1
|
Liu X, Krishnamurthy K, Naeem R, Goldstein DY. A comparison of sequential polymerase chain reaction-based cascade testing vs next-generation sequencing in molecular profiling of myeloproliferative neoplasms: improving testing strategies in light of evolving molecular landscapes. Lab Med 2025:lmaf004. [PMID: 40238187 DOI: 10.1093/labmed/lmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Somatic mutations in the JAK2, CALR, and MPL genes are traditionally tested using a cascading reflex algorithm in BCR::ABL1-negative myeloproliferative neoplasms (MPNs). However, next-generation sequencing (NGS) has revealed that these variants may coexist, exposing limitations in current testing practices. METHODS This pilot study analyzed 3 JAK2 p.V617F-positive MPN cases and 3 cases negative for classical driver mutations using the Oncomine Myeloid Assay GX v2 assay (Thermo Fisher Scientific) on the Genexus Integrated Sequencer (Thermo Fisher Scientific). RESULTS JAK2 p.V617F status was 100% concordant between polymerase chain reaction (PCR) and NGS. Next-generation sequencing detected a concurrent driver MPL mutation in 1 case, an SF3B1 variant in 1 case, and an IDH2 variant in a JAK2-positive case that have established prognostic and therapeutic significance. In cases negative for conventional targets, NGS detected DNMT3A and TET2 variants, which are associated with clonal hematopoiesis and MPN initiation. One case had a JAK2 p.V617F alteration at a variant allele frequency of 0.9%, below the NGS-reportable range but detectable by PCR, adding another caveat to profiling of MPNs. DISCUSSION Next-generation sequencing provides comprehensive molecular profiling in patients with MPNs, identifying additional prognostic and therapeutic markers. However, PCR remains superior for detecting low-variant allele frequency variants. We propose an updated MPN testing strategy that integrates PCR and NGS within a reflex algorithm to optimize diagnostics and therapeutic guidance.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Pathology, Montefiore Medical Center, Bronx, NY, United States
| | | | - Rizwan Naeem
- Department of Pathology, Montefiore Medical Center, Bronx, NY, United States
| | - D Yitzchak Goldstein
- Department of Pathology, Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Carturan A, Morè S, Poloni A, Rupoli S, Morsia E. Shaping the Future of Myeloproliferative Neoplasm Therapy: Immune-Based Strategies and Targeted Innovations. Cancers (Basel) 2024; 16:4113. [PMID: 39682299 DOI: 10.3390/cancers16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous cutting-edge immunotherapy approaches have been developed for hematological malignancies, such as immune-checkpoint inhibitors for lymphomas, chimeric antigen receptor (CAR)-T-cell treatments for B-cell cancers, and monoclonal antibody therapies for acute myeloid leukemia (AML). However, achieving similar breakthroughs in MPNs has proven challenging. The key obstacles include the absence of universally expressed and MPN-specific surface markers, significant cellular and molecular variability among both individual patients and across different MPN subtypes, and the failure of treatments to stimulate an anti-tumor immune response due to the immune system disruptions caused by the myeloid neoplasm. Currently, there are several innovative therapies in clinical trials for MPNs. These include new JAK inhibitors with greater specificity for JAK2, as well as "add-on" medications designed to enhance the effectiveness of ruxolitinib, in both patients who are new to the drug and in those who have shown suboptimal responses. Additionally, there is ongoing exploration of novel therapeutic targets. In this review, we will explore the immunotherapy approaches that are currently used in clinical practice for MPNs, as well as emerging strategies that are likely to change the treatment of these diseases in the coming years.
Collapse
Affiliation(s)
- Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Morè
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Erika Morsia
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
3
|
Gao J, Han S, Deng B, Deng Y, Gao X. Research progress of additional pathogenic mutations in chronic neutrophilic leukemia. Ann Hematol 2024; 103:2591-2600. [PMID: 37993585 DOI: 10.1007/s00277-023-05550-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare type of myeloproliferative neoplasm (MPN). Due to its nonspecific clinical symptoms and lack of specific molecular markers, it was previously difficult to distinguish it from other diseases with increased neutrophils. However, the discovery of the CSF3R mutation in CNL 10 years ago and the update of the diagnostic criteria by the World Health Organization (WHO) in 2016 brought CNL into a new era of molecular diagnosis. Next-generation sequencing (NGS) technology has led to the identification of numerous mutant genes in CNL. While CSF3R is commonly recognized as the driver mutation of CNL, other mutations have also been detected in CNL using NGS, including mutations in other signaling pathway genes (CBL, JAK2, NARS, PTPN11) and chromatin modification genes (ASXL1, SETBP1, EZH2), DNA methylation genes (DNMT3A, TET2), myeloid-related transcription factor genes (RUNX1, GATA2), and splicing and RNA metabolism genes (SRSF2, U2AF1). The coexistence of these mutated genes and CSF3R mutations, as well as the different evolutionary sequences of clones, deepens the complexity of CNL molecular biology. The purpose of this review is to summarize the genetic research findings of CNL in the last decade, focusing on the common mutated genes in CNL and their clinical significance, as well as the clonal evolution pattern and sequence of mutation acquisition in CNL, to provide a basis for the appropriate management of CNL patients.
Collapse
Affiliation(s)
- Jiapei Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Shuai Han
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yifan Deng
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, China
| | - Xiaohui Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Hunter AM, Bose P. Advances with janus kinase inhibitors for the treatment of myeloproliferative neoplasms: an update of the literature. Expert Opin Pharmacother 2024; 25:1391-1404. [PMID: 39067001 DOI: 10.1080/14656566.2024.2385729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The hallmark discovery of hyperactivation of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was a sentinel moment in the history of myeloproliferative neoplasms (MPNs). This finding paved the way for the development of JAK inhibitors, which now represent the foundation of myelofibrosis therapy. With four JAK inhibitors now approved for myelofibrosis, awareness of their clinical efficacy and safety data and recognition of their unique pharmacologic attributes are of critical importance. Additionally, ruxolitinib represents an integral part of the therapeutic arsenal for polycythemia vera. AREAS COVERED This review provides a broad overview of the published literature supporting JAK inhibitor therapy for MPNs. Primarily focusing on myelofibrosis, each of the four available JAK inhibitors is reviewed in detail, including pharmacology, efficacy, and safety data. Failure of JAK inhibitors and future directions in JAK inhibitor therapy are also discussed. EXPERT OPINION JAK inhibitors revolutionized the treatment of MPNs and have dramatically improved patient outcomes. However, data informing selection between currently available JAK inhibitors is limited. These agents are not curative and eventually fail most patients with myelofibrosis. Combining JAK inhibitors with novel targeted agents appears to be the most promising path to further improve outcomes.
Collapse
Affiliation(s)
- Anthony M Hunter
- Department of Hematology and Medical oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Wen S, Zhang W, Fei Y, Guan K, Zhao H, Song P, Ye X, Pan Y. Risk factors for ischemic stroke in patients with Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms. J Clin Neurosci 2024; 125:159-166. [PMID: 38815302 DOI: 10.1016/j.jocn.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs) are linked with various complications, notably ischemic stroke. The study aims to identify risk factors for ischemic stroke in Ph-negative MPNs patients. METHODS Patients were categorized into two groups based on whether they had experienced ischemic stroke. Subsequently, an analysis of demographics, biochemical makers, and genetic mutations (JAK2V617F and CALR mutations), was conducted to identify potential associations with an elevated risk of ischemic stroke in individuals with Ph-negative MPNs. RESULTS A total of 185 patients diagnosed with Ph-negative MPNs participated in the study, including 82 with essential thrombocythemia (ET), 78 with polycythemia vera (PV), and 25 with primary myelofibrosis (PMF). Among these, 57 patients (30.8 %) had a history of ischemic stroke. Independent risk factors associated with ischemic stroke in Ph-negative MPNs patients included hypertension (OR = 5.076) and smoking (OR = 5.426). Among ET patients, smoking (OR = 4.114) and an elevated percentage of neutrophils (OR = 1.080) were both positively correlated with ischemic stroke incidence. For PV patients, hypertension (OR = 4.647), smoking (OR = 6.065), and an increased percentage of lymphocytes (OR = 1.039) were independently associated with ischemic stroke. Regardless of the presence of the JAK2V617F mutation, hypertension was the sole positively and independently associated risk factor for ischemic stroke. The odds ratios for patients with the JAK2V617F mutation was 3.103, while for those without the mutation, it was 11.25. CONCLUSIONS Hypertension was a more substantial factor associated with an increased incidence of ischemic stroke in Ph-negative MPNs patients.
