1
|
Zhang Z, Che X, Feng T, Zou J, Chen G, Guo W, Ma C, Yuan H, Chen J, Xu X. Jujuboside A improves insomnia by maintaining mitochondrial homeostasis in prefrontal neurons. Brain Res Bull 2025; 226:111372. [PMID: 40334994 DOI: 10.1016/j.brainresbull.2025.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/20/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Jujuboside A (JB-A) is the major component of Semen Ziziphi Spinosae (SZS), a traditional Chinese herbal medicine used to treat sleep with clinical efficacy. This is the first study to investigate the effects of JB-A on mitochondrial structure and function in the prefrontal cortex of the insomnia model mice. METHODS Young adult C57BL/6 mice were induced to develop insomnia by P-chlorophenylalanine. After 14 d of JB-A treatment via gavage, anxiety level was assessed using the open field and elevated plus maze tests. Next, the mitochondrial metabolic activity and morphological changes in the prefrontal cortex of each group of mice, as well as their effects on mitochondrial membrane potential, oxidative phosphorylation levels, and cytochrome c (Cyt c) content in neurons were measured. RESULTS In our mouse model, JB-A ameliorated anxiety-like behaviors; up-regulated the membrane potential (Δψm) and had a therapeutic effect on the metabolic activity and damaged microscopic structure of mitochondria in the prefrontal cortex; effectively improved mitochondrial function by increasing the expression of Cyt c oxidase I and IV proteins, ATPase activity, and ATP content; and reduced the accumulation of Cyt c in the neuronal cytoplasm while inhibiting mitochondrial permeability transition pore (mPTP) opening. CONCLUSIONS JB-A can improve insomnia by restoring mitochondrial intracellular oxidative phosphorylation, regulating mPTP to maintain mitochondrial homeostasis, and alleviating structural damage, providing a scientific basis for finding new targets for insomnia treatment.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xinyue Che
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Tingyu Feng
- New York College of Traditional Chinese Medicine, New York, USA.
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Guangpei Chen
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Wenping Guo
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chunmei Ma
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Haozhe Yuan
- College of Second Clinical Medical, Guangzhou University of Chinese Medicine. Guangzhou, China.
| | - Jingying Chen
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaowu Xu
- College of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, China.
| |
Collapse
|
2
|
Sekine H, Akaike T, Motohashi H. Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence. EMBO J 2025; 44:3307-3326. [PMID: 40394395 DOI: 10.1038/s44318-025-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Oxygen and sulfur, both members of the chalcogen group (group 16 elements), play fundamental roles in life. Ancient organisms primarily utilized sulfur for energy metabolism, while the rise in atmospheric oxygen facilitated the evolution of aerobic organisms, enabling highly efficient energy production. Nevertheless, all modern organisms, both aerobes and anaerobes, must protect themselves from oxygen toxicity. Interestingly, aerobes still rely on sulfur for survival. This dependence has been illuminated by the recent discovery of supersulfides, a novel class of biomolecules, made possible through advancements in technology and analytical methods. These breakthroughs are reshaping our understanding of biological processes and emphasizing the intricate interplay between oxygen and sulfur in regulating essential redox reactions. This review summarizes the latest insights into the biological roles of sulfur and oxygen, their interdependence in key processes, and their contributions to adaptive responses to environmental stressors. By exploring these interactions, we aim to provide a comprehensive perspective on how these elements drive survival strategies across diverse life forms, highlighting their indispensable roles in both human health and the sustenance of life.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Redox Molecular Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
3
|
Changaei M, Azimzadeh Tabrizi Z, Karimi M, Kashfi SA, Koochaki Chahardeh T, Hashemi SM, Soudi S. From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer. Cell Commun Signal 2025; 23:232. [PMID: 40394666 PMCID: PMC12090700 DOI: 10.1186/s12964-025-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Mitochondria are traditionally known as the cells' powerhouses; however, their roles go far beyond energy suppliers. They are involved in intracellular signaling and thus play a crucial role in shaping cells' destiny and functionality, including immune cells. Mitochondria can be actively exchanged between immune and non-immune cells via mechanisms such as nanotubes and extracellular vesicles. The mitochondria transfer from immune cells to different cells is associated with physiological and pathological processes, including inflammatory disorders, cardiovascular diseases, diabetes, and cancer. On the other hand, mitochondrial transfer from mesenchymal stem cells, bone marrow-derived stem cells, and adipocytes to immune cells significantly affects their functions. Mitochondrial transfer can prevent exhaustion/senescence in immune cells through intracellular signaling pathways and metabolic reprogramming. Thus, it is emerging as a promising therapeutic strategy for immune system diseases, especially those involving inflammation and autoimmune components. Transferring healthy mitochondria into damaged or dysfunctional cells can restore mitochondrial function, which is crucial for cellular energy production, immune regulation, and inflammation control. Also, mitochondrial transfer may enhance the potential of current therapeutic immune cell-based therapies such as CAR-T cell therapy.
