1
|
Ma L, Li R, Li P, Yu W, Tang Z, Si L, Tian H. GINS1 facilitates the development of lung adenocarcinoma via Wnt/β-catenin activation. World J Surg Oncol 2025; 23:122. [PMID: 40197379 PMCID: PMC11974172 DOI: 10.1186/s12957-025-03786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/29/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma(LUAD) is the primary reason for cancer-related deaths globally. GINS1 has a significant regulatory function in DNA replication. It is overexpressed in various malignant tumors, but the specific molecular mechanisms of GINS1 in LUAD pathogenesis are not fully elucidated. This is the first report that GINS1 enhances LUAD by activating Wnt/β-catenin signaling pathway, and may serve as a potential target for therapy. METHODS Bioinformatic analysis including analysis of difference, survival analysis and pathway enrichment, immunohistochemistry(IHC), western blotting(WB), and quantitative real time polymerase chain reaction(qRT-PCR) were used to detect GINS1 expression in LUAD cell lines and tissues. A range of in vivo and in vitro experiments, such as cck-8, EdU, cloning experiment, wound healing experiment and transwell experiment, confirmed that GINS1 facilitated the proliferation and migration of LUAD. Additionally, the potential mechanism of GINS1 was hypothesized through WB and transcriptome sequencing. The rescue experiment was used to verify our conclusion. RESULTS In this study, we discovered that GINS1 is significantly overexpressed in LUAD cell lines and tissues. Analysis of Kaplan - Meier survival data indicated that high levels of GINS1 expression are often linked to unfavorable survival outcomes. Additionally, a series of experiments showed that silencing GINS1 led to less proliferation and migration of LUAD cell lines, while its overexpression enhanced tumor progression. Furthermore, subcutaneous tumor experiments in nude mice supported the role of GINS1 in promoting tumor development in vivo. Lastly, transcriptome sequencing revealed that tumor progression is related to cell cycle (G1 to S phase transition associated with cyclinD) and β-catenin signaling pathway, which we subsequently validated using WB. A series of rescue experiment further confirmed that GINS1 facilitates the advancement of LUAD via the β-catenin signaling pathway. CONCLUSIONS Our findings suggest that GINS1 plays a critical role in the progression of LUAD by modulating key molecular pathways, particularly the β-catenin signaling pathway., and it might serve as a potential new target of β-catenin signaling pathway for treatment of LUAD.
Collapse
Affiliation(s)
- Luyuan Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Pengyong Li
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhanpeng Tang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Shaz H, Nandi P, Sengupta S. Site directed mutagenesis reveals functional importance of conserved amino acid residues within the N-terminal domain of Dpb2 in budding yeast. Arch Microbiol 2024; 207:14. [PMID: 39690285 DOI: 10.1007/s00203-024-04214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome. Site-directed mutagenesis studies on conserved amino acid residues within the N-terminal domain of Dpb2 led to identification of key amino acid residues involved in interaction with Psf1 subunit of GINS. These amino acid residues are found to be well conserved among Dpb2 orthologues in higher eukaryotes thereby indicating the protein-protein interaction to be evolutionarily conserved. Replicating cells are known to mount a strong replicative stress response and DNA damage response upon exposure to diverse range of stressors. Here, we show that the absence of the N-terminal domain of Dpb2 increases the vulnerability of the budding yeast cells towards the cytotoxic effects of hydroxyurea (HU) and methyl methane sulphonate (MMS). Our results illustrate the importance of N-terminal domain of Dpb2 not only during replisome assembly but also in coordinating stress response in budding yeast. Considering high degree of sequence conservation across eukaryotes, Dpb2 subunit of leading-strand DNA polymerase appears to have important implications in maintenance of genome integrity.