Collapse
Affiliation(s)
- Shirong Wen
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wenxiao Zhang
- Department of Neurology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Yiping Fei
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Guan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hui Zhao
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Peng Song
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangmei Ye
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yujun Pan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
6
|
Morsia E, Torre E, Martini F, Morè S, Poloni A, Olivieri A, Rupoli S. Exploring the Molecular Aspects of Myeloproliferative Neoplasms Associated with Unusual Site Vein Thrombosis: Review of the Literature and Latest Insights. Int J Mol Sci 2024; 25:1524. [PMID: 38338802 PMCID: PMC10855502 DOI: 10.3390/ijms25031524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are the leading causes of unusual site thrombosis, affecting nearly 40% of individuals with conditions like Budd-Chiari syndrome or portal vein thrombosis. Diagnosing MPNs in these cases is challenging because common indicators, such as spleen enlargement and elevated blood cell counts, can be obscured by portal hypertension or bleeding issues. Recent advancements in diagnostic tools have enhanced the accuracy of MPN diagnosis and classification. While bone marrow biopsies remain significant diagnostic criteria, molecular markers now play a pivotal role in both diagnosis and prognosis assessment. Hence, it is essential to initiate the diagnostic process for splanchnic vein thrombosis with a JAK2 V617F mutation screening, but a comprehensive approach is necessary. A multidisciplinary strategy is vital to accurately determine the specific subtype of MPNs, recommend additional tests, and propose the most effective treatment plan. Establishing specialized care pathways for patients with splanchnic vein thrombosis and underlying MPNs is crucial to tailor management approaches that reduce the risk of hematological outcomes and hepatic complications.
Collapse
Affiliation(s)
- Erika Morsia
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Elena Torre
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Francesco Martini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Sonia Morè
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Attilio Olivieri
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
7
|
Randrianarisoa RMF, Ramanandafy H, Mania A, Monjanel H, Trouillier S. Prevalence and diagnostic performance of iron deficiency in polycythemia. Hematology 2023; 28:2204621. [PMID: 37115586 DOI: 10.1080/16078454.2023.2204621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Several observations have shown that patients with polycythemia have iron deficiency. Our objectives were to report the prevalence of iron deficiency and to evaluate the diagnostic performance of serum ferritin in polycythemia vera. PATIENTS AND METHOD This is a retrospective descriptive and analytical study carried out in the internal medicine department of the Henri Mondor Hospital, Aurillac, France. The study involved 114 patients with polycythemia, followed in the department from January 1, 2010 to December 31, 2021. To evaluate the diagnostic performance, the JAK2 mutation was considered as the gold standard of diagnosis. RESULTS Thirty-three patients had polycythemia vera and 76 patients had secondary polycythemia. The mean age of the patients was 61.79 years (±15.44) with a sex ratio of 4.43. The overall prevalence of iron deficiency was 21.05%. The prevalence was 53% in polycythemia vera group and 1.32% in secondary polycythemia group. The risk of iron deficiency was high in polycythemia vera (OR = 115; 95% CI [14.4-918.2], p < 0.0001) and the sensitivity and specificity of serum ferritin were 52.63% and 100% respectively. CONCLUSION Assessment of iron deficiency should be part of the initial evaluation of polycythemia. Iron deficiency had a high specificity during polycythemia vera.
Collapse
Affiliation(s)
| | - Herveat Ramanandafy
- Department of Internal Medicine, Joseph Raseta Befelatanana Hospital, Antananarivo, Madagascar
| | - Alexandre Mania
- Department of Internal Medicine, Henri Mondor Hospital, Aurillac, France
| | - Hélène Monjanel
- Department of Internal Medicine, Henri Mondor Hospital, Aurillac, France
| | | |
Collapse
|
8
|
Chen D, Weinberg OK. Genomic alterations in blast phase of BCR::ABL1-negative myeloproliferative neoplasms. Int J Lab Hematol 2023; 45:839-844. [PMID: 37867386 DOI: 10.1111/ijlh.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023]
Abstract
The blast phase of BCR::ABL1-negative myeloproliferative neoplasm (MPN-BP) represents the final stage of the disease, which is complicated by complex genomic alterations. These alterations result from sequence changes in genetic material (DNA, RNA) and can lead to either a gain or loss of function of encoded proteins, such as adaptor proteins, enzymes, components of spliceosomes, cell cycle checkpoints regulators, transcription factors, or proteins in cell signaling pathways. Interference at various levels, including transcription, translation, and post-translational modification (such as methylation, dephosphorylation, or acetylation), can contribute to these alterations. Mutated genes such as ASXL1, EZH2, IDH1, IDH2, TET2, SRSF2, U2AF1, TP53, NRAS, KRAS, PTPN11, SH2B3/LNK, and RUNX1 play active roles at different stages of genetic material expression, modification, and protein function manipulation in MPNs. These mutations are also correlated with, and can contribute to, the progression of MPN-BP. In this review, we summarize their common mutational profiles, functions, and associations with progression of MPN-BP.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, UConn Health, Farmington, Connecticut, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Miller EW, Lamberson CM, Akabari RR, Nasr MR, Sperber SM. Expanded molecular detection of MPL codon p.W515 and p.S505N mutations in myeloproliferative neoplasms. J Clin Lab Anal 2023; 37:e24992. [PMID: 38058281 PMCID: PMC10756946 DOI: 10.1002/jcla.24992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Patients negative for the JAK2 p.V617F somatic variant are frequently reflexed to testing for MPL exon 10 variants. Detection of these variants via multiplexed allele-specific PCR followed by fragment analysis has been previously published. The present study builds on this concept by improving the detection of the p.W515A variant, adding a second allele-specific primer to detect the p.W515R variant, and incorporating an improved primer for p.S505N detection. METHODS The W515 amplification employs 5'-labeled allele-specific forward primers to detect p.W515K, p.W515L, p.W515R, and p.W515A. The p.S505N amplification includes an allele-specific reverse primer with a tail extension. Fragments were subject to capillary electrophoresis on an ABI 3500 Genetic Analyzer and analyzed using GeneMapper 6.0 (Thermo Fisher Scientific). RESULTS Thirty MPL-negative and 13 MPL-positive samples previously tested by a reference laboratory were tested with the MPL LDT. Results were 100% concordant. The MPL LDT has a limit of detection of at least 5% VAF for the p.W515 variants and 10% VAF for the p.S505N variant. CONCLUSION Current MPL assays are predominantly focused on p.W515L/K and p.S505N mutations. We have engineered an MPL test for detecting p.W515A/L/K/R and p.S505N variants, thereby increasing the diagnostic yield with little additional expense or technician time.