Collapse
Affiliation(s)
- Mostafa Changaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Azimzadeh Tabrizi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Adnan Kashfi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tina Koochaki Chahardeh
- Department of Basic Sciences, Biology and Health, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Snyder RJ, Shankar U, Delker D, Soerianto W, Burdick JT, Cheung VG, Watts JA. Guanine quadruplexes mediate mitochondrial RNA polymerase pausing. BMC Biol 2025; 23:129. [PMID: 40361112 PMCID: PMC12076976 DOI: 10.1186/s12915-025-02229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The information content within nucleic acids extends beyond the primary sequence to include secondary structures with functional roles in transcription regulation. Guanine-rich sequences form structures called guanine quadruplexes that result from non-canonical base pairing between guanine residues. These stable guanine quadruplex structures are prevalent in gene promoters in nuclear DNA and are known to be associated with promoter proximal pausing of some genes. However, the transcriptional impact of guanine quadruplexes that form in nascent RNA is poorly understood. RESULTS We examined mitochondrial RNA polymerase (POLRMT) pausing patterns in primary human skin fibroblast cells using the precision nuclear run-on assay and uncovered over 400 pause sites on the mitochondrial genome. We identified that these pauses frequently occur following guanine-rich sequences where quadruplexes form. Using an in vitro primer extension assay, we show that quadruplexes formed in nascent RNA act as mediators of POLRMT pausing, and in cell-based assays their stabilization disrupts POLRMT transcription. Cells exposed to a guanine-quadruplex stabilizing agent (RHPS4) had diminished mitochondrial gene expression and significantly lowered cellular respiration within 24 h. The resulting ATP stress was sufficient to reduce active transport in renal epithelia. CONCLUSIONS Our findings connect RNA guanine quadruplex-mediated pausing with the regulation of POLRMT transcription and mitochondrial function. We demonstrate that tuning of quadruplex dynamics in nascent RNA, rather than template DNA upstream of the polymerase, is sufficient to regulate mitochondrial gene expression.
Collapse
Affiliation(s)
- Ryan J Snyder
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Uma Shankar
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Don Delker
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Winny Soerianto
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Joshua T Burdick
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vivian G Cheung
- Department of Pediatrics, Division of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jason A Watts
- Epigenetics and RNA Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
6
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. Curr Biol 2025; 35:1227-1241.e6. [PMID: 39978347 PMCID: PMC11945552 DOI: 10.1016/j.cub.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Local metabolic demand within cells varies widely, and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of the mitochondrial contact site and cristae organizing system (MICOS) complex, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery. Based on their appearance, we term these mitochondria "METEORs". METEORs have a unique composition, and MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
- Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Liu P, Liu ZY, Mao S, Shen XY, Liu ZY, Lin LC, Yang JJ, Zhang Y, Zhao JY, Tao H. Targeted mitochondrial function for cardiac fibrosis: An epigenetic perspective. Free Radic Biol Med 2025; 228:163-172. [PMID: 39755218 DOI: 10.1016/j.freeradbiomed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis. Targeted mitochondrial therapy for cardiac fibrosis represents an emerging therapeutic strategy that aims to inhibit cardiac fibroblast proliferation or protect cardiomyocytes from damage by enhancing mitochondrial function. However, current research on epigenetic treatments for cardiac fibrosis through mitochondrial targeting remains limited. This review explores the relationship between mitochondrial dysfunction and cardiac fibrosis, as well as the epigenetic regulatory mechanisms involved in targeted mitochondrial therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Peng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Xin-Yu Shen
- The Second Clinical College of Anhui Medical University, Hefei, 230000, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China.