Collapse
Affiliation(s)
- Huma Shaz
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Prakash Nandi
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
3
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
4
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Stewart GS. DONSON: Slding in 2 the limelight. DNA Repair (Amst) 2024; 134:103616. [PMID: 38159447 DOI: 10.1016/j.dnarep.2023.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
For over a decade, it has been known that yeast Sld2, Dpb11, GINS and Polε form the pre-loading complex (pre-LC), which is recruited to a CDC45-bound MCM2-7 complex by the Sld3/Sld7 heterodimer in a phospho-dependent manner. Whilst functional orthologs of Dbp11 (TOPBP1), Sld3 (TICRR) and Sld7 (MTBP) have been identified in metazoans, controversy has surrounded the identity of the Sld2 ortholog. It was originally proposed that the RECQ helicase, RECQL4, which is mutated in Rothmund-Thomson syndrome, represented the closest vertebrate ortholog of Sld2 due to a small region of sequence homology at its N-Terminus. However, there is no clear evidence that RECQL4 is required for CMG loading. Recently, new findings suggest that the functional ortholog of Sld2 is actually DONSON, a replication fork stability factor mutated in a range of neurodevelopmental disorders characterised by microcephaly, short stature and limb abnormalities. These studies show that DONSON forms a complex with TOPBP1, GINS and Polε analogous to the pre-LC in yeast, which is required to position the GINS complex on the MCM complex and initiate DNA replication. Taken together with previously published functions for DONSON, these observations indicate that DONSON plays two roles in regulating DNA replication, one in promoting replication initiation and one in stabilising the fork during elongation. Combined, these findings may help to uncover why DONSON mutations are associated with such a wide range of clinical deficits.
Collapse
Affiliation(s)
- Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Hashimoto Y, Sadano K, Miyata N, Ito H, Tanaka H. Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation. EMBO J 2023; 42:e114131. [PMID: 37458194 PMCID: PMC10476173 DOI: 10.15252/embj.2023114131] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kota Sadano
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Nene Miyata
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Haruka Ito
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hirofumi Tanaka
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
7
|
GINS2 Is Downregulated in Peripheral Blood of Patients with Intervertebral Disk Degeneration and Promotes Proliferation and Migration of Nucleus Pulposus Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1986348. [PMID: 36092790 PMCID: PMC9462986 DOI: 10.1155/2022/1986348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
GINS complex subunit 2 (GINS2) regulates the migration, invasion, and growth of cells in many malignant and chronic diseases. In the present study, we aimed to investigate the expression of GINS2 in the peripheral blood and nucleus pulposus (NP) cells of patients with intervertebral disk degeneration (IDD). GINS2 expression was detected using bioinformatics tools from the GEO public repository and validated using peripheral blood samples from IDD patients and healthy participants. GINS2 clinical significance was explored by the receiver operating curve (ROC) utilizing area under the curve (AUC). Moreover, the influences of GINS2 on cell viability, migration, and invasion were explored by MTT, wound healing, and transwell assays, whereas cell apoptosis was determined by flow cytometry. Expression levels of GINS2 in the peripheral blood were significantly lower in IDD patients than in healthy participants. Moreover, ROC obtained a significantly higher AUC of GINS2 in IDD patients. Further, overexpressed GINS2 increased the proliferation, migration, and invasion of NP cells while overexpressed GINS2 decreased the apoptotic property of cells compared to the NC plasmid and control groups. In conclusion, GINS2 might be a potential therapeutic target of IDD.
Collapse
|
8
|
Hu H, Ye L, Liu Z. GINS2 regulates the proliferation and apoptosis of colon cancer cells through PTP4A1. Mol Med Rep 2022; 25:117. [PMID: 35137928 PMCID: PMC8855163 DOI: 10.3892/mmr.2022.12633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is associated with high death rates worldwide and poses a serious threat to public health. GINS complex subunit 2 (GINS2) serves a carcinogenic role in many cancers, including gastric adenocarcinoma, ovarian cancer and pancreatic cancer. However, the specific function of GINS2 in the development of colon cancer has not been described in detail. The present study aimed to clarify the role of GINS2 in colon cancer. A Cell Counting Kit‑8 assay, EdU staining, TUNEL and flow cytometry analyses were performed to determine the levels of cell viability, proliferation and apoptosis and to evaluate the cell cycle. Through the analysis of BioGrid, a Protein‑Protein Interaction database, it was hypothesized that protein tyrosine phosphatase 4A1 (PTP4A1) is a protein that might interact with GINS2, which was then validated