Collapse
Affiliation(s)
- Eric W. Miller
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | | | - Ratilal R. Akabari
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Michel R. Nasr
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Steven M. Sperber
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| |
Collapse
|
10
|
Tatarian J, Tupper N, Li P, Feusier J, Abdo M, Hyter S, Gonzales PR, Zhang D, Woodroof J, Kelting S, Godwin AK, Cui W. Morphologic, immunophenotypic, molecular genetic, and clinical characterization in patients with SRSF2-mutated acute myeloid leukemia. Am J Clin Pathol 2023; 160:490-499. [PMID: 37458189 PMCID: PMC10629464 DOI: 10.1093/ajcp/aqad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/01/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES SRSF2 mutations are known to be associated with poor outcomes in myelodysplastic neoplasm, but studies on their prognostic impact on acute myeloid leukemia (AML) remain limited. In this retrospective study, we analyzed clinical and pathologic characteristics of patients with AML and correlated the outcomes with SRSF2 mutations. METHODS We characterized the morphologic, immunophenotypic, molecular, and clinical findings in AML with mutated SRSF2 and compared them with SRSF2 wild-type (WT) myeloid neoplasms (MNs). RESULTS Using next-generation sequencing, we identified 134 patients with MNs and SRSF2 mutations (85 with AML and 49 with MNs) in addition to 342 SRSF2-WT AMLs. Fifty-two (62%) patients with altered SRSF2 demonstrated a variable degree of morphologic dysplasia. The most frequent immunophenotypic aberrancies in SRSF2-mutant AML included diminished CD33 expression and overexpression of CD7, CD56, or CD123, similar to WT AML. More IDH1/2 (P = .015) and NPM1 (P = .002) mutations were seen in SRSF2-mutant AML than in SRSF2-mutant non-AML. Further, more IDH1/2, ASXL1, RUNX1, and STAG2 mutations were observed in SRSF2-mutant AML than in SRSF2-WT AML (P < .0001 to P = .001). Finally, patients with SRSF2-mutant AML showed a significantly worse overall survival (OS) than patients with SRSF2-WT AML (P < .0001), but this worse OS appeared to be rescued by allogeneic stem cell transplant (allo-SCT). CONCLUSIONS Acute myeloid leukemia with altered SRSF2 shows a variable degree of morphologic dysplasia without uniform immunophenotypic aberrancies. SRSF2 mutations appear to be independent poor prognostic factors, but allo-SCT has improved the clinical outcomes in patients with SRSF2-mutant AML.
Collapse
Affiliation(s)
- Joshua Tatarian
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Natalie Tupper
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah, Salt Lake City, UT, US
| | - Julie Feusier
- Division of Hematopathology, Department of Pathology, University of Utah, Salt Lake City, UT, US
| | - Maryam Abdo
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Stephen Hyter
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Patrick R Gonzales
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Da Zhang
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Janet Woodroof
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Sarah Kelting
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Andrew K Godwin
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, US
| | - Wei Cui
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
11
|
Gao J, Gao J, Min F. Chronic neutrophilic leukemia with JAK2 mutation: is it true chronic neutrophilic leukemia? Ann Hematol 2023; 102:3275-3276. [PMID: 37522967 PMCID: PMC10567908 DOI: 10.1007/s00277-023-05376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Jiapei Gao
- Department of Hematology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Junyin Gao
- Pulmonary and Critical Care Medicine, Yancheng No. 1 People's Hospital, Yancheng, Jiangsu Province, China
| | - Fengling Min
- Department of Hematology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
12
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
13
|
Huang H, Liu J, Yang L, Yan Y, Chen M, Li B, Xu Z, Qin T, Qu S, Wang L, Huang G, Chen Y, Xiao Z. Micheliolide exerts effects in myeloproliferative neoplasms through inhibiting STAT3/5 phosphorylation via covalent binding to STAT3/5 proteins. BLOOD SCIENCE 2023; 5:258-268. [PMID: 37941916 PMCID: PMC10629731 DOI: 10.1097/bs9.0000000000000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 11/10/2023] Open
Abstract
Ruxolitinib is a cornerstone of management for some subsets of myeloproliferative neoplasms (MPNs); however, a considerable number of patients respond suboptimally. Here, we evaluated the efficacy of micheliolide (MCL), a natural guaianolide sesquiterpene lactone, alone or in combination with ruxolitinib in samples from patients with MPNs, JAK2V617F-mutated MPN cell lines, and a Jak2V617F knock-in mouse model. MCL effectively suppressed colony formation of hematopoietic progenitors in samples from patients with MPNs and inhibited cell growth and survival of MPN cell lines in vitro. Co-treatment with MCL and ruxolitinib resulted in greater inhibitory effects compared with treatment with ruxolitinib alone. Moreover, dimethylaminomicheliolide (DMAMCL), an orally available derivative of MCL, significantly increased the efficacy of ruxolitinib in reducing splenomegaly and cytokine production in Jak2V617F knock-in mice without evident effects on normal hematopoiesis. Importantly, MCL could target the Jak2V617F clone and reduce mutant allele burden in vivo. Mechanistically, MCL can form a stable covalent bond with cysteine residues of STAT3/5 to suppress their phosphorylation, thus inhibiting JAK/STAT signaling. Overall, these findings suggest that MCL is a promising drug in combination with ruxolitinib in the setting of suboptimal response to ruxolitinib.
Collapse
Affiliation(s)
- Huijun Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinqin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yiru Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Meng Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Bing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zefeng Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tiejun Qin
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiqiang Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
| | - Gang Huang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Hematologic Pathology Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
14
|
Seetharam SM, Liu Y, Wu J, Fechter L, Murugesan K, Maecker H, Gotlib J, Zehnder J, Paulmurugan R, Krishnan A. Enkurin: a novel marker for myeloproliferative neoplasms from platelet, megakaryocyte, and whole blood specimens. Blood Adv 2023; 7:5433-5445. [PMID: 37315179 PMCID: PMC10509670 DOI: 10.1182/bloodadvances.2022008939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Impaired protein homeostasis, though well established in age-related disorders, has been recently linked with the pathogenesis of myeloproliferative neoplasms (MPNs). However, little is known about MPN-specific modulators of proteostasis, thus impeding our ability for increased mechanistic understanding and discovery of additional therapeutic targets. Loss of proteostasis, in itself, is traced to dysregulated mechanisms in protein folding and intracellular calcium signaling at the endoplasmic reticulum (ER). Here, using ex vivo and in vitro systems (including CD34+ cultures from patient bone marrow and healthy cord/peripheral blood specimens), we extend our prior data from platelet RNA sequencing in patients with MPN and discover select proteostasis-associated markers at RNA and/or protein levels in each of platelet, parent megakaryocyte, and whole blood specimens. Importantly, we identify a novel role in MPNs for enkurin (ENKUR), a calcium mediator protein originally implicated only in spermatogenesis. Our data reveal consistent ENKUR downregulation at both RNA and protein levels across specimens from patients with MPN and experimental models (including upon treatment with thapsigargin, an agent that causes protein misfolding in the ER by selective loss of calcium), with a concomitant upregulation of a cell cycle marker, CDC20. Silencing of ENKUR using short hairpin RNA in CD34+-derived megakaryocytes further confirms this association with CDC20 at both RNA and protein levels and indicates a likely role for the PI3K/Akt pathway. Together, our work sheds light on enkurin as a novel marker of MPN pathogenesis and indicates further mechanistic investigation into a role for dysregulated calcium homeostasis and ER and protein folding stress in MPN transformation.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Radiology, Stanford University, Stanford, CA
| | - Jason Wu
- High-Throughput Bioscience Center and Stanford Genomics, Stanford University School of Medicine, Stanford, CA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Holden Maecker
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Anandi Krishnan
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
16
|
Li Y, Zhang H, Hu B, Wang P, Wang W, Liu J. Post-transcriptional regulation of erythropoiesis. BLOOD SCIENCE 2023; 5:150-159. [PMID: 37546708 PMCID: PMC10400058 DOI: 10.1097/bs9.0000000000000159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 08/08/2023] Open
Abstract
Erythropoiesis is a complex, precise, and lifelong process that is essential for maintaining normal body functions. Its strict regulation is necessary to prevent a variety of blood diseases. Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels, signal transduction, and various epigenetic modifications. In recent years, research on post-transcriptional levels in erythropoiesis has expanded significantly. The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis. RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell, yielding mRNA with dynamic translation efficiency. Noncoding RNAs, such as microRNAs and lncRNAs, are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis. N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination. This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases, and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis. These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases.