| |
Collapse
|
8
|
Sadeesh EM, Lahamge MS, Malik A, Ampadi AN. Differential Expression of Nuclear-Encoded Mitochondrial Protein Genes of ATP Synthase Across Different Tissues of Female Buffalo. Mol Biotechnol 2025; 67:705-722. [PMID: 38305843 DOI: 10.1007/s12033-024-01085-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
The physiological well-being of buffaloes, encompassing phenotypic traits, reproductive health, and productivity, depends on their energy status. Mitochondria, the architects of energy production, orchestrate a nuanced interplay between nuclear and mitochondrial domains. Oxidative phosphorylation complexes and associated proteins wield significant influence over metabolic functions, energy synthesis, and organelle dynamics, often linked to tissue-specific pathologies. The unexplored role of ATP synthase in buffalo tissues prompted a hypothesis: in-depth exploration of nuclear-derived mitochondrial genes, notably ATP synthase, reveals distinctive tissue-specific diversity. RNA extraction and sequencing of buffalo tissues (kidney, heart, brain, and ovary) enabled precise quantification of nuclear-derived mitochondrial protein gene expression. The analysis unveiled 24 ATP synthase transcript variants, each with unique tissue-specific patterns. Kidney, brain, and heart exhibited elevated gene expression compared to ovaries, with 10, 8, and 19 up-regulated genes, respectively. The kidney showed 3 and 12 down-regulated genes compared to the brain and heart. The heart-brain comparison highlighted ten highly expressed genes in ATP synthase functions. Gene ontology and pathway analyses revealed enriched functions linked to ATP synthesis and oxidative phosphorylation, offering a comprehensive understanding of energy production in buffalo tissues. This analysis enhances understanding of tissue-specific gene expression, emphasizing the influence of energy demands. Revealing intricate links between mitochondrial gene expression and tissue specialization in buffaloes, it provides nuanced insights into tissue-specific expression of nuclear-encoded mitochondrial protein genes, notably ATP synthase, advancing the comprehension of buffalo tissue biology.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - A N Ampadi
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
9
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Colombo G, Monsorno K, Paolicelli RC. Metabolic control of microglia in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:143-159. [PMID: 40122622 DOI: 10.1016/b978-0-443-19104-6.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Metabolic states within cells are tightly linked to functional outcomes and finely regulated by nutrient availability. A growing body of the literature supports the idea that various metabolites can influence cellular functions, such as cell differentiation, migration, and proliferation in different contexts, with ample evidence coming from the immune system. Additionally, certain functional programs can trigger significant metabolic changes within cells, which are crucial not only to meet high energy demands, but also to produce intermediate metabolites necessary to support specific tasks. Microglia, the resident innate immune cells of the central nervous system, are constantly active, surveying the brain parenchyma and providing support to neighboring cells in the brain. They exhibit high metabolic flexibility, capable of quickly undergoing metabolic reprogramming based on nutrient availability and functional requirements. In this chapter, we will discuss the major metabolic pathways within cells and provide examples of how relevant enzymes and metabolites can impact microglial function in physiologic and pathologic contexts.
Collapse
Affiliation(s)
- Gloria Colombo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
12
|
Liu B, Gao X, Teng H, Zhou H, Gao B, Li F. Association between GATM gene polymorphism and progression of chronic kidney disease: a mitochondrial related genome-wide Mendelian randomization study. Sci Rep 2024; 14:20346. [PMID: 39284843 PMCID: PMC11405879 DOI: 10.1038/s41598-024-68448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic Kidney Disease (CKD) stands as a substantial challenge within the global health landscape. The elevated metabolic demands essential for sustaining normal kidney function have propelled an increasing interest in unraveling the intricate relationship between mitochondrial dysfunction and CKD. However, the authentic causal relationship between these two factors remains to be conclusively elucidated. This study endeavors to address this knowledge gap through the Mendelian Randomization (MR) method. We utilized large-scale QTL datasets (including 31,684 eQTLs samples, 1980 mQTLs samples, and 35,559 pQTLs samples) to precisely identify key genes related to mitochondrial function as exposure factors. Subsequently, we employed GWAS datasets (comprising 480,698 CKD samples and 1,004,040 eGFRcrea samples) as outcome factors. Through a comprehensive multi-level analysis (encompassing expression, methylation, and protein quantification loci), we evaluated the causal impact of these genes on CKD and estimated glomerular filtration rate (eGFR). The integration and validation of diverse genetic data, complemented by the application of co-localization analysis, bi-directional MR analysis, and various MR methods, notably including inverse variance weighted, have collectively strengthened our confidence in the robustness of these findings. Lastly, we validate the outcomes through examination in human RNA sequencing datasets encompassing various subtypes of CKD. This study unveils significant associations between the glycine amidinotransferase (GATM) and CKD, as well as eGFR. Notably, an augmentation in GATM gene and protein expression corresponds to a diminished risk of CKD, whereas distinct methylation patterns imply an increased risk. Furthermore, a discernible reduction in GATM expression is observed across diverse pathological subtypes of CKD, exhibiting a noteworthy positive correlation with GFR. These findings establish a causal relationship between GATM and CKD, thereby highlighting its potential as a therapeutic target. This insight lays the foundation for the development of potential therapeutic interventions for CKD, presenting substantial clinical promise.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Haolin Teng
