1
|
Ou X, Ma C, Sun D, Xu J, Wang Y, Wu X, Wang D, Yang S, Gao N, Song C, Li L. SecY translocon chaperones protein folding during membrane protein insertion. Cell 2025; 188:1912-1924.e13. [PMID: 39978345 DOI: 10.1016/j.cell.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The Sec translocon is vital for guiding membrane protein insertion into lipid bilayers. The insertion and folding processes of membrane proteins are poorly understood. Here, we report cryo-electron microscopy structures of multi-spanning membrane proteins inserting through the SecY channel, the Sec translocon in prokaryotes. The high-resolution structures illustrate how bulky amino acids pass the narrow channel restriction. Comparison of different translocation states reveals that the cytoplasmic and extracellular cavities of the channel create distinct environments for promoting the unfolding and folding of transmembrane segments (TMs), respectively. Released substrate TMs are either flexible or stabilized by an unexpected hydrophilic groove between TM3 and TM4 of SecY. Disruption of the groove causes global defects in the folding of the membrane proteome. These findings demonstrate that beyond its role as a passive protein-conducting channel, the SecY translocon actively serves as a chaperone, employing multiple mechanisms to promote membrane protein insertion and folding.
Collapse
Affiliation(s)
- Xiaomin Ou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinkun Xu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yang Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaofei Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dali Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Song Yang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; National Biomedical Imaging Center, Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China.
| | - Chen Song
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Shang W, Lichtenberg E, Mlesnita AM, Wilde A, Koch HG. The contribution of mRNA targeting to spatial protein localization in bacteria. FEBS J 2024; 291:4639-4659. [PMID: 38226707 DOI: 10.1111/febs.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and must be inserted into or translocated across the cytoplasmic membrane. This requires efficient targeting systems that recognize N-terminal signal sequences in client proteins and deliver them to protein transport complexes in the membrane. While the importance of these protein transport machineries for the spatial organization of the bacterial cell is well documented in multiple studies, the contribution of mRNA targeting and localized translation to protein transport is only beginning to emerge. mRNAs can exhibit diverse subcellular localizations in the bacterial cell and can accumulate at sites where new protein is required. This is frequently observed for mRNAs encoding membrane proteins, but the physiological importance of membrane enrichment of mRNAs and the consequences it has for the insertion of the encoded protein have not been explored in detail. Here, we briefly highlight some basic concepts of signal sequence-based protein targeting and describe in more detail strategies that enable the monitoring of mRNA localization in bacterial cells and potential mechanisms that route mRNAs to particular positions within the cell. Finally, we summarize some recent developments that demonstrate that mRNA targeting and localized translation can sustain membrane protein insertion under stress conditions when the protein-targeting machinery is compromised. Thus, mRNA targeting likely acts as a back-up strategy and complements the canonical signal sequence-based protein targeting.
Collapse
Affiliation(s)
- Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | | | - Andreea Mihaela Mlesnita
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
3
|
Schindler K, Ruppel KE, Müller C, Koehl U, Fricke S, Schmiedel D. Linker-specific monoclonal antibodies present a simple and reliable detection method for scFv-based CAR NK cells. Mol Ther Methods Clin Dev 2024; 32:101328. [PMID: 39286335 PMCID: PMC11403257 DOI: 10.1016/j.omtm.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have demonstrated significant successes in treating cancer. Currently, there are six approved CAR T cell products available on the market that target different malignancies of the B cell lineage. However, to overcome the limitations of CAR T cell therapies, other immune cells are being investigated for CAR-based cell therapies. CAR natural killer (NK) cells can be applied as allogeneic cell therapy, providing an economical, safe, and efficient alternative to autologous CAR T cells. To improve CAR research and future in-patient monitoring of cell therapeutics, a simple, reliable, and versatile CAR detection reagent is crucial. As most existing CARs contain a single-chain variable fragment (scFv) with either a Whitlow or a G4S linker site, linker-specific monoclonal antibodies (mAbs) can detect a broad range of CARs. This study demonstrates that these linker-specific mAbs can detect different CAR NK cells in vitro, spiked in whole blood, and within patient-derived tumor spheroids with high specificity and sensitivity, providing an effective and almost universal alternative for scFv-based CAR detection. Additionally, we confirm that linker-specific antibodies can be used for functional testing and enrichment of CAR NK cells, thereby providing a useful research tool to fast-track the development of novel CAR-based therapies.