Collapse
Affiliation(s)
- Yanan Li
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haihang Zhang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Bin Hu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Pan Wang
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Wang
- Department of Imaging and Interventional Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center, Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
17
|
Faria C, Tzankov A. Progression in Myeloid Neoplasms: Beyond the Myeloblast. Pathobiology 2023; 91:55-75. [PMID: 37232015 PMCID: PMC10857805 DOI: 10.1159/000530940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Disease progression in myelodysplastic syndromes (MDS), myelodysplastic-myeloproliferative neoplasms (MDS/MPN), and myeloproliferative neoplasms (MPN), altogether referred to as myeloid neoplasms (MN), is a major source of mortality. Apart from transformation to acute myeloid leukemia, the clinical progression of MN is mostly due to the overgrowth of pre-existing hematopoiesis by the MN without an additional transforming event. Still, MN may evolve along other recurrent yet less well-known scenarios: (1) acquisition of MPN features in MDS or (2) MDS features in MPN, (3) progressive myelofibrosis (MF), (4) acquisition of chronic myelomonocytic leukemia (CMML)-like characteristics in MPN or MDS, (5) development of myeloid sarcoma (MS), (6) lymphoblastic (LB) transformation, (7) histiocytic/dendritic outgrowths. These MN-transformation types exhibit a propensity for extramedullary sites (e.g., skin, lymph nodes, liver), highlighting the importance of lesional biopsies in diagnosis. Gain of distinct mutations/mutational patterns seems to be causative or at least accompanying several of the above-mentioned scenarios. MDS developing MPN features often acquire MPN driver mutations (usually JAK2), and MF. Conversely, MPN gaining MDS features develop, e.g., ASXL1, IDH1/2, SF3B1, and/or SRSF2 mutations. Mutations of RAS-genes are often detected in CMML-like MPN progression. MS ex MN is characterized by complex karyotypes, FLT3 and/or NPM1 mutations, and often monoblastic phenotype. MN with LB transformation is associated with secondary genetic events linked to lineage reprogramming leading to the deregulation of ETV6, IKZF1, PAX5, PU.1, and RUNX1. Finally, the acquisition of MAPK-pathway gene mutations may shape MN toward histiocytic differentiation. Awareness of all these less well-known MN-progression types is important to guide optimal individual patient management.
Collapse
Affiliation(s)
- Carlos Faria
- Department of Anatomical Pathology, Coimbra University Hospital, Coimbra, Portugal
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
PGD2 displays distinct effects in diffuse large B-cell lymphoma depending on different concentrations. Cell Death Dis 2023; 9:39. [PMID: 36725845 PMCID: PMC9892043 DOI: 10.1038/s41420-023-01311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Prostaglandin D2 (PGD2), an arachidonic acid metabolite, has been implicated in allergic responses, parasitic infection and tumor development. The biological functions and molecular mechanisms of PGD2 in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we firstly found the high concentration of serum PGD2 and low expression of PGD2 receptor CRTH2 in DLBCL, which were associated with clinical features and prognosis of DLBCL patients. Interestingly, different concentration of PGD2 displayed divergent effects on DLBCL progression. Low-concentration PGD2 promoted cell growth through binding to CRTH2 while high-concentration PGD2 inhibited it via regulating cell proliferation, apoptosis, cell cycle, and invasion. Besides, high-concentration PGD2 could induce ROS-mediated DNA damage and enhance the cytotoxicity of adriamycin, bendamustine and venetoclax. Furthermore, HDAC inhibitors, vorinostat (SAHA) and panobinostat (LBH589) regulated CRTH2 expression and PGD2 production, and CRTH2 inhibitor AZD1981 and high-concentration PGD2 enhanced their anti-tumor effects in DLBCL. Altogether, our findings demonstrated PGD2 and CRTH2 as novel prognostic biomarkers and therapeutic targets in DLBCL, and highlighted the potency of high-concentration PGD2 as a promising therapeutic strategy for DLBCL patients.
Collapse
|
19
|
Mosale Seetharam S, Liu Y, Wu J, Fechter L, Murugesan K, Maecker H, Gotlib J, Zehnder J, Paulmurugan R, Krishnan A. Enkurin: A novel marker for myeloproliferative neoplasms from platelet, megakaryocyte, and whole blood specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523111. [PMID: 36712071 PMCID: PMC9881897 DOI: 10.1101/2023.01.07.523111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Impaired protein homeostasis, though well established in age-related disorders, has been linked in recent research with the pathogenesis of myeloproliferative neoplasms (MPNs). As yet, however, little is known about MPN-specific modulators of proteostasis, thus impeding our ability for increased mechanistic understanding and discovery of additional therapeutic targets. Loss of proteostasis, in itself, is traced to dysregulated mechanisms in protein folding and intracellular calcium signaling at the endoplasmic reticulum (ER). Here, using ex vivo and in vitro systems (including CD34 + cultures from patient bone marrow, and healthy cord/peripheral blood specimens), we extend our prior data from MPN patient platelet RNA sequencing, and discover select proteostasis-associated markers at RNA and/or protein levels in each of platelets, parent megakaryocytes, and whole blood specimens. Importantly, we identify a novel role in MPNs for enkurin ( ENKUR ), a calcium mediator protein, implicated originally only in spermatogenesis. Our data reveal consistent ENKUR downregulation at both RNA and protein levels across MPN patient specimens and experimental models, with a concomitant upregulation of a cell cycle marker, CDC20 . Silencing of ENKUR by shRNA in CD34 + derived megakaryocytes further confirm this association with CDC20 at both RNA and protein levels; and indicate a likely role for the PI3K/Akt pathway. The inverse association of ENKUR and CDC20 expression was further confirmed upon treatment with thapsigargin (an agent that causes protein misfolding in the ER by selective loss of calcium) in both megakaryocyte and platelet fractions at RNA and protein levels. Together, our work sheds light on enkurin as a novel marker of MPN pathogenesis beyond the genetic alterations; and indicates further mechanistic investigation into a role for dysregulated calcium homeostasis, and ER and protein folding stress in MPN transformation. VISUAL ABSTRACT Key Points Enkurin, a calcium adaptor protein, is identified as a novel marker of pathogenesis in MPNs.MPN megakaryocyte and platelet expression of enkurin at RNA and protein levels is inversely associated with a cell differentiation cycle gene, CDC20.Likely role for dysregulated calcium homeostasis, and ER and protein folding stress in MPN transformation.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Radiology, Stanford University, Stanford, CA
| | - Jason Wu
- High-Throughput Bioscience Center (HTBC), Stanford University School of Medicine, Stanford, CA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Holden Maecker
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Anandi Krishnan
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
20
|
Novel Molecular Insights into Leukemic Evolution of Myeloproliferative Neoplasms: A Single Cell Perspective. Int J Mol Sci 2022; 23:ijms232315256. [PMID: 36499582 PMCID: PMC9740017 DOI: 10.3390/ijms232315256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders originated by the serial acquisition of somatic mutations in hematopoietic stem/progenitor cells. The major clinical entities are represented by polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), that are caused by driver mutations affecting JAK2, MPL or CALR. Disease progression is related to molecular and clonal evolution. PV and ET can progress to secondary myelofibrosis (sMF) but can also evolve to secondary acute myeloid leukemia (sAML). PMF is associated with the highest frequency of leukemic transformation, which represents the main cause of death. sAML is associated with a dismal prognosis and clinical features that differ from those of de novo AML. The molecular landscape distinguishes sAML from de novo AML, since the most frequent hits involve TP53, epigenetic regulators, spliceosome modulators or signal transduction genes. Single cell genomic studies provide novel and accurate information about clonal architecture and mutation acquisition order, allowing the reconstruction of clonal dynamics and molecular events that accompany leukemic transformation. In this review, we examine our current understanding of the genomic heterogeneity in MPNs and how it affects disease progression and leukemic transformation. We focus on molecular events elicited by somatic mutations acquisition and discuss the emerging findings coming from single cell studies.