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Baoshan Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Faping Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
13
|
Balnis J, Tufts A, Jackson EL, Drake LA, Singer DV, Lacomis D, Lee CG, Elias JA, Doles JD, Maher LJ, Jen A, Coon JJ, Jourd’heuil D, Singer HA, Vincent CE, Jaitovich A. Succinate dehydrogenase-complex II regulates skeletal muscle cellular respiration and contractility but not muscle mass in genetically induced pulmonary emphysema. SCIENCE ADVANCES 2024; 10:eado8549. [PMID: 39167644 PMCID: PMC11338223 DOI: 10.1126/sciadv.ado8549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ankita Tufts
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Emily L. Jackson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - David Lacomis
- Departments of Pathology and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jason D. Doles
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - David Jourd’heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
14
|
Mora-Romero B, Capelo-Carrasco N, Pérez-Moreno JJ, Alvarez-Vergara MI, Trujillo-Estrada L, Romero-Molina C, Martinez-Marquez E, Morano-Catalan N, Vizuete M, Lopez-Barneo J, Nieto-Gonzalez JL, Garcia-Junco-Clemente P, Vitorica J, Gutierrez A, Macias D, Rosales-Nieves AE, Pascual A. Microglia mitochondrial complex I deficiency during development induces glial dysfunction and early lethality. Nat Metab 2024; 6:1479-1491. [PMID: 39048800 DOI: 10.1038/s42255-024-01081-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs. We first observed that the metabolic rewiring associated with microglia stimulation in vitro (via IL-33 or TAU treatment) was partially changed by complex I (CI) inhibition (via rotenone treatment). In vivo, we generated a mouse model deficient for CI activity in microglia (MGcCI). MGcCI microglia showed metabolic rewiring and gradual transcriptional activation, which led to hypertrophy and dysfunction in juvenile (1-month-old) and adult (3-month-old) stages, respectively. MGcCI mice presented widespread reactive astrocytes, a decrease of synaptic markers accompanied by an increased number of parvalbumin neurons, a behavioral deficit characterized by prolonged periods of immobility, loss of weight and premature death that was partially rescued by pharmacologic depletion of microglia. Our data demonstrate that microglia development depends on mitochondrial CI and suggest a direct microglial contribution to PMDs.
Collapse
Affiliation(s)
- Bella Mora-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nicolas Capelo-Carrasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Juan J Pérez-Moreno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - María I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Bonn, Germany
| | - Laura Trujillo-Estrada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilio Martinez-Marquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Noelia Morano-Catalan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jose L Nieto-Gonzalez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Pablo Garcia-Junco-Clemente
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonia Gutierrez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - David Macias
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
15
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600105. [PMID: 38948746 PMCID: PMC11212966 DOI: 10.1101/2024.06.21.600105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Local metabolic demand within cells varies widely and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of MICOS, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery that we term "METEORs". METEORs have a unique composition; MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
17
|
Lin HP, Petersen JD, Gilsrud AJ, Madruga A, D’Silva TM, Huang X, Shammas MK, Randolph NP, Li Y, Jones DR, Pacold ME, Narendra DP. DELE1 promotes translation-associated homeostasis, growth, and survival in mitochondrial myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582673. [PMID: 38529505 PMCID: PMC10962736 DOI: 10.1101/2024.02.29.582673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy. Here, we identified that diverse mitochondrial myopathy models elicit a protective mitochondrial integrated stress response (mt-ISR), mediated by OMA1-DELE1 signaling. The response was similar following disruptions in mtDNA maintenance, from knockout of Tfam, and mitochondrial protein unfolding, from disease-causing mutations in CHCHD10 (G58R and S59L). The preponderance of the response was directed at upregulating pathways for aminoacyl-tRNA biosynthesis, the intermediates for protein synthesis, and was similar in heart and skeletal muscle but more limited in brown adipose challenged with cold stress. Strikingly, models with early DELE1 mt-ISR activation failed to grow and survive to adulthood in the absence of Dele1, accounting for some but not all of OMA1's protection. Notably, the DELE1 mt-ISR did not slow net protein synthesis in stressed striated muscle, but instead prevented loss of translation-associated proteostasis in muscle fibers. Together our findings identify that the DELE1 mt-ISR mediates a stereotyped response to diverse forms of mitochondrial stress and is particularly critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer D. Petersen
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra J. Gilsrud
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Madruga
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theresa M. D’Silva
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario K. Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas P. Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Drew R. Jones
- Department of Radiation Oncology, NYU Langone Health, New York, United States
| | - Michael E. Pacold
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, United States
| | - Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Li J, Xu P, Chen S. Research progress on mitochondria regulating tumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:1-14. [PMID: 38229501 PMCID: PMC10945498 DOI: 10.3724/zdxbyxb-2023-0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Tumor cells adapt their metabolism to meet the demands for energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mitochondrial reactive oxygen species, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We explore the core role of mitochondria in the dynamic interplay between the tumor and the host to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystem Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