using a co‑immunoprecipitation assay. mRNA and protein levels were measured using reverse transcription‑quantitative PCR and western blotting, respectively. The results of the present study demonstrated that GINS2 expression levels were increased in colon cancer cells. Furthermore, GINS2 knockdown inhibited the proliferation of colon cancer cells, while the levels of cell cycle arrest and apoptosis were increased. By interacting with PTP4A1, GINS2 promoted the expression of PTP4A1, a novel p53 target. GINS2 knockdown was increased, while PTP4A1 overexpression decreased the protein level of p53. Notably, PTP4A1 overexpression partly reversed the effects of GINS2 downregulation on colon cancer cells. Therefore, the present study demonstrated that GINS2 regulated the proliferation and apoptosis of colon cancer cells through PTP4A1/p53 pathway, highlighting that GINS2 may serve as a novel molecular marker for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Hao Hu
- Department of Endoscopy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Lina Ye
- Department of Endoscopy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Zhe Liu
- Department of Gastroenterology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
9
|
Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst) 2022; 110:103272. [DOI: 10.1016/j.dnarep.2022.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
|
10
|
Wu C, Zhou Y, Wang M, Dai G, Liu X, Lai L, Tang S. Bioinformatics Analysis Explores Potential Hub Genes in Nonalcoholic Fatty Liver Disease. Front Genet 2021; 12:772487. [PMID: 34777484 PMCID: PMC8586215 DOI: 10.3389/fgene.2021.772487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent chronic liver disease worldwide. However, the dysregulated gene expression for NAFLD is still poorly understood. Material and methods: We analyzed two public datasets (GSE48452 and GSE89632) to identify differentially expressed genes (DEGs) in NAFLD. Then, we performed a series of bioinformatics analyses to explore potential hub genes in NAFLD. Results: This study included 26 simple steatosis (SS), 34 nonalcoholic steatohepatitis (NASH), and 13 healthy controls (HC). We observed 6 up- and 19 down-regulated genes in SS, and 13 up- and 19 down-regulated genes in NASH compared with HC. Meanwhile, the overlapping pathways between SS and NASH were PI3K-Akt signaling pathway and pathways in cancer. Then, we screened out 10 hub genes by weighted Gene Co-Expression Network Analysis (WGCNA) and protein-protein interaction (PPI) networks. Eventually, we found that CYP7A1/GINS2/PDLIM3 were associated with the prognosis of hepatocellular carcinoma (HCC) in the TCGA database. Conclusion: Although further validation is still needed, we provide useful and novel information to explore the potential candidate genes for NAFLD prognosis and therapeutic options.
Collapse
Affiliation(s)
- Chutian Wu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yun Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Gastroenterology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Min Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guolin Dai
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiongxiu Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Leizhen Lai
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Huang L, Chen S, Fan H, Ji D, Chen C, Sheng W. GINS2 promotes EMT in pancreatic cancer via specifically stimulating ERK/MAPK signaling. Cancer Gene Ther 2021; 28:839-849. [PMID: 32747685 PMCID: PMC8370876 DOI: 10.1038/s41417-020-0206-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Go-Ichi-Ni-San 2 (GINS2), as a newly discovered oncogene, is overexpressed in several cancers. However, the specific role of GINS2 in the development of pancreatic cancer (PC), to our knowledge, is poorly understood. We systematically explored the potential role of GINS2 in epithelial-mesenchymal-transition (EMT)-stimulated PC in vitro and vivo. GINS2 was overexpressed in human PC specimens, which was positively associated with tumor size (P = 0.010), T stage (P = 0.006), vascular invasion (P = 0.037), and the poor prognosis (P = 0.004). Interestingly, a close correlation between GINS2, E-cadherin, and Vimentin (P = 0.014) was found in human PC specimens and cell lines that coordinately promoted the worse survival of PC patients (P = 0.009). GINS2 overexpression stimulated EMT in vitro, including promoting EMT-like cellular morphology, enhancing cell motility, and activating EMT and ERK/MAPK signal pathways. However, PD98059, a specific MEK1 inhibitor, reversed GINS2 overexpression-stimulated EMT in vitro. Conversely, GINS2 silencing inhibited EMT in PANC-1 cells, which was also rescued by GINS2-GFP. Moreover, GINS2 was colocalized and co-immunoprecipitated with ERK in GINS2 high-expression Miapaca-2 and PANC-1 cells, implying a tight interaction of GINS2 with ERK/MAPK signaling. Meanwhile, GINS2 overexpression inhibited distant liver metastases in vivo, following a tight association with EMT and ERK/MAPK signaling, which was reversed by MEK inhibitor. Overexpression of GINS2 contributes to advanced clinical stage of PC patient and promotes EMT in vitro and vivo via specifically activating ERK/MAPK signal pathway.