Collapse
Affiliation(s)
- Katharina Schindler
- Department for Cell and Gene Therapy Development, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Katharina Eva Ruppel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Claudia Müller
- Department of Preclinical Development and Validation, Fraunhofer
Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig,
Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, 60596
Frankfurt, Germany
| | - Ulrike Koehl
- Department for Cell and Gene Therapy Development, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, 04103 Leipzig,
Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, 60596
Frankfurt, Germany
| | - Stephan Fricke
- Department for Cell and Gene Therapy Development, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, 60596
Frankfurt, Germany
- Medicine Campus MEDiC of the Technical University of Dresden at Klinikum
Chemnitz gGmbH, 09116 Chemnitz, Germany
| | - Dominik Schmiedel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute
for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, 04103 Leipzig,
Germany
| |
Collapse
|
4
|
Chamness LM, Kuntz CP, McKee AG, Penn WD, Hemmerich CM, Rusch DB, Woods H, Dyotima, Meiler J, Schlebach JP. Divergent folding-mediated epistasis among unstable membrane protein variants. eLife 2024; 12:RP92406. [PMID: 39078397 PMCID: PMC11288631 DOI: 10.7554/elife.92406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.
Collapse
Affiliation(s)
- Laura M Chamness
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Charles P Kuntz
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| | - Andrew G McKee
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Wesley D Penn
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana UniversityBloomingtonUnited States
| | - Hope Woods
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
- Chemical and Physical Biology Program, Vanderbilt UniversityNashvilleUnited States
| | - Dyotima
- Department of Chemistry, Indiana UniversityBloomingtonUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
- Institute for Drug Discovery, Leipzig UniversityLeipzigGermany
| | - Jonathan P Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| |
Collapse
|
5
|
Moss MJ, Chamness LM, Clark PL. The Effects of Codon Usage on Protein Structure and Folding. Annu Rev Biophys 2024; 53:87-108. [PMID: 38134335 PMCID: PMC11227313 DOI: 10.1146/annurev-biophys-030722-020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.
Collapse
Affiliation(s)
- McKenze J Moss
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Laura M Chamness
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; , ,
| |
Collapse
|
6
|
Hegde RS, Keenan RJ. A unifying model for membrane protein biogenesis. Nat Struct Mol Biol 2024; 31:1009-1017. [PMID: 38811793 PMCID: PMC7616256 DOI: 10.1038/s41594-024-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Lewis AJO, Zhong F, Keenan RJ, Hegde RS. Structural analysis of the dynamic ribosome-translocon complex. eLife 2024; 13:RP95814. [PMID: 38896445 PMCID: PMC11186639 DOI: 10.7554/elife.95814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61's lateral gate, widening Sec61's central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.
Collapse
Affiliation(s)
- Aaron JO Lewis
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | | |
Collapse
|
8
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
9
|
Yao J, Hong H. Steric trapping strategy for studying the folding of helical membrane proteins. Methods 2024; 225:1-12. [PMID: 38428472 PMCID: PMC11107808 DOI: 10.1016/j.ymeth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
Elucidating the folding energy landscape of membrane proteins is essential to the understanding of the proteins' stabilizing forces, folding mechanisms, biogenesis, and quality control. This is not a trivial task because the reversible control of folding is inherently difficult in a lipid bilayer environment. Recently, novel methods have been developed, each of which has a unique strength in investigating specific aspects of membrane protein folding. Among such methods, steric trapping is a versatile strategy allowing a reversible control of membrane protein folding with minimal perturbation of native protein-water and protein-lipid interactions. In a nutshell, steric trapping exploits the coupling of spontaneous denaturation of a doubly biotinylated protein to the simultaneous binding of bulky monovalent streptavidin molecules. This strategy has been evolved to investigate key elements of membrane protein folding such as thermodynamic stability, spontaneous denaturation rates, conformational features of the denatured states, and cooperativity of stabilizing interactions. In this review, we describe the critical methodological advancement, limitation, and outlook of the steric trapping strategy.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Ogunbowale A, Georgieva ER. Engineered Chimera Protein Constructs to Facilitate the Production of Heterologous Transmembrane Proteins in E. coli. Int J Mol Sci 2024; 25:2354. [PMID: 38397029 PMCID: PMC10889703 DOI: 10.3390/ijms25042354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
To delve into the structure-function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli's membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs' expression in E. coli.