Collapse
|
21
|
Jiang YZ, Wei ZL, Wang NN, Huang C, Huang J, Yan JW, Wang R, Yu ZZ, Huang DP. Clinical characteristics of a patient with de novo acute promyelocytic leukemia with JAK2 v617f mutation. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1290-1293. [PMID: 36476114 DOI: 10.1080/16078454.2022.2153200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The V617F mutation of Janus-associated kinase 2 (JAK2) is common in myeloproliferative neoplasms (MPN). JAK2 V617F mutation can be detected in patients with de novo acute myeloid leukemia (AML), but de novo acute promyelocytic leukemia (APL) with JAK2 V617F mutation is rare. CASE PRESENTATION We report a case of APL with both the t(15;17) translocation as well as the JAK2 V617F mutation that transformed into MPN (PV/ET). CONCLUSIONS A de novo APL patient presented initially with JAK2 V617F. After ATRA and ATO dual induction and chemotherapy consolidation, the patient achieved complete remission (CR) with undetectable PML/RARα. However, the JAK2 V617F remained positive, and the patient developed MPN (PV/ET) 22 months later, which responded well to interferon therapy.AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; ATRA, all-trans retinoic acid; ATO, arsenic trioxide; BM, bone marrow; CR, complete remission; ET, essential thrombocythemia; Hb, hemoglobin; JAK2, Janus-associated kinase 2; MPN, myeloproliferative neoplasms; PLT, platelets; PMF, primary myelofibrosis; PML/RARα; PV, polycythemia vera; WBC, white blood cells.
Collapse
Affiliation(s)
- Yi-Zhi Jiang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Zhong-Ling Wei
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Na-Na Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Chen Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Jun Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Jia-Wei Yan
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Ran Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Zheng-Zhi Yu
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| | - Dong-Ping Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, People's Republic of China
| |
Collapse
|
22
|
Rolles B, Mullally A. Molecular Pathogenesis of Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2022; 17:319-329. [PMID: 36336766 DOI: 10.1007/s11899-022-00685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Myeloproliferative neoplasms (MPNs) are chronic hematological malignancies characterized by increased proliferation of MPN stem and myeloid progenitor cells with or without bone marrow fibrosis that typically lead to increased peripheral blood cell counts. The genetic and cytogenetic alterations that initiate and drive the development of MPNs have largely been defined, and we summarize these here. RECENT FINDINGS In recent years, advances in understanding the pathogenesis of MPNs have defined a long-preclinical phase in JAK2-mutant MPN, identified genetic loci associated with MPN predisposition and uncovered mechanistic insights in CALR-mutant MPN. The integration of molecular genetics into prognostic risk models is well-established in myelofibrosis and ongoing studies are interrogating the prognostic implications of concomitant mutations in ET and PV. Despite all these advances, the field is deficient in clonally selective therapies to effectively target the MPN clone at any stage of disease, from pre-clinical to advanced. Although the biological understanding of the pathogenesis of MPNs has progressed quickly, substantial knowledge gaps remain, including in the molecular mechanisms underlying MPN progression and myelofibrotic transformation. An ongoing goal for the MPN field is to translate advances in biological understanding to improved treatments for patients.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Building, Room 738, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Building, Room 738, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
23
|
Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23094573. [PMID: 35562964 PMCID: PMC9100530 DOI: 10.3390/ijms23094573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well-known driver mutations, JAK2, MPL and CALR, determining constitutive activation of JAK-STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co-occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in disease-modifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.
Collapse
|
24
|
Ma J, Chen S, Huang Y, Zi J, Ma J, Ge Z. Philadelphia-positive acute lymphoblastic leukemia in a case of MPL p.(W515L) variant essential thrombocythemia: case report and literature review. Platelets 2021; 33:945-950. [PMID: 34895021 DOI: 10.1080/09537104.2021.2007871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL) arising in preexisting myeloproliferative neoplasms (MPN) is rare with historical cases unable to differentiate between concomitant malignancies or leukemic transformation. Here, we report a case of patient with Philadelphia positive B lymphoblastic leukemia (Ph+ALL) who developed from MPL-mutated essential thrombocythemia (ET) 13 years after initial presentation. Molecular studies showed the discrepancy between the high percentage of lymphocyte blasts (91%) and the low MPL p.(W515L) variant allele frequency (2.59%) at diagnosis in the bone marrow, indicating that the Ph+ALL clone did not originate from the ET clone carrying the MPL p.(W515L) variant. After the treatment of a new tyrosine kinase inhibitor flumatinib and prednisolone, cytogenetic and molecular remission had been achieved rapidly and followed by the recovery of original ET manifestation. Although relapsed eventually, this is still a very rare case of simultaneous presence of two cytogenetics abnormalities and evolution of MPL p.(W515L) variant ET to Ph+ALL and may provide evidence to illustrate the clonal relationship of MPN and post-MPN ALL.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China.,Department of Hematology, Xuzhou Central Hospital, Xuzhou, China
| | - Shan Chen
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Yanqing Huang
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jie Zi
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Jinlong Ma
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, Medical School of Southeast University, Institute of Hematology Southeast University, Nanjing, China
| |
Collapse
|
25
|
Thomas S, Krishnan A. Platelet Heterogeneity in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2021; 41:2661-2670. [PMID: 34615371 PMCID: PMC8551046 DOI: 10.1161/atvbaha.121.316373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of malignant disorders of the bone marrow where a dysregulated balance between proliferation and differentiation gives rise to abnormal numbers of mature blood cells. MPNs encompass a spectrum of disease entities with progressively more severe clinical features, including complications with thrombosis and hemostasis and an increased propensity for transformation to acute myeloid leukemia. There is an unmet clinical need for markers of disease progression. Our understanding of the precise mechanisms that influence pathogenesis and disease progression has been limited by access to disease-specific cells as biosources. Here, we review the landscape of MPN pathology and present blood platelets as potential candidates for disease-specific understanding. We conclude with our recent work discovering progressive platelet heterogeneity by subtype in a large clinical cohort of patients with MPN.
Collapse
Affiliation(s)
- Sally Thomas
- Department of Oncology and Metabolism, University of Sheffield and Department of Haematology, Royal Hallamshire Hospital, United Kingdom (S.T.)
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, CA (A.K.)
| |
Collapse
|
26
|
Management of Myelofibrosis-Associated Anemia: Focus on Standard Agents and Novel Therapeutics in Phase 3 Clinical Trials. Curr Hematol Malig Rep 2021; 16:483-489. [PMID: 34499329 DOI: 10.1007/s11899-021-00651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW The management of myelofibrosis is risk-adapted when considering transplant eligibility and symptom-directed, prioritizing the most burdensome symptoms for the patient. Unfortunately, myelofibrosis-anemia is common, multifactorial in its origin, and impactful regarding prognosis. While clinical trials are advised, not all patients have convenient access, and therefore, hematologists should be aware of the data supporting the use of conventional agents such as erythropoietin-stimulating agents, steroid treatments (danazol and prednisone), and immunomodulatory drugs (thalidomide and lenalidomide). This review summarizes the conventional approach to treating myelofibrosis-anemia and highlights recent data from 3 novel agents that are under phase 3 evaluation. RECENT FINDINGS Momelotonib is a JAK1/2 and ACVR1 inhibitor that has demonstrated not only improvements in splenomegaly and symptoms, but also amelioration of anemia on the SIMPLIFY 1 and 2 clinical trial program. This may occur through suppression of hepcidin production. Luspatercept promotes late-stage hematopoiesis, and the phase 2 study has shown promise in ameliorating anemia as a monotherapy, and especially in combination with ruxolitinib. Finally, CP-0160, a BET inhibitor, has shown efficacy as an anemia-directed agent, when used as monotherapy and in combination. This agent reduces cytokine production and promotes erythroid differentiation. Results have been presented for patients previously treated with JAK inhibitors, as well as those who were naïve to JAK inhibitor therapy. Safety and effectiveness are reviewed for both conventional and selected novel agents used in the treatment of MF-anemia. A practical approach to treatment is presented, and data from ASH 2020 are presented.