Collapse
Affiliation(s)
- Longping Huang
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Si Chen
- Department of Anesthesiology, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Haijun Fan
- Department of General Surgery, Hepatobiliary Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Dawei Ji
- Department of General Surgery, The Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Chuanping Chen
- Department of Clinical Laboratory, The Sixth Peoples' Hospital of Shenyang, Shenyang, 110003, Liaoning, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
12
|
Müller M, Pelkmans L, Berry S. High content genome-wide siRNA screen to investigate the coordination of cell size and RNA production. Sci Data 2021; 8:162. [PMID: 34183683 PMCID: PMC8239010 DOI: 10.1038/s41597-021-00944-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Coordination of RNA abundance and production rate with cell size has been observed in diverse organisms and cell populations. However, how cells achieve such ‘scaling’ of transcription with size is unknown. Here we describe a genome-wide siRNA screen to identify regulators of global RNA production rates in HeLa cells. We quantify the single-cell RNA production rate using metabolic pulse-labelling of RNA and subsequent high-content imaging. Our quantitative, single-cell measurements of DNA, nascent RNA, proliferating cell nuclear antigen (PCNA), and total protein, as well as cell morphology and population-context, capture a detailed cellular phenotype. This allows us to account for changes in cell size and cell-cycle distribution (G1/S/G2) in perturbation conditions, which indirectly affect global RNA production. We also take advantage of the subcellular information to distinguish between nascent RNA localised in the nucleolus and nucleoplasm, to approximate ribosomal and non-ribosomal RNA contributions to perturbation phenotypes. Perturbations uncovered through this screen provide a resource for exploring the mechanisms of regulation of global RNA metabolism and its coordination with cellular states. Measurement(s) | nascent RNA • Image • S phase • nucleolus organization • Cellular Morphology • Cell Cycle Phase | Technology Type(s) | metabolic labelling: 5-ethynyl uridine • spinning-disk confocal microscope • supervised machine learning • Image Processing | Factor Type(s) | gene expression | Sample Characteristic - Organism | HeLa cell | Sample Characteristic - Environment | cell culture |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14332916
Collapse
Affiliation(s)
- Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland.
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
13
|
Liu Y, Wang L, Xu X, Yuan Y, Zhang B, Li Z, Xie Y, Yan R, Zheng Z, Ji J, Murray JM, Carr AM, Kong D. The intra-S phase checkpoint directly regulates replication elongation to preserve the integrity of stalled replisomes. Proc Natl Acad Sci U S A 2021; 118:e2019183118. [PMID: 34108240 PMCID: PMC8214678 DOI: 10.1073/pnas.2019183118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA replication is dramatically slowed down under replication stress. The regulation of replication speed is a conserved response in eukaryotes and, in fission yeast, requires the checkpoint kinases Rad3ATR and Cds1Chk2 However, the underlying mechanism of this checkpoint regulation remains unresolved. Here, we report that the Rad3ATR-Cds1Chk2 checkpoint directly targets the Cdc45-MCM-GINS (CMG) replicative helicase under replication stress. When replication forks stall, the Cds1Chk2 kinase directly phosphorylates Cdc45 on the S275, S322, and S397 residues, which significantly reduces CMG helicase activity. Furthermore, in cds1Chk2 -mutated cells, the CMG helicase and DNA polymerases are physically separated, potentially disrupting replisomes and collapsing replication forks. This study demonstrates that the intra-S phase checkpoint directly regulates replication elongation, reduces CMG helicase processivity, prevents CMG helicase delinking from DNA polymerases, and therefore helps preserve the integrity of stalled replisomes and replication forks.
Collapse
Affiliation(s)
- Yang Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lu Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Xu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Yuan
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeyang Li
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuchen Xie
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rui Yan
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zeqi Zheng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Johanne M Murray
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Antony M Carr
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China;
- National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Zhang Z, Chen P, Xie H, Cao P. Overexpression of GINS4 Is Associated With Tumor Progression and Poor Survival in Hepatocellular Carcinoma. Front Oncol 2021; 11:654185. [PMID: 33842367 PMCID: PMC8027117 DOI: 10.3389/fonc.2021.654185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Our research was aimed to identify the expression, clinical value and biological significance of GINS complex subunit 4 (GINS4) in hepatocellular carcinoma (HCC). Materials and Methods GINS4 was initially screened through weighted gene co-expression network analysis (WGCNA). The TCGA, GEO, and TIMER databases were applied for analyzing the GINS4 mRNA expression in HCC. GINS4 protein levels were detected via immunohistochemistry (IHC). Receiver operating characteristic (ROC) curve was applied for estimating the diagnostic significance of GINS4 in HCC. Kaplan-Meier plots, Cox model, and nomogram were used to assess the prognostic performance of GINS4 in HCC. Nomogram validation was conducted through