20
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
21
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
22
|
Zhang Q, Lin L, Yi X, Xie T, Xing G, Li Y, Wang X, Lin JM. Microfluidic Sampling of Undissolved Components from Subcellular Regions of Living Single Cells for Mass Spectrometry Analysis. Anal Chem 2023; 95:18082-18090. [PMID: 38032315 DOI: 10.1021/acs.analchem.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Precise sampling of undissolved chemical components from subcellular regions of living single cells is a prerequisite for their in-depth analysis, which could promote understanding of subtle early stage physiological or pathological processes. Here we report a microfluidic method to extract undissolved components from subcellular regions for MS analysis. The target single cell was isolated by the microchamber beneath the microfluidic probe and washed by the injected biocompatible isotonic glucose aqueous solution (IGAS). Then, the sampling solvent was injected to extract undissolved components from the expected subcellular region of the living single cell, where the position and size of the sampling region could be controlled. The components immobilized by undissolved cellular structures were proven to be successfully extracted. Since unextracted subcellular regions were protected by IGAS, the single cell could survive after a tiny part was extracted, providing the possibility of repetitive sampling of the same living cell. Phospholipids extracted from the subcellular regions were successfully identified. The results demonstrated the feasibility of our method for subcellular sampling and analysis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xizhen Yi
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Tianze Xie
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Gaowa Xing
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Yuxuan Li
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Dorairaj DP, Haribabu J, Dharmasivam M, Malekshah RE, Mohamed Subarkhan MK, Echeverria C, Karvembu R. Ru(II)- p-Cymene Complexes of Furoylthiourea Ligands for Anticancer Applications against Breast Cancer Cells. Inorg Chem 2023; 62:11761-11774. [PMID: 37459067 DOI: 10.1021/acs.inorgchem.3c00757] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Half-sandwich Ru(II) complexes containing nitro-substituted furoylthiourea ligands, bearing the general formula [(η6-p-cymene)RuCl2(L)] (1-6) and [(η6-p-cymene)RuCl(L)(PPh3)]+ (7--12), have been synthesized and characterized. In contrast to the spectroscopic data which revealed monodentate coordination of the ligands to the Ru(II) ion via a "S" atom, single crystal X-ray structures revealed an unusual bidentate N, S coordination with the metal center forming a four-membered ring. Interaction studies by absorption, emission, and viscosity measurements revealed intercalation of the Ru(II) complexes with calf thymus (CT) DNA. The complexes showed good interactions with bovine serum albumin (BSA) as well. Further, their cytotoxicity was explored exclusively against breast cancer cells, namely, MCF-7, T47-D, and MDA-MB-231, wherein all of the complexes were found to display more pronounced activity than their ligand counterparts. Complexes 7-12 bearing triphenylphosphine displayed significant cytotoxicity, among which complex 12 showed IC50 values of 0.6 ± 0.9, 0.1 ± 0.8, and 0.1 ± 0.2 μM against MCF-7, T47-D, and MDA-MB-231 cell lines, respectively. The most active complexes were tested for their mode of cell death through staining assays, which confirmed apoptosis. The upregulation of apoptotic inducing and downregulation of apoptotic suppressing proteins as inferred from the western blot analysis also corroborated the apoptotic mode of cell death. The active complexes effectively generated reactive oxygen species (ROS) in MDA-MB-231 cells as analyzed from the 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining. Finally, in vivo studies of the highly active complexes (6 and 12) were performed on the mice model. Histological analyses revealed that treatment with these complexes at high doses of up to 8 mg/kg did not induce any visible damage to the tested organs.
Collapse
Affiliation(s)
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Mahendiran Dharmasivam
- Department of Chemistry, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310018, P. R. China
| | - Cesar Echeverria
- Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
24
|
Xing X, Liang Y, Li Y, Zhao Y, Zhang Y, Li Z, Li Z, Wu Z. Fisetin Delays Postovulatory Oocyte Aging by Regulating Oxidative Stress and Mitochondrial Function through Sirt1 Pathway. Molecules 2023; 28:5533. [PMID: 37513404 PMCID: PMC10384696 DOI: 10.3390/molecules28145533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The quality of oocytes determines the development potential of an embryo and is dependent on their timely fertilization after ovulation. Postovulatory oocyte aging is an inevitable factor during some assisted reproduction technology procedures, which results in poor fertilization rates and impairs embryo development. We found that fisetin, a bioactive flavonol contained in fruits and vegetables, delayed postovulatory oocyte aging in mice. Fisetin improved the development of aged oocytes after fertilization and inhibited the Sirt1 reduction in aged oocytes. Fisetin increased the GSH level and Sod2 transcription level to inhibit ROS accumulation in aged oocytes. Meanwhile, fisetin attenuated aging-induced spindle abnormalities, mitochondrial dysfunction, and apoptosis. At the molecular level, fisetin decreased aging-induced aberrant expression of H3K9me3. In addition, fisetin increased the expression levels of the mitochondrial transcription factor Tfam and the mitochondrial genes Co2 and Atp8 by upregulating Sirt1 in aged oocytes. Finally, inhibition of Sirt1 reversed the anti-aging effects of fisetin. Taken together, fisetin delayed postovulatory oocyte aging by upregulating Sirt1.
