1
|
Otsuki L, Plattner SA, Taniguchi-Sugiura Y, Falcon F, Tanaka EM. Molecular basis of positional memory in limb regeneration. Nature 2025:10.1038/s41586-025-09036-5. [PMID: 40399677 DOI: 10.1038/s41586-025-09036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
The amputation of a salamander limb triggers anterior and posterior connective tissue cells to form distinct signalling centres that together fuel regeneration1. Anterior and posterior identities are established during development and are thought to persist for the whole life in the form of positional memory2. However, the molecular basis of positional memory and whether positional memory can be altered remain unknown. Here, we identify a positive-feedback loop that is responsible for posterior identity in the limb of an axolotl (Ambystoma mexicanum). Posterior cells express residual Hand2 transcription factor from development, and this primes them to form a Shh signalling centre after limb amputation. During regeneration, Shh signalling is also upstream of Hand2 expression. After regeneration, Shh is shut down but Hand2 is sustained, safeguarding posterior memory. We used this regeneration circuitry to convert anterior cells to a posterior-cell memory state. Transient exposure of anterior cells to Shh during regeneration kick-started an ectopic Hand2-Shh loop, leading to stable Hand2 expression and lasting competence to express Shh. Our results implicate positive-feedback in the stability of positional memory and reveal that positional memory is reprogrammed more easily in one direction (anterior to posterior) than in the other. Modifying positional memory in regenerative cells changes their signalling outputs, which has implications for tissue engineering.
Collapse
Affiliation(s)
- L Otsuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - S A Plattner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Y Taniguchi-Sugiura
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - F Falcon
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - E M Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Slack JMW. "Pattern regulation in epimorphic fields", aka the polar coordinate model. Dev Biol 2025; 520:82-90. [PMID: 39798645 DOI: 10.1016/j.ydbio.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The Polar Coordinate Model (PCM) was a model, published in 1976, to account for the properties of distal regeneration in the appendages of insects and vertebrates. It had considerable impact at the time and has continued to be cited ever since. This article describes the work that led up to the model, the genesis of the model itself, its strengths and weaknesses, and its long term impact.
Collapse
Affiliation(s)
- Jonathan M W Slack
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Farhadi A, Xue L, Zhao Q, Tan K. An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods. Int J Biol Macromol 2025; 292:139354. [PMID: 39743118 DOI: 10.1016/j.ijbiomac.2024.139354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT. Subsequent stages, including blastema formation and limb growth, are regulated by signaling pathways such as Wnt, Hippo, Hedgehog, Ecdysteroid, TGF-β, Notch, Insulin-like, Fibroblast Growth Factor, Epidermal Growth Factor, and BMP. This review also discusses the interplay among environmental factors, nutrition, and hormonal signaling in regeneration and how these elements influence regenerative capability. Furthermore, this review highlights existing research gaps in decapod regeneration and suggests future research directions. This review aims to bridge existing gaps in decapod regeneration research and guide future studies toward potential breakthroughs in aquaculture practices.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China.
| |
Collapse
|
4
|
Bovari-Biri J, Miskei JA, Kover Z, Steinerbrunner-Nagy A, Kardos K, Maroti P, Pongracz JE. Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ). Cells 2025; 14:145. [PMID: 39851573 PMCID: PMC11763601 DOI: 10.3390/cells14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Judith A Miskei
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Zsanett Kover
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| |
Collapse
|
5
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
6
|
Castilla‐Ibeas A, Zdral S, Oberg KC, Ros MA. The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration. Dev Dyn 2024; 253:798-814. [PMID: 38288855 PMCID: PMC11656695 DOI: 10.1002/dvdy.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 12/20/2024] Open
Abstract
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
Collapse
Affiliation(s)
- Alejandro Castilla‐Ibeas
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Sofía Zdral
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Kerby C. Oberg
- Department of Pathology and Human AnatomyLoma Linda University, School of MedicineLoma LindaCaliforniaUSA
| | - Marian A. Ros
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| |
Collapse
|
7
|
Zupanc GKH. David L. Stocum (1939-2023): Authority in regenerative biology, passionate educator, visionary administrative leader, and cherished colleague and friend. Dev Biol 2024; 512:89-92. [PMID: 38759943 DOI: 10.1016/j.ydbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
9
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
10
|
Qian LS, Ibrahim R, Isabella AJ. High-resolution Cell Transplantation in Embryonic and Larval Zebrafish. J Vis Exp 2024:10.3791/67218. [PMID: 39037248 PMCID: PMC11776099 DOI: 10.3791/67218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Development and regeneration occur by a process of genetically encoded spatiotemporally dynamic cellular interactions. The use of cell transplantation between animals to track cell fate and to induce mismatches in the genetic, spatial, or temporal properties of donor and host cells is a powerful means of examining the nature of these interactions. Organisms such as chick and amphibians have made crucial contributions to our understanding of development and regeneration, respectively, in large part because of their amenability to transplantation. The power of these models, however, has been limited by low genetic tractability. Likewise, the major genetic model organisms have lower amenability to transplantation. The zebrafish is a major genetic model for development and regeneration, and while cell transplantation is common in zebrafish, it is generally limited to the transfer of undifferentiated cells at the early blastula and gastrula stages of development. In this article, we present a simple and robust method that extends the zebrafish transplantation window to any embryonic or larval stage between at least 1 and 7 days post fertilization. The precision of this approach allows for the transplantation of as little as one cell with near-perfect spatial and temporal resolution in both donor and host animals. While we highlight here the transplantation of embryonic and larval neurons for the study of nerve development and regeneration, respectively, this approach is applicable to a wide range of progenitor and differentiated cell types and research questions.