time-dependent ROC and decision curve analysis (DCA). The Wanderer, UALCAN, and DiseaseMeth databases were utilized to identify GINS4 methylation levels in HCC. Genes co-expressed with GINS4 in HCC were estimated through the TCGA, cBioPortal, and GEPIA. GO, KEGG, and GSEA unraveled the possible biological mechanisms of GINS4 in HCC. Results WGCNA confirmed that GINS4 was one of hub genes significantly associated with histological grade of HCC. Multiple databases confirmed the significant upregulation of GINS4 in HCC tissues compared with non-tumor controls. IHC analysis of 35 HCC patients demonstrated that overexpressed GINS4 positively correlated with advanced TNM stage and poor pathological differentiation. GINS4 could effectively differentiate HCC cases from healthy individuals, with an AUC of 0.865. Increased GINS4 expression predicted unsatisfactory prognosis in HCC patients, especially in age >60 years, histological grade 1, HBV infection-negative, and occurring relapse subgroup. Nomogram incorporating GINS4 level and TNM stage displayed satisfactory predictive accuracy and clinical utility in predicting HCC prognosis. Upregulated GINS4 exhibited hypomethylated levels in HCC. Functional analysis indicated that GINS4 potentially positively modulated cell cycle and PI3K/AKT/mTOR pathway. Conclusion GINS4 is overexpressed in HCC and is correlated with undesirable survival of HCC patients.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Denkiewicz-Kruk M, Jedrychowska M, Endo S, Araki H, Jonczyk P, Dmowski M, Fijalkowska IJ. Recombination and Pol ζ Rescue Defective DNA Replication upon Impaired CMG Helicase-Pol ε Interaction. Int J Mol Sci 2020; 21:ijms21249484. [PMID: 33322195 PMCID: PMC7762974 DOI: 10.3390/ijms21249484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022] Open
Abstract
The CMG complex (Cdc45, Mcm2–7, GINS (Psf1, 2, 3, and Sld5)) is crucial for both DNA replication initiation and fork progression. The CMG helicase interaction with the leading strand DNA polymerase epsilon (Pol ε) is essential for the preferential loading of Pol ε onto the leading strand, the stimulation of the polymerase, and the modulation of helicase activity. Here, we analyze the consequences of impaired interaction between Pol ε and GINS in Saccharomyces cerevisiae cells with the psf1-100 mutation. This significantly affects DNA replication activity measured in vitro, while in vivo, the psf1-100 mutation reduces replication fidelity by increasing slippage of Pol ε, which manifests as an elevated number of frameshifts. It also increases the occurrence of single-stranded DNA (ssDNA) gaps and the demand for homologous recombination. The psf1-100 mutant shows elevated recombination rates and synthetic lethality with rad52Δ. Additionally, we observe increased participation of DNA polymerase zeta (Pol ζ) in DNA synthesis. We conclude that the impaired interaction between GINS and Pol ε requires enhanced involvement of error-prone Pol ζ, and increased participation of recombination as a rescue mechanism for recovery of impaired replication forks.
Collapse
Affiliation(s)
- Milena Denkiewicz-Kruk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Malgorzata Jedrychowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Shizuko Endo
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; (S.E.); (H.A.)
| | - Hiroyuki Araki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; (S.E.); (H.A.)
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
| | - Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
- Correspondence: (M.D.); (I.J.F.); Tel.: +48-22-5921128 (M.D.); +48-22-5921113 (I.J.F.)
| | - Iwona J. Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.D.-K.); (M.J.); (P.J.)
- Correspondence: (M.D.); (I.J.F.); Tel.: +48-22-5921128 (M.D.); +48-22-5921113 (I.J.F.)
| |
Collapse
|
17
|
Tian W, Yang X, Yang H, Zhou B. GINS2 Functions as a Key Gene in Lung Adenocarcinoma by WGCNA Co-Expression Network Analysis. Onco Targets Ther 2020; 13:6735-6746. [PMID: 32753902 PMCID: PMC7354913 DOI: 10.2147/ott.s255251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Lung adenocarcinoma is one of the malignant tumors in the world. This study aimed to explore the biological mechanism of GINS2 in lung adenocarcinoma. Materials and Methods Raw data were downloaded from GEO. WGCNA co-expression network and PPI network were established to identify the hub gene. The expression profile and clinical features of GINS2 were collected from TCGA-LUAD cohort. Survival analysis in TCGA-LUAD cohort was plotted by R package. GSEA was analyzed via GSEA software. MTS, Transwell and apoptosis assays were used to detect the proliferation, migration and apoptotic abilities of lung adenocarcinoma cells. Results GINS2 was identified as the hub gene via WGCNA co-expression network and PPI network. Higher GINS2 expressions were observed in TCGA-LUAD cohort, GSE32863 and clinical samples dataset. Overexpression of GINS2 had a significantly negative connection with poor survival outcome. GSEA results revealed that GINS2 could be enriched in “HALLMARK_G2M_CHECKPOINT”, “HALLMARK_E2F_TARGETS”, “HALLMARK_DNA_REPAIR” and “HALLMARK_MYC_TARGETS_V2”. Overexpression of GINS2 promoted tumor cell proliferation and migration and suppressed cell apoptosis. Conclusion Our results explored that GINS2 functioned as an oncogene in lung adenocarcinoma, and suggested that GINS2 could act as a promising prognosis biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xianglin Yang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - He Yang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
18
|
Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 2020; 8:373. [PMID: 32548116 PMCID: PMC7270345 DOI: 10.3389/fcell.2020.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.