Collapse
Affiliation(s)
- Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yaolu Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
26
|
Shi Q, Xue C, Zeng Y, Gu X, Wang J, Li L. A novel prognostic model for hepatocellular carcinoma based on pyruvate metabolism-related genes. Sci Rep 2023; 13:9780. [PMID: 37328616 PMCID: PMC10275940 DOI: 10.1038/s41598-023-37000-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, accounting for over 90% of cases. As pyruvate metabolic pathways are often dysregulated in cancer cells, investigating pyruvate metabolism-related genes may help identify prognostic gene signature and develop potential strategies for the management of patients with HCC. The mRNA expression profile, gene mutation data, and clinical information of HCC were obtained from open-source databases. A list of pyruvate metabolism-related genes was downloaded from the MSigDB dataset. Our findings revealed that certain pyruvate metabolism-related genes had copy number variations and single nucleotide variations in patients with liver cancer. Based on pyruvate metabolism-related genes, we stratified patients with HCC into three subtypes with different prognoses, clinical features, mutation profiles, functional annotation, and immune infiltration status. Next, we identified 13 key pyruvate metabolism-related genes significantly correlated with the prognosis of HCC using six machine learning algorithms and constructed a risk model. We also observed that the risk score was positively associated with a worse prognosis and increased immune infiltration. In summary, our study established a prognostic risk model for HCC based on pyruvate metabolism-related genes, which may contribute to the identification of potential prognostic targets and the development of new clinical management strategies for HCC.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
27
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
28
|
Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol 2023; 14:1166214. [PMID: 37325622 PMCID: PMC10267745 DOI: 10.3389/fimmu.2023.1166214] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondria are versatile organelles and essential components of numerous biological processes such as energy metabolism, signal transduction, and cell fate determination. In recent years, their critical roles in innate immunity have come to the forefront, highlighting impacts on pathogenic defense, tissue homeostasis, and degenerative diseases. This review offers an in-depth and comprehensive examination of the multifaceted mechanisms underlying the interactions between mitochondria and innate immune responses. We will delve into the roles of healthy mitochondria as platforms for signalosome assembly, the release of mitochondrial components as signaling messengers, and the regulation of signaling via mitophagy, particularly to cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling and inflammasomes. Furthermore, the review will explore the impacts of mitochondrial proteins and metabolites on modulating innate immune responses, the polarization of innate immune cells, and their implications on infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Chao JJ, Zhang H, Wang ZQ, Liu QR, Mao GJ, Chen DH, Li CY. A near-infrared fluorescent probe for monitoring abnormal mitochondrial viscosity in cancer and fatty-liver mice model. Anal Chim Acta 2023; 1242:340813. [PMID: 36657896 DOI: 10.1016/j.aca.2023.340813] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Viscosity is an important component of cell microenvironment, and abnormal mitochondrial viscosity is associated with many diseases such as tumor and fatty liver. Herein, a near-infrared fluorescence probe (QX-V) based on quinoline-xanthene dye for detecting viscosity is constructed. In high viscosity medium, the free rotation of single bond is inhibited and the fluorescence is released. The probe shows high sensitivity together with good selectivity. Notably, QX-V has a long excitation wavelength (710 nm) and emission wavelength (786 nm). At the same time, the probe is a positively charged molecule that can target mitochondria. QX-V can not only distinguish cancer cells from normal cells, but also make a distinction between normal cells and fatty hepatocytes. In addition, QX-V is used to image viscosity abnormality in tumor-bearing mice. The probe also has a good ability to image viscosity abnormality caused by liver injury in fatty-liver mice.
Collapse
Affiliation(s)
- Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Hui Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Qiao-Rong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Dong-Hua Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
30
|
Global Trends in Research of Mitochondrial Biogenesis over past 20 Years: A Bibliometric Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7291284. [PMID: 36644577 PMCID: PMC9833928 DOI: 10.1155/2023/7291284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
Background Mitochondrial biogenesis-related studies have increased rapidly within the last 20 years, whereas there has been no bibliometric analysis on this topic to reveal relevant progress and development trends. Objectives In this study, a bibliometric approach was adopted to summarize and analyze the published literature in this field of mitochondrial biogenesis over the past 20 years to reveal the major countries/regions, institutions and authors, core literature and journal, research hotspots and frontiers in this field. Methods The Web of Science Core Collection database was used for literature retrieval and dataset export. The CiteSpace and VOSviewer visual mapping software were used to explore research collaboration between countries/regions, institutions and authors, distribution of subject categories, core journals, research hotspots, and frontiers in this field. Results In the last 20 years, the annual number of publications has shown an increasing trend yearly. The USA, China, and South Korea have achieved fruitful research results in this field, among which Duke University and Chinese Academy of Sciences are the main research institutions. Rick G Schnellmann, Claude A Piantadosi, and Hagir B Suliman are the top three authors in terms of number of publications, while RC Scarpulla, ZD Wu, and P Puigserver are the top three authors in terms of cocitation frequency. PLOS One, Biochemical and Biophysical Research Communications, and Journal of Biological Chemistry are the top three journals in terms of number of articles published. Three papers published by Richard C Scarpulla have advanced this field and are important literature for understanding the field. Mechanistic studies on mitochondrial biosynthesis have been a long-standing hot topic; the main keywords include skeletal muscle, oxidative stress, gene expression, activation, and nitric oxide, and autophagy and apoptosis have been important research directions in recent years. Conclusion These results summarize the major research findings in the field of mitochondrial biogenesis over the past 20 years in various aspects, highlighting the major research hotspots and possible future research directions and helping researchers to quickly grasp the overview of the developments in this field.