Collapse
Affiliation(s)
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
11
|
Chamness LM, Kuntz CP, McKee AG, Penn WD, Hemmerich CM, Rusch DB, Woods H, Dyotima, Meiler J, Schlebach JP. Divergent Folding-Mediated Epistasis Among Unstable Membrane Protein Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554866. [PMID: 37662415 PMCID: PMC10473758 DOI: 10.1101/2023.08.25.554866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.
Collapse
Affiliation(s)
- Laura M. Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Charles P. Kuntz
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Andrew G. McKee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Wesley D. Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Hope Woods
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Dyotima
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC, Germany
| | - Jonathan P. Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Wu H, Smalinskaitė L, Hegde RS. EMC rectifies the topology of multipass membrane proteins. Nat Struct Mol Biol 2024; 31:32-41. [PMID: 37957425 PMCID: PMC10803268 DOI: 10.1038/s41594-023-01120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 11/15/2023]
Abstract
Most eukaryotic multipass membrane proteins are inserted into the membrane of the endoplasmic reticulum. Their transmembrane domains (TMDs) are thought to be inserted co-translationally as they emerge from a membrane-bound ribosome. Here we find that TMDs near the carboxyl terminus of mammalian multipass proteins are inserted post-translationally by the endoplasmic reticulum membrane protein complex (EMC). Site-specific crosslinking shows that the EMC's cytosol-facing hydrophilic vestibule is adjacent to a pre-translocated C-terminal tail. EMC-mediated insertion is mostly agnostic to TMD hydrophobicity, favored for short uncharged C-tails and stimulated by a preceding unassembled TMD bundle. Thus, multipass membrane proteins can be released by the ribosome-translocon complex in an incompletely inserted state, requiring a separate EMC-mediated post-translational insertion step to rectify their topology, complete biogenesis and evade quality control. This sequential co-translational and post-translational mechanism may apply to ~250 diverse multipass proteins, including subunits of the pentameric ion channel family that are crucial for neurotransmission.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
13
|
Bai L, Li H. Structural insights into the membrane chaperones for multi-pass membrane protein biogenesis. Curr Opin Struct Biol 2023; 79:102563. [PMID: 36863267 DOI: 10.1016/j.sbi.2023.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 03/04/2023]
Abstract
Certain transmembrane α-helices of multi-pass membrane proteins line substrate transport paths or catalytic pockets and, therefore, are partially hydrophilic. Sec61 alone is insufficient to insert these less hydrophobic segments into the membrane and needs to work with dedicated membrane chaperones. Three such membrane chaperones have been described in the literature-the endoplasmic reticulum membrane protein complex (EMC), the TMCO1 complex, and the PAT complex. Recent structural studies on these membrane chaperones have revealed their overall architecture, multi-subunit assembly, putative substrate transmembrane helix-binding pockets, and cooperative mechanisms with the ribosome and Sec61 translocon. These structures are providing initial insights into the poorly understood processes of multi-pass membrane protein biogenesis.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, 49503, United States.
| |
Collapse
|
14
|
Itskanov S, Park E. Mechanism of Protein Translocation by the Sec61 Translocon Complex. Cold Spring Harb Perspect Biol 2023; 15:a041250. [PMID: 35940906 PMCID: PMC9808579 DOI: 10.1101/cshperspect.a041250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program
- California Institute for Quantitative Biosciences
| | - Eunyong Park
- California Institute for Quantitative Biosciences
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|