Collapse
|
27
|
Genomic Profiling of a Randomized Trial of Interferon-α versus Hydroxyurea in MPN Reveals Mutation-Specific Responses. Blood Adv 2021; 6:2107-2119. [PMID: 34507355 PMCID: PMC9006286 DOI: 10.1182/bloodadvances.2021004856] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Treatment with IFNα was associated with distinct molecular responses in patients with JAK2-mutated MPN compared with CALR-mutated MPN. Among patients treated with IFNα who did not achieve CHR, DNMT3A mutations emerged more frequently than non-DNMT3A mutations.
Although somatic mutations influence the pathogenesis, phenotype, and outcome of myeloproliferative neoplasms (MPNs), little is known about their impact on molecular response to cytoreductive treatment. We performed targeted next-generation sequencing (NGS) on 202 pretreatment samples obtained from patients with MPN enrolled in the DALIAH trial (A Study of Low Dose Interferon Alpha Versus Hydroxyurea in Treatment of Chronic Myeloid Neoplasms; #NCT01387763), a randomized controlled phase 3 clinical trial, and 135 samples obtained after 24 months of therapy with recombinant interferon-alpha (IFNα) or hydroxyurea. The primary aim was to evaluate the association between complete clinicohematologic response (CHR) at 24 months and molecular response through sequential assessment of 120 genes using NGS. Among JAK2-mutated patients treated with IFNα, those with CHR had a greater reduction in the JAK2 variant allele frequency (median, 0.29 to 0.07; P < .0001) compared with those not achieving CHR (median, 0.27 to 0.14; P < .0001). In contrast, the CALR variant allele frequency did not significantly decline in those achieving CHR or in those not achieving CHR. Treatment-emergent mutations in DNMT3A were observed more commonly in patients treated with IFNα compared with hydroxyurea (P = .04). Furthermore, treatment-emergent DNMT3A mutations were significantly enriched in IFNα–treated patients not attaining CHR (P = .02). A mutation in TET2, DNMT3A, or ASXL1 was significantly associated with prior stroke (age-adjusted odds ratio, 5.29; 95% confidence interval, 1.59-17.54; P = .007), as was a mutation in TET2 alone (age-adjusted odds ratio, 3.03; 95% confidence interval, 1.03-9.01; P = .044). At 24 months, we found mutation-specific response patterns to IFNα: (1) JAK2- and CALR-mutated MPN exhibited distinct molecular responses; and (2) DNMT3A-mutated clones/subclones emerged on treatment.
Collapse
|
28
|
Myeloproliferative Disorders and its Effect on Bone Homeostasis: The Role of Megakaryocytes. Blood 2021; 139:3127-3137. [PMID: 34428274 DOI: 10.1182/blood.2021011480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloproliferative Neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF) have been extensively reviewed in context of clonal expansion, fibrosis and other phenotypes. Here, we review current knowledge on the influence of different forms of MPN on bone health. Studies implicated various degrees of effect of different forms of MPN on bone density, and on osteoblast proliferation and differentiation, using murine models and human data. The majority of studies show that bone volume is generally increased in PMF patients, whereas it is slightly decreased or not altered in ET and PV patients, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis seen in PMF patients is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some ET and PV patients can lead to osteoporotic fractures. Some MPN forms are associated with increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. Here, we review known mechanisms involved in these processes, with focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.
Collapse
|
29
|
Pich A, Beggiato E, Godio L, Riera L, Francia di Celle P, Lanzarone G, Benevolo G. Bone marrow morphological features and therapy in patients with Philadelphia-negative neoplasms. Expert Rev Hematol 2021; 14:841-850. [PMID: 34384330 DOI: 10.1080/17474086.2021.1967138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction Chronic myeloproliferative neoplasm (MPNs) are clonal malignant bone marrow (BM) diseases, arising from a hematopoietic stem cell. All therapies for these neoplasms have peculiar effects on the bone marrow, but little evidence has been described in the literature.Areas covered This review examines BM morphological changes following the main treatments in Philadelphia-negative MPNs. Hydroxyurea can reduce the cellularity of the erythroid and megakaryocyte lineages but has minimal impact on fibrotic evolution. There is general agreement on its dysplastic effects, with a high incidence of acute myeloid leukemia and myelodysplastic syndrome. Interferon treatment can reduce or normalize BM cellularity, improve erythropoiesis, and reduce the number and atypicality of megakaryocytes. Most data describe reduction or complete resolution of marrow fibrosis; dysplastic effects are not reported. Anagrelide may induce an increase in the number of BM megakaryocytes, especially immature megakaryocytes or precursors, and a worsening of marrow fibrosis or increased transformation of essential thrombocythemia into myelofibrosis. Ruxolitinib can improve or stabilize BM fibrosis and reduces the frequency and dense clustering of megakaryocytes.Expert opinion Since previous therapy can modify BM features, it is essential to obtain information on previous or current therapies and to collect complete clinical information.
Collapse
Affiliation(s)
- Achille Pich
- Section of Pathology, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Eloise Beggiato
- Hematology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| | - Laura Godio
- Pathology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| | - Ludovica Riera
- Pathology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| | - Paola Francia di Celle
- Pathology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| | - Giuseppe Lanzarone
- Hematology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| | - Giulia Benevolo
- Hematology, AOU Città della Salute e della Scienza di Torino-Presidio Ospedaliero Molinette, Turin, Italy
| |
Collapse
|
30
|
Baldini C, Moriconi FR, Galimberti S, Libby P, De Caterina R. The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms. Eur Heart J 2021; 42:4389-4400. [PMID: 34343257 DOI: 10.1093/eurheartj/ehab447] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 07/31/2021] [Indexed: 01/07/2023] Open
Abstract
Inflammation contributes centrally to cardiovascular diseases, and anti-inflammatory treatments can reduce cardiovascular events. The JAK-STAT pathway is an emerging target in inflammation, mainly in rheumatoid arthritis (RA) and chronic myeloproliferative neoplasms (MPNs), disorders that heighten cardiovascular risk. The aim of this study was to review the international literature on the relationship between dysregulation of the JAK-STAT pathway in RA/MPNs and cardiovascular risk and on the potential cardiovascular effects of JAK-STAT inhibitors. The JAK-STAT pathway sustains inflammatory and thrombotic events in autoimmune disorders such as RA and MPNs. Here, an imbalance exists between pro- and anti-inflammatory cytokines [increased levels of interleukin (IL)-6, IL-1-β, tumour necrosis factor-α, decreased levels of IL-10] and the over-expression of some prothrombotic proteins, such as protein kinase Cε, on the surface of activated platelets. This pathway also operates in atherosclerotic cardiovascular disease. JAK-STAT inhibitors may reduce cardiovascular events and related deaths in such conditions, but the potential of these agents requires more studies, especially with regard to cardiovascular safety, and particularly for potential prothrombotic effects. JAK-STAT inhibitors merit consideration to curb heightened cardiovascular risk in patients with RA and MPNs, with rigorous assessment of the potential benefits and risks.