Collapse
Affiliation(s)
- Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kitti Csályi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Bertyák
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- HAS-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard J Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kara L Cerveny
- Biology Department, Reed College, Portland, OR, United States
| | - Dorottya Kövesdi
- Office of Supported Research Groups of the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannah Rouse
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Zsuzsa Vad
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Medical and Biomedical Education, St. George's University of London, London, United Kingdom
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
19
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
20
|
Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism. PLoS Genet 2019; 15:e1008494. [PMID: 31815930 PMCID: PMC6922473 DOI: 10.1371/journal.pgen.1008494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/19/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Faithful replication and repair of DNA lesions ensure genome maintenance. During replication in eukaryotic cells, DNA is unwound by the CMG helicase complex, which is composed of three major components: the Cdc45 protein, Mcm2-7, and the GINS complex. The CMG in complex with DNA polymerase epsilon (CMG-E) participates in the establishment and progression of the replisome. Impaired functioning of the CMG-E was shown to induce genomic instability and promote the development of various diseases. Therefore, CMG-E components play important roles as caretakers of the genome. In Saccharomyces cerevisiae, the GINS complex is composed of the Psf1, Psf2, Psf3, and Sld5 essential subunits. The Psf1-1 mutant form fails to interact with Psf3, resulting in impaired replisome assembly and chromosome replication. Here, we show increased instability of repeat tracts (mononucleotide, dinucleotide, trinucleotide and longer) in yeast psf1-1 mutants. To identify the mechanisms underlying this effect, we analyzed repeated sequence instability using derivatives of psf1-1 strains lacking genes involved in translesion synthesis, recombination, or mismatch repair. Among these derivatives, deletion of RAD52, RAD51, MMS2, POL32, or PIF1 significantly decreased DNA repeat instability. These results, together with the observed increased amounts of single-stranded DNA regions and Rfa1 foci suggest that recombinational mechanisms make important contributions to repeat tract instability in psf1-1 cells. We propose that defective functioning of the CMG-E complex in psf1-1 cells impairs the progression of DNA replication what increases the contribution of repair mechanisms such as template switch and break-induced replication. These processes require sequence homology search which in case of a repeated DNA tract may result in misalignment leading to its expansion or contraction. Processes that ensure genome stability are crucial for all organisms to avoid mutations and decrease the risk of diseases. The coordinated activity of mechanisms underlying the maintenance of high-fidelity DNA duplication and repair is critical to deal with the malfunction of replication forks or DNA damage. Repeated sequences in DNA are particularly prone to instability; these sequences undergo expansions or contractions, leading in humans to various neurological, neurodegenerative, and neuromuscular disorders. A mutant form of one of the noncatalytic subunits of active DNA helicase complex impairs DNA replication. Here, we show that this form also significantly increases the instability of mononucleotide, dinucleotide, trinucleotide and longer repeat tracts. Our results suggest that in cells that harbor a mutated variant of the helicase complex, continuation of DNA replication is facilitated by recombination processes, and this mechanism can be highly mutagenic during repair synthesis through repetitive regions, especially regions that form secondary structures. Our results indicate that proper functioning of the DNA helicase complex is crucial for maintenance of the stability of repeated DNA sequences, especially in the context of recently described disorders in which mutations or deregulation of the human homologs of genes encoding DNA helicase subunits were observed.