Collapse
Affiliation(s)
- Lindsey S Qian
- Department of Genetics, Cell Biology, and Development, University of Minnesota
| | - Rabab Ibrahim
- Department of Genetics, Cell Biology, and Development, University of Minnesota; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota
| | - Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota; Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota;
| |
Collapse
|
11
|
Tajer B, Whited JL. In preprints: cellular memory - the tension between old and new identities in the blastema. Development 2024; 151:dev202605. [PMID: 38165176 DOI: 10.1242/dev.202605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Benjamin Tajer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Chen L, Li J, Ou Y, Kang M, Deng J, Wang Y, Liang S, Hong X, Gong S, Fei JF, Hou FF, Zhang F. The axolotl kidney: a novel model to study kidney regeneration. Kidney Int 2023; 104:599-604. [PMID: 37290601 DOI: 10.1016/j.kint.2023.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Liting Chen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Jing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yanping Ou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Meixia Kang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Juan Deng
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Youliang Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Shiting Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xizhen Hong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Siqiao Gong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Ji-Feng Fei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China.
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, China.
| |
Collapse
|
13
|
Tada R, Higashidate T, Amano T, Ishikawa S, Yokoyama C, Kobari S, Nara S, Ishida K, Kawaguchi A, Ochi H, Ogino H, Yakushiji-Kaminatsui N, Sakamoto J, Kamei Y, Tamura K, Yokoyama H. The shh limb enhancer is activated in patterned limb regeneration but not in hypomorphic limb regeneration in Xenopus laevis. Dev Biol 2023:S0012-1606(23)00093-3. [PMID: 37247832 DOI: 10.1016/j.ydbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.
Collapse
Affiliation(s)
- Reimi Tada
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takuya Higashidate
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoma Ishikawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Chifuyu Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Suzu Kobari
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Koshiro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Akane Kawaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Nayuta Yakushiji-Kaminatsui
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Physiological Sciences, Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8585, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
14
|
Worley MI, Everetts NJ, Yasutomi R, Chang RJ, Saretha S, Yosef N, Hariharan IK. Ets21C sustains a pro-regenerative transcriptional program in blastema cells of Drosophila imaginal discs. Curr Biol 2022; 32:3350-3364.e6. [PMID: 35820420 PMCID: PMC9387119 DOI: 10.1016/j.cub.2022.06.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
An important unanswered question in regenerative biology is to what extent regeneration is accomplished by the reactivation of gene regulatory networks used during development versus the activation of regeneration-specific transcriptional programs. Following damage, Drosophila imaginal discs, the larval precursors of adult structures, can regenerate missing portions by localized proliferation of damage-adjacent tissue. Using single-cell transcriptomics in regenerating wing discs, we have obtained a comprehensive view of the transcriptome of regenerating discs and identified two regeneration-specific cell populations within the blastema, Blastema1 and Blastema2. Collectively, these cells upregulate multiple genes encoding secreted proteins that promote regeneration including Pvf1, upd3, asperous, Mmp1, and the maturation delaying factor Ilp8. Expression of the transcription factor Ets21C is restricted to this regenerative secretory zone; it is not expressed in undamaged discs. Ets21C expression is activated by the JNK/AP-1 pathway, and it can function in a type 1 coherent feedforward loop with AP-1 to sustain expression of downstream genes. Without Ets21C function, the blastema cells fail to maintain the expression of a number of genes, which leads to premature differentiation and severely compromised regeneration. As Ets21C is dispensable for normal development, these observations indicate that Ets21C orchestrates a regeneration-specific gene regulatory network. We have also identified cells resembling both Blastema1 and Blastema2 in scribble tumorous discs. They express the Ets21C-dependent gene regulatory network, and eliminating Ets21C function reduces tumorous growth. Thus, mechanisms that function during regeneration can be co-opted by tumors to promote aberrant growth.