Collapse
|
31
|
Wang Q, Luo H, Zhuang J, Li X, Huang D, Hu Z, Zhang G. Chemical synthesis of left arm of Chlamydomonas reinhardtii mitochondrial genome and in vivo functional analysis. Front Microbiol 2022; 13:1064497. [PMID: 36620060 PMCID: PMC9813849 DOI: 10.3389/fmicb.2022.1064497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chlamydomonas reinhardtii is a photosynthetic eukaryote showing great industrial potential. The synthesis and in vivo function of the artificial C. reinhardtii genome not only promotes the development of synthetic biology technology but also supports industries that utilize this algae. Mitochondrial genome (MtG) is the smallest and simplest genome of C. reinhardtii that suits synthetic exploration. In this article, we designed and assembled a synthetic mitochondria left arm (syn-LA) genome sharing >92% similarity to the original mitochondria genome (OMtG) left arm, transferred it into the respiratory defect strain cc-2654, screened syn-LA containing transformants from recovered dark-growth defects using PCR amplification, verified internal function of syn-LA via western blot, detected heteroplasmic ratio of syn-LA, tried promoting syn-LA into homoplasmic status with paromomycin stress, and discussed the main limitations and potential solutions for this area of research. This research supports the functionalization of a synthetic mitochondrial genome in living cells. Although further research is needed, this article nevertheless provides valuable guidance for the synthesis of eukaryotic organelle genomes and opens possible directions for future research.
Collapse
Affiliation(s)
- Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jieyi Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China,*Correspondence: Guiying Zhang,
| |
Collapse
|
32
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
33
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Kobayashi H, Watanuki S, Takubo K. Approaches towards Elucidating the Metabolic Program of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11203189. [PMID: 36291056 PMCID: PMC9600258 DOI: 10.3390/cells11203189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in bone marrow continuously supply a large number of blood cells throughout life in collaboration with hematopoietic progenitor cells (HPCs). HSCs and HPCs are thought to regulate and utilize intracellular metabolic programs to obtain metabolites, such as adenosine triphosphate (ATP), which is necessary for various cellular functions. Metabolites not only provide stem/progenitor cells with nutrients for ATP and building block generation but are also utilized for protein modification and epigenetic regulation to maintain cellular characteristics. In recent years, the metabolic programs of tissue stem/progenitor cells and their underlying molecular mechanisms have been elucidated using a variety of metabolic analysis methods. In this review, we first present the advantages and disadvantages of the current approaches applicable to the metabolic analysis of tissue stem/progenitor cells, including HSCs and HPCs. In the second half, we discuss the characteristics and regulatory mechanisms of HSC metabolism, including the decoupling of ATP production by glycolysis and mitochondria. These technologies and findings have the potential to advance stem cell biology and engineering from a metabolic perspective and to establish therapeutic approaches.
Collapse
|
35
|
Yang Q, Fang Y, Zhang C, Liu X, Wu Y, Zhang Y, Yang J, Yong K. Exposure to zinc induces lysosomal-mitochondrial axis-mediated apoptosis in PK-15 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113716. [PMID: 35667309 DOI: 10.1016/j.ecoenv.2022.113716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Zinc (Zn), a kind of metallic element, can cause poisonous effects on host physiology when its excess exposure. Lysosomes and mitochondria are the toxic targets of heavy metals, and the lysosomal-mitochondrial axis is also verified to take part in apoptosis, but the related underlying mechanisms in Zn-induced cytotoxicity remain undefined. Here, we identified that excess Zn could cause cell damage in PK-15 cells accompanied by the lysosomal and mitochondrial dysfunction, with the evidence by the elevated levels of cathepsin B/D (CTSB/CTSD) in cytoplasm and decrease of Lyso-Tracker Red signal, red fluorescence intensity of AO staining, mitochondrial complex enzyme activities and ATP production. Additionally, the number of Annexin V+/PI--stained cells, apoptosis-related genes (Bax, Bid, Bak1, Caspase-9, and Caspase-3) and proteins levels of Bax, Bak1, Caspase-9, cleaved Caspase-3 and cytoplasmic Cyt C were signally elevated under Zn exposure, while the protein levels of Bcl2 and mitochondrial Cyt C were observably decreased. Importantly, Pepstatin A (the activity inhibitor of CTSD) and RNA interference of CTSD (si-CTSD) was used to reduce the release of lysosomal CTSD to the cytoplasm, which could signally alleviated Zn-induced mitochondrial damage and apoptosis. In summary, these results suggested that Zn could induced lysosomal and mitochondrial dysfunction in PK-15 cells, and the CTSD played an important role in Zn-induced lysosomal-mitochondrial axis-mediated apoptosis. Our results provided a new insight in Zn-induced toxicology, which for protecting the ecological environment and public health.