Collapse
|
21
|
Embryonic expression of GINS members in the development of the mammalian nervous system. Neurochem Int 2019; 129:104465. [PMID: 31095979 DOI: 10.1016/j.neuint.2019.104465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
Abstract
The GINS (Go, Ichi, Nii, and San) complex contains four protein subunits (PSF1, PSF2, PSF3, and SLD5) and has been identified as a factor essential for the initiation and elongation stages of the DNA replication process. A previous study indicated that PSF2 participated in the developing central nervous system (CNS) of Xenopus laevis. However, the expression and function of GINS members in the mammalian developing nervous system remains unclear. Here, we examined the expression of GINS members in mice during nervous system development via immunofluorescence staining. At the beginning of neural development, PSF1 and SLD5 were highly expressed in neuroepithelial stem cells (NSCs) of the inner surface of neural tube (NT) and overlapped with proliferation marker Ki67. After entering the mid- and late-phase of neural development, PSF1 and SLD5 changed their regions of expression. These genes were highly expressed in dorsal root ganglion (DRG) progenitors, but they showed no overlap with Ki67 positive cells. Instead, a reduction of SLD5 expression promoted neuronal differentiation and maturation in the late-phase. PSF2 and PSF3 showed no tissue-specificity. PSF2 was constitutively and highly expressed whereas PSF3 was expressed at very low levels during neural development. In this study, we demonstrated variations in proteins and expression regions of the GINS members during mammalian CNS development and revealed a correlation between GINS expression and cell proliferation. Furthermore, we have suggested a novel function of GINS member SLD5, which regulates the differentiation of neural stem/progenitors.
Collapse
|
22
|
Up-regulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20181178. [PMID: 30413605 PMCID: PMC6435550 DOI: 10.1042/bsr20181178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
The GINS complex is one of the core components of the eukaryotic replicative helicase CMG (Cdc45–MCM helicase–GINS) complex that serves as the replicative helicase unwinding duplex DNA ahead of moving replication fork during chromosome duplication. Many studies have highlighted the important functions amongst GINS subunits in various cancers. Nevertheless, the functions and prognostic roles of distinct GINS subunits in hepatocellular carcinoma (HCC) were largely unexplored. In the present study, we reported the prognostic values of GINS subunits in HCC patients through analysis of several databases, including Oncomine, (TCGA), and Kaplan–Meier Plotter (KMPlotter). We found that mRNA expressions of all GINS subunits were significantly up-regulated in HCC tumor than in non-tumor liver tissues. Survival analysis revealed that elevated expression of individual GINS subunit predicts a poor overall survival (OS) in all HCC patients. When sorting the patients by gender, the correlation between elevated expression of individual GINS subunit and poor OS remains significant in male patient subgroup, but not in female patient subgroup. Additionally, we found that co-overexpression of all GINS subunits was significantly associated with a higher hazard ratio, suggesting the GINS complex may co-operate to promote HCC progression. Indeed, their expressions were highly correlated with each other in the same cohort and TRANSFAC analysis revealed that four transcription factors including C/EBPα, Oct-1, Sp1, and USF may serve as common transcription factors binding to the promoters of all four GINS subunits. Therefore, we propose that individual GINS subunit or GINS complex as a whole could be potential prognostic biomarkers for HCC.
Collapse
|
23
|
GINS2 promotes cell proliferation and inhibits cell apoptosis in thyroid cancer by regulating CITED2 and LOXL2. Cancer Gene Ther 2018; 26:103-113. [PMID: 30177819 DOI: 10.1038/s41417-018-0045-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
To explore the mechanisms of GINS2 on cell proliferation and apoptosis in thyroid cancer (TC) cells. Expressions of GINS2 were inhibited in K1 and SW579 cells using gene interference technology. The abilities of proliferation and apoptosis, and cell cycle were determined by MTT assay and flow cytometric assay. The downstream molecules of GINS2 were searched by microarray and bioinformatics and validated by qRT-PCR and western blotting. In the in vivo study, the tumor growth was compared and the whole-body fluorescent imaging was analyzed. After GINS2 was interfered, cell proliferation was significantly inhibited (P < 0.01) and apoptosis rate increased (P < 0.01) in both K1 and SW579 cells. Cell cycle changed significantly in K1 cells, but not in SW579 cells. With bioinformatics upstream analysis, TGF-β1 was found as the most significantly upstream regulator. Expressions of TGF-β1 and its downstream target molecules CITED2 and LOXL2 were validated and found downregulated significantly in mRNA and protein levels (P < 0.05). The results of the nude mouse xenograft assay suggested that the volume and weight of tumor in ones infected with shGINS2 were statistically smaller than controls (P < 0.05). GINS2 plays an important role in cell proliferation and apoptosis of thyroid cancer by regulating the expressions of CITED2 and LOXL2, which may be a potential biomarker for diagnosis or prognosis and a drug target for therapy.