Collapse
Affiliation(s)
- Chiara Baldini
- Division of Rheumatology, University of Pisa and Pisa University Hospital, Via Paradisa, 2, Pisa 56124, Italy
| | - Francesca Romana Moriconi
- Division of Rheumatology, University of Pisa and Pisa University Hospital, Via Paradisa, 2, Pisa 56124, Italy.,Division of Cardiology, University of Pisa and Pisa University Hospital, Via Paradisa, 2, Pisa 56124, Italy
| | - Sara Galimberti
- Division of Hematology, University of Pisa and Pisa University Hospital, Via Paradisa, 2, Pisa 56124, Italy
| | - Peter Libby
- Cardiovascular Division, Brigham and Women's Hospital-Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Raffaele De Caterina
- Division of Cardiology, University of Pisa and Pisa University Hospital, Via Paradisa, 2, Pisa 56124, Italy
| |
Collapse
|
31
|
Woll PS, Jacobsen SEW. Stem cell concepts in myelodysplastic syndromes: lessons and challenges. J Intern Med 2021; 289:650-661. [PMID: 33843081 DOI: 10.1111/joim.13283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
According to the cancer stem cell (CSC) hypothesis, CSCs are the only cancer cells that can give rise to and sustain all cells that constitute a cancer as they possess inherent or acquired self-renewal potential, and their elimination is required and potentially sufficient to achieve a cure. Whilst establishing CSC identity remains challenging in most cancers, studies of low-intermediate risk myelodysplastic syndromes (MDS), other chronic myeloid malignancies and clonal haematopoiesis of indeterminant potential (CHIP) strongly support that the primary target cell usually resides in the rare haematopoietic stem cell (HSC) compartment. This probably reflects the unique self-renewal potential of HSCs in normal human haematopoiesis, combined with the somatic initiating genomic driver lesion not conferring extensive self-renewal potential to downstream progenitor cells. Mutational 'fate mapping' further supports that HSCs are the only disease-propagating cells in low-intermediate risk MDS, but that MDS-propagating potential might be extended to progenitors upon disease progression. The clinical importance of MDS stem cells has been highlighted through the demonstration of selective persistence of MDS stem cells in patients at complete remission in response to therapy. This implies that MDS stem cells might possess unique resistance mechanisms responsible for relapses following otherwise efficient treatments. Specific surveillance of MDS stem cells should be considered to assess the efficiency of therapies and as an early indicator of emerging relapses in patients in clinical remission. Moreover, further molecular characterization of purified MDS stem cells should facilitate identification and validation of improved and more stem cell-specific therapies for MDS.
Collapse
Affiliation(s)
- P S Woll
- From the, Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S E W Jacobsen
- From the, Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Marneth AE, Mullally A. Busy signal: platelet-derived growth factor activation in myelofibrosis. Haematologica 2021; 105:1988-1990. [PMID: 32739885 DOI: 10.3324/haematol.2020.253708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston.,Dana-Farber Cancer Institute, Harvard Medical School, Boston.,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
33
|
Rontauroli S, Castellano S, Guglielmelli P, Zini R, Bianchi E, Genovese E, Carretta C, Parenti S, Fantini S, Mallia S, Tavernari L, Sartini S, Mirabile M, Mannarelli C, Gesullo F, Pacilli A, Pietra D, Rumi E, Salmoiraghi S, Mora B, Villani L, Grilli A, Rosti V, Barosi G, Passamonti F, Rambaldi A, Malcovati L, Cazzola M, Bicciato S, Tagliafico E, Vannucchi AM, Manfredini R. Gene expression profile correlates with molecular and clinical features in patients with myelofibrosis. Blood Adv 2021; 5:1452-1462. [PMID: 33666652 PMCID: PMC7948267 DOI: 10.1182/bloodadvances.2020003614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Myelofibrosis (MF) belongs to the family of classic Philadelphia-negative myeloproliferative neoplasms (MPNs). It can be primary myelofibrosis (PMF) or secondary myelofibrosis (SMF) evolving from polycythemia vera (PV) or essential thrombocythemia (ET). Despite the differences, PMF and SMF patients are currently managed in the same way, and prediction of survival is based on the same clinical and genetic features. In the last few years, interest has grown concerning the ability of gene expression profiles (GEPs) to provide valuable prognostic information. Here, we studied the GEPs of granulocytes from 114 patients with MF, using a microarray platform to identify correlations with patient characteristics and outcomes. Cox regression analysis led to the identification of 201 survival-related transcripts characterizing patients who are at high risk for death. High-risk patients identified by this gene signature displayed an inferior overall survival and leukemia-free survival, together with clinical and molecular detrimental features included in contemporary prognostic models, such as the presence of high molecular risk mutations. The high-risk group was enriched in post-PV and post-ET MF and JAK2V617F homozygous patients, whereas pre-PMF was more frequent in the low-risk group. These results demonstrate that GEPs in MF patients correlate with their molecular and clinical features, particularly their survival, and represent the proof of concept that GEPs might provide complementary prognostic information to be applied in clinical decision making.
Collapse
Affiliation(s)
| | - Sara Castellano
- Center for Genome Research
- Department of Medical and Surgical Sciences, and
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Guglielmelli
- Center for Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Excellence Center Denothe, Florence, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine, Life Sciences Department
| | - Elisa Bianchi
- Centre for Regenerative Medicine, Life Sciences Department
| | - Elena Genovese
- Centre for Regenerative Medicine, Life Sciences Department
| | | | - Sandra Parenti
- Centre for Regenerative Medicine, Life Sciences Department
| | | | - Selene Mallia
- Centre for Regenerative Medicine, Life Sciences Department
| | - Lara Tavernari
- Centre for Regenerative Medicine, Life Sciences Department
| | | | | | - Carmela Mannarelli
- Center for Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Excellence Center Denothe, Florence, Italy
| | - Francesca Gesullo
- Center for Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Excellence Center Denothe, Florence, Italy
| | - Annalisa Pacilli
- Center for Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Excellence Center Denothe, Florence, Italy
| | - Daniela Pietra
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elisa Rumi
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Barbara Mora
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, Varese, Italy
| | - Laura Villani
- Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; and
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; and
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Foundation IRCCS Policlinico San Matteo, Pavia, Italy; and
| | - Francesco Passamonti
- Division of Hematology, Ospedale ASST Sette Laghi, University of Insubria, Varese, Italy
| | | | - Luca Malcovati
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Hematology Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Tagliafico
- Center for Genome Research
- Department of Medical and Surgical Sciences, and
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro M Vannucchi
- Center for Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Excellence Center Denothe, Florence, Italy
| | | |
Collapse
|
34
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
35
|
Singh S, Kaur K, Paul D, Jain K, Singh J, Narang V, Garg B, Sood N, Dhillon B. Clinical and Molecular Attributes of Patients With BCR/ABL1-negative Myeloproliferative Neoplasms in India: Real-world Data and Challenges. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e569-e578. [PMID: 33757770 DOI: 10.1016/j.clml.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Classic BCR/ABL1-negative myeloproliferative neoplasms (MPNs) are characterized by clinical and genetic heterogeneity and include 4 distinct constituents. Very little data on clinical presentation and epidemiology of the same is available from the Indian setting. PATIENTS AND METHODS Patients referred to Hematology-Oncology from January 2018 to August 2020 with suspected MPNs were included in the analysis and prospectively followed-up. All patients were initially screened, and only those meeting the updated World Health Organization 2016 criteria were included in the analysis. Epidemiologic, clinical, and molecular characteristics were documented, and patients were followed-up prospectively. RESULTS A total of 233 patients were referred for evaluation of MPN, of which 63 were included in the analysis, including 39 males and 24 females. The median age at diagnosis was 57 years (range, 28-82 years), and 38% patients were younger than 50 years of age. The most common presentations were incidental detection in 35 (55.5%), abdominal symptoms in 13 (20%), fatiguability in 7 (11%), and recent vascular events in 6 (9.5%) patients. Final diagnosis was polycythemia vera in 27, essential thrombocytosis (ET) in 21, prefibrotic myelofibrosis in 9, and myelofibrosis in 6 patients. The frequency of driver mutations in polycythemia vera included JAK2 in 75%; in ET, JAK2 in 33%, CALR in 33%, and MPL in 4%; and in prefibrotic myelofibrosis, JAK2 in 66% and CALR in 33%. Aspirin was used for all patients along with risk-adapted cytoreduction with hydroxyurea. Ruxolitinib was reserved for symptoms refractory to hydroxyurea. After a median follow-up of 15 months (interquartile range, 10-28 months) from diagnosis, disease progression was noted in 4 patients. Two patients died at the end of the follow-up period, including 1 with secondary acute myeloid leukemia post myelofibrosis and one with ET and coexistent oral malignancy. The remaining 61 patients are alive and on regular treatment. RESULTS This is one of the first systematic descriptions and prospective follow-up of patients with BCR/ABL-negative MPNs from India. Our study indicates a younger median age of presentation and higher proportion of JAK2-unmutated disease across all subtypes. The primary role of bone marrow morphology and supportive role of somatic mutations in differentiating MPN subtypes is indicated. CONCLUSIONS This study sets the stage for a collaborative registry for defining epidemiologic data and long-term outcomes with MPN in India.
