to promote RBP assembly.
Collapse
|