Collapse
Affiliation(s)
- Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Yudong Fang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, PR China
| | - Chuanshi Zhang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Xuesong Liu
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Youhua Wu
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Yi Zhang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Junjie Yang
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, PR China
| | - Kang Yong
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China.
| |
Collapse
|
36
|
Bi C, Qu Y, Hou J, Wu K, Ye N, Yin T. Deciphering the Multi-Chromosomal Mitochondrial Genome of Populus simonii. FRONTIERS IN PLANT SCIENCE 2022; 13:914635. [PMID: 35783945 PMCID: PMC9240471 DOI: 10.3389/fpls.2022.914635] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
Mitochondria, inherited maternally, are energy metabolism organelles that generate most of the chemical energy needed to power cellular various biochemical reactions. Deciphering mitochondrial genome (mitogenome) is important for elucidating vital activities of species. The complete chloroplast (cp) and nuclear genome sequences of Populus simonii (P. simonii) have been reported, but there has been little progress in its mitogenome. Here, we assemble the complete P. simonii mitogenome into three circular-mapping molecules (lengths 312.5, 283, and 186 kb) with the total length of 781.5 kb. All three molecules of the P. simonii mitogenome had protein-coding capability. Whole-genome alignment analyses of four Populus species revealed the fission of poplar mitogenome in P. simonii. Comparative repeat analyses of four Populus mitogenomes showed that there were no repeats longer than 350 bp in Populus mitogenomes, contributing to the stability of genome sizes and gene contents in the genus Populus. As the first reported multi-circular mitogenome in Populus, this study of P. simonii mitogenome are imperative for better elucidating their biological functions, replication and recombination mechanisms, and their unique evolutionary trajectories in Populus.
Collapse
Affiliation(s)
- Changwei Bi
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yanshu Qu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Hou
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kai Wu
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
37
|
Song B, Xia W, Li T, Liu R. Mitochondria is involved in combination of blueberry and apple peel extracts synergistically ameliorating lifespan and oxidative stress in Caenorhabditis elegans. Food Funct 2022; 13:8204-8213. [DOI: 10.1039/d2fo00474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial function is closely related to the body's oxidative stress level and lifespan. Our previous research demonstrated that the combination of blueberry extracts (BE) and apple peel extracts (APE) could...
Collapse
|
38
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
39
|
Dayanidhi S. Skeletal Muscle Mitochondrial Physiology in Children With Cerebral Palsy: Considerations for Healthy Aging. Front Neurol 2021; 12:735009. [PMID: 34589051 PMCID: PMC8473886 DOI: 10.3389/fneur.2021.735009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle contractile proteins require a constant supply of energy to produce force needed for movement. Energy (ATP) is primarily produced by mitochondrial organelles, located within and around muscle fibers, by oxidative phosphorylation that couples electron flux through the electron transport chain to create a proton gradient across the inner mitochondrial membrane that is in turn used by the ATP synthase. Mitochondrial networks increase in size by biogenesis to increase mitochondrial abundance and activity in response to endurance exercise, while their function and content reduce with constant inactivity, such as during muscle atrophy. During healthy aging, there is an overall decline in mitochondrial activity and abundance, increase in mitochondrial DNA mutations, potential increase in oxidative stress, and reduction in overall muscular capacity. Many of these alterations can be attenuated by consistent endurance exercise. Children with cerebral palsy (CP) have significantly increased energetics of movement, reduced endurance capacity, and increased perceived effort. Recent work in leg muscles in ambulatory children with CP show a marked reduction in mitochondrial function. Arm muscles show that mitochondrial protein content and mitochondria DNA copy number are lower, suggesting a reduction in mitochondrial abundance, along with a reduction in markers for mitochondrial biogenesis. Gene expression networks are reduced for glycolytic and mitochondrial pathways and share similarities with gene networks with aging and chronic inactivity. Given the importance of mitochondria for energy production and changes with aging, future work needs to assess changes in mitochondria across the lifespan in people with CP and the effect of exercise on promoting metabolic health.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation and Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
40
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
41
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
42
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
43
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
44
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
45
|
Affiliation(s)
- Navdeep S Chandel
- Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|