Collapse
Affiliation(s)
- Suvir Singh
- Department of Clinical Haematology and Stem Cell Transplantation, Dayanand Medical College and Hospital, Ludhiana, Punjab, India.
| | - Komalpreet Kaur
- Department of Clinical Haematology and Stem Cell Transplantation, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Davinder Paul
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Kunal Jain
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Jagdeep Singh
- Department of Medical Oncology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Vikram Narang
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bhavna Garg
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Neena Sood
- Department of Pathology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Barjinderjit Dhillon
- Molecular Genetics, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
36
|
Bartels S, Vogtmann J, Schipper E, Büsche G, Schlue J, Lehmann U, Kreipe H. Combination of myeloproliferative neoplasm driver gene activation with mutations of splice factor or epigenetic modifier genes increases risk of rapid blastic progression. Eur J Haematol 2021; 106:520-528. [PMID: 33460496 DOI: 10.1111/ejh.13579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/09/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Myeloproliferative neoplasms (MPN) comprising polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) follow a bi-phasic course of disease with fibrotic and/or blastic progression. At presentation in the chronic phase, currently there are only insufficient tools to predict the risk of progression in individual cases. METHODS In this study, chronic phase MPN (16 PMF, 11 PV, and 11 MPN unclassified) with blastic transformation during course of disease (n = 38, median follow-up 5.3 years) were analyzed by high-throughput sequencing. MPN cases with a comparable follow-up period and without evidence of blast increase served as control (n = 63, median follow-up 5.8 years). RESULTS Frequent ARCH/CHIP-associated mutations (TET2, ASXL1, DNMT3A) found at presentation were not significantly associated with blastic transformation. By contrast, mutations of SRSF2, U2AF1, and IDH1/2 at first presentation were frequently observed in the progression cohort (13/38, 34.2%) and were completely missing in the control group without blast transformation during follow-up (P = .0007 for SRSF2; P = .0063 for U2AF1 and IDH1/2). CONCLUSION Unlike frequent ARCH/CHIP alterations (TET2, ASXL1, DNMT3A), mutations in SRSF2, IDH1/2, and U2AF1 when manifest already at first presentation provide an independent risk factor for rapid blast transformation of MPN.
Collapse
Affiliation(s)
- Stephan Bartels
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Julia Vogtmann
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Schipper
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Guntram Büsche
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jerome Schlue
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ulrich Lehmann
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Hans Kreipe
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
37
|
Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:145-162. [PMID: 34050865 DOI: 10.1007/978-3-030-67696-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
Collapse
|
38
|
Palandri F, Mora B, Gangat N, Catani L. Is there a gender effect in polycythemia vera? Ann Hematol 2021; 100:11-25. [PMID: 33006021 PMCID: PMC7782364 DOI: 10.1007/s00277-020-04287-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
In recent times, there has been a growing interest in understanding the impact of gender on disease biology and clinical outcomes in Philadelphia-negative chronic myeloproliferative neoplasms. Among those, polycythemia vera (PV) is characterized by increased thrombotic risk, systemic symptoms, and overall reduced survival. Here, we aim to summarize data on whether and to what extent female sex can affect PV biology and outcome. To this end, we will discuss the latest acquisitions in terms of pathogenesis, diagnosis, epidemiology, clinical presentation and symptoms burden, thrombotic risk and related treatment strategies, and prognosis in female patients affected by PV.
Collapse
Affiliation(s)
- Francesca Palandri
- Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Barbara Mora
- Hematology, ASST Sette Laghi, Ospedale di Circolo, Varese, Italy
| | | | - Lucia Catani
- Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| |
Collapse
|
39
|
Jutzi JS, Mullally A. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN. Front Immunol 2020; 11:2093. [PMID: 32983162 PMCID: PMC7489333 DOI: 10.3389/fimmu.2020.02093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are malignant bone marrow (BM) disorders, typically arising from a single somatically mutated hematopoietic stem cell. The most commonly mutated genes, JAK2, CALR, and MPL lead to constitutively active JAK-STAT signaling. Common clinical features include myeloproliferation, splenomegaly and constitutional symptoms. This review covers the contributions of cellular components of MPN pathology (e.g., monocytes, megakaryocytes, and mesenchymal stromal cells) as well as cytokines and soluble mediators to the development of myelofibrosis (MF) and highlights recent therapeutic advances. These findings outline the importance of malignant and non-malignant BM constituents to the pathogenesis and treatment of MF.
Collapse
Affiliation(s)
- Jonas Samuel Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Cancer Program, Broad Institute, Cambridge, MA, United States
| |
Collapse
|
40
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
41
|
Kjær L. Clonal Hematopoiesis and Mutations of Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12082100. [PMID: 32731609 PMCID: PMC7464548 DOI: 10.3390/cancers12082100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are associated with the fewest number of mutations among known cancers. The mutations propelling these malignancies are phenotypic drivers providing an important implement for diagnosis, treatment response monitoring, and gaining insight into the disease biology. The phenotypic drivers of Philadelphia chromosome negative MPN include mutations in JAK2, CALR, and MPL. The most prevalent driver mutation JAK2V617F can cause disease entities such as essential thrombocythemia (ET) and polycythemia vera (PV). The divergent development is considered to be influenced by the acquisition order of the phenotypic driver mutation relative to other MPN-related mutations such as TET2 and DNMT3A. Advances in molecular biology revealed emergence of clonal hematopoiesis (CH) to be inevitable with aging and associated with risk factors beyond the development of blood cancers. In addition to its well-established role in thrombosis, the JAK2V617F mutation is particularly connected to the risk of developing cardiovascular disease (CVD), a pertinent issue, as deep molecular screening has revealed the prevalence of the mutation to be much higher in the background population than previously anticipated. Recent findings suggest a profound under-diagnosis of MPNs, and considering the impact of CVD on society, this calls for early detection of phenotypic driver mutations and clinical intervention.
Collapse
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, DK-4000 Roskilde, Denmark
| |
Collapse
|
42
|
Abstract
Patients with myeloproliferative neoplasms (MPNs), a group of rare haematological conditions including polycythaemia vera, essential thrombocythaemia, and myelofibrosis, often experience a range of symptoms which can significantly impact their quality of life (QoL). Although symptom burden is highest in myelofibrosis and high-risk patients, lower-risk patients also report symptoms impacting their daily life and ability to work. In addition to physical symptoms, MPNs affect emotional well-being, with anxiety and depression frequently reported by patients. Despite significant advances in treatment options, such as the introduction of JAK1/JAK2 inhibitors, therapy for MPNs is often palliative; therefore, reduction of symptoms and improvement of QoL should be considered as major treatment goals. One of the main issues impacting MPN treatment is the discord between patient and physician perceptions of symptom burden, treatment goals, and expectations. New technologies, such as app-based reporting, can aid this communication, but are still not widely implemented. Additionally, regional variation further affects the psychosocial burden of MPNs on patients and their associates, as treatments and access to clinical trials are options for patients living in some areas, but not others. Overcoming some of the challenges in patient-physician communication and treatment access are key to improving disease management and QoL, as well as giving the patient greater input in treatment decisions.
Collapse
Affiliation(s)
- Cheryl Petruk
- Canadian MPN Research Foundation, Edmonton, AB, Canada.
| | | |
Collapse
|