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca J Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shrey Saretha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Dickmann JEM, Rink JC, Jülicher F. Long-range morphogen gradient formation by cell-to-cell signal propagation. Phys Biol 2022; 19. [PMID: 35921820 DOI: 10.1088/1478-3975/ac86b4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Morphogen gradients are a central concept in developmental biology. Their formation often involves the secretion of morphogens from a local source, that spread by diffusion in the cell field, where molecules eventually get degraded. This implies limits to both the time and length scales over which morphogen gradients can form which are set by diffusion coefficients and degradation rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the millimeter-scale Wnt-expression and signaling gradients in flatworms, we consider morphogen-mediated morphogen production in the cell field. We show that such a relay can generate stable morphogen and signaling gradients that are oriented by a local, morphogen-independent source of morphogen at a boundary. This gradient formation can be related to an effective diffusion and an effective degradation that result from morphogen production due to signaling relay. If the secretion of morphogen produced in response to the relay is polarized, it further gives rise to an effective drift. We find that signaling relay can generate long-ranged gradients in relevant times without relying on extreme choices of diffusion coefficients or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range gradient formation by slowly diffusing morphogens that are relevant for patterning in adult contexts such as regeneration and tissue turn-over.
Collapse
Affiliation(s)
- Johanna E M Dickmann
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden, Sachsen, 01187, GERMANY
| | - Jochen C Rink
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Gottingen, Niedersachsen, 37077, GERMANY
| | - Frank Jülicher
- Max-Planck-Institut fuer Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Dresden, 01187, GERMANY
| |
Collapse
|
16
|
Sehring I, Weidinger G. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040758. [PMID: 34649924 PMCID: PMC9248819 DOI: 10.1101/cshperspect.a040758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The zebrafish caudal fin has become a popular model to study cellular and molecular mechanisms of regeneration due to its high regenerative capacity, accessibility for experimental manipulations, and relatively simple anatomy. The formation of a regenerative epidermis and blastema are crucial initial events and tightly regulated. Both the regenerative epidermis and the blastema are highly organized structures containing distinct domains, and several signaling pathways regulate the formation and interaction of these domains. Bone is the major tissue regenerated from the progenitor cells of the blastema. Several cellular mechanisms can provide source cells for blastemal (pre-)osteoblasts, including dedifferentiation of differentiated osteoblasts and de novo formation from other cell types, providing intriguing examples of cellular plasticity. In recent years, omics analyses and single-cell approaches have elucidated genetic and epigenetic regulation, increasing our knowledge of the surprisingly complex coordination of various mechanisms to achieve successful restoration of a seemingly simple structure.
Collapse
Affiliation(s)
- Ivonne Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
17
|
Yamamoto S, Kashimoto R, Furukawa S, Ohashi A, Satoh A. Lmx1b activation in axolotl limb regeneration. Dev Dyn 2022; 251:1509-1523. [PMID: 35403281 DOI: 10.1002/dvdy.476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Axolotls can regenerate their limbs. In their limb regeneration process, developmental genes are re-expressed and reorganize the developmental axes, in which the position-specific genes are properly re-expressed. However, how such position specificity is reorganized in the regeneration processes has not been clarified. To address this issue, we focused on the reactivation process of Lmx1b, which determines the limb dorsal identity in many animals. RESULTS Here, we show that Lmx1b expression is maintained in the dorsal skin before amputation and is activated after amputation. Furthermore, we demonstrate that only cells located in the dorsal side prior to limb amputation could reactivate Lmx1b after limb amputation. We also found that Lmx1b activation was achieved by nerve presence. The nerve factors, BMP2 + FGF2 + FGF8 (B2FF), consistently reactivate Lmx1b when applied to the dorsal skin. CONCLUSIONS These results imply that the retained Lmx1b expression in the intact skin plays a role in positional memory, which instruct cells about the spatial positioning before amputation. This memory is reactivated by nerves or nerve factors that can trigger the entire limb regeneration process. Our findings highlight the role of nerves in amphibian limb regeneration, including both the initiation of limb regeneration and the reactivation of position-specific gene expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sakiya Yamamoto
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Rena Kashimoto
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Saya Furukawa
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Ayaka Ohashi
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Akira Satoh
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan.,Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| |
Collapse
|