Collapse
|
24
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
25
|
Nagata M, Ishino S, Yamagami T, Ogino H, Simons JR, Kanai T, Atomi H, Ishino Y. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic Acids Res 2017; 45:10693-10705. [PMID: 28977567 PMCID: PMC5737688 DOI: 10.1093/nar/gkx740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/12/2017] [Indexed: 01/18/2023] Open
Abstract
The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
26
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
27
|
New insights into the GINS complex explain the controversy between existing structural models. Sci Rep 2017; 7:40188. [PMID: 28071757 PMCID: PMC5223209 DOI: 10.1038/srep40188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022] Open
Abstract
GINS is a key component of eukaryotic replicative forks and is composed of four subunits (Sld5, Psf1, Psf2, Psf3). To explain the discrepancy between structural data from crystallography and electron microscopy (EM), we show that GINS is a compact tetramer in solution as observed in crystal structures, but also forms a double-tetrameric population, detectable by EM. This may represent an intermediate step towards the assembly of two replicative helicase complexes at origins, moving in opposite directions within the replication bubble. Reconstruction of the double-tetrameric form, combined with small-angle X-ray scattering data, allows the localisation of the B domain of the Psf1 subunit in the free GINS complex, which was not visible in previous studies and is essential for the formation of a functional replication fork.
Collapse
|
28
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
29
|
Tauchi S, Sakai Y, Fujimoto S, Ogawa H, Tane S, Hokka D, Tanaka Y, Nishio W, Yoshimura M, Yanagita E, Itoh T, Hayashi Y, Maniwa Y. Psf3 is a prognostic biomarker in lung adenocarcinoma: a larger trial using tissue microarrays of 864 consecutive resections. Eur J Cardiothorac Surg 2016; 50:758-764. [DOI: 10.1093/ejcts/ezw077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
30
|
Franz A, Ackermann L, Hoppe T. Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Front Genet 2016; 7:73. [PMID: 27200082 PMCID: PMC4853748 DOI: 10.3389/fgene.2016.00073] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
The dynamic composition of proteins associated with nuclear DNA is a fundamental property of chromosome biology. In the chromatin compartment dedicated protein complexes govern the accurate synthesis and repair of the genomic information and define the state of DNA compaction in vital cellular processes such as chromosome segregation or transcription. Unscheduled or faulty association of protein complexes with DNA has detrimental consequences on genome integrity. Consequently, the association of protein complexes with DNA is remarkably dynamic and can respond rapidly to cellular signaling events, which requires tight spatiotemporal control. In this context, the ring-like AAA+ ATPase CDC48/p97 emerges as a key regulator of protein complexes that are marked with ubiquitin or SUMO. Mechanistically, CDC48/p97 functions as a segregase facilitating the extraction of substrate proteins from the chromatin. As such, CDC48/p97 drives molecular reactions either by directed disassembly or rearrangement of chromatin-bound protein complexes. The importance of this mechanism is reflected by human pathologies linked to p97 mutations, including neurodegenerative disorders, oncogenesis, and premature aging. This review focuses on the recent insights into molecular mechanisms that determine CDC48/p97 function in the chromatin environment, which is particularly relevant for cancer and aging research.
Collapse
Affiliation(s)
- André Franz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Leena Ackermann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Institute for Genetics, University of Cologne Cologne, Germany
| |
Collapse
|
31
|
Benatti P, Belluti S, Miotto B, Neusiedler J, Dolfini D, Drac M, Basile V, Schwob E, Mantovani R, Blow JJ, Imbriano C. Direct non transcriptional role of NF-Y in DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:673-85. [PMID: 26732297 DOI: 10.1016/j.bbamcr.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/06/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julia Neusiedler
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Valentina Basile
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 & Université Montpellier, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - J Julian Blow
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 213/D, 41125 Modena, Italy.
| |
Collapse
|
32
|
Sanuki Y, Kubota Y, Kanemaki MT, Takahashi TS, Mimura S, Takisawa H. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle 2015; 14:1010-23. [PMID: 25602506 DOI: 10.1080/15384101.2015.1007003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.
Collapse
Affiliation(s)
- Yosuke Sanuki
- a Department of Biological Sciences; Graduate School of Science ; Osaka University ; Toyonaka , Osaka , Japan
| | | | | | | | | | | |
Collapse
|
33
|
Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2-7 Helicase to Reveal Essential Features of Structure and Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:305497. [PMID: 26539061 PMCID: PMC4619765 DOI: 10.1155/2015/305497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring.
Collapse
|
34
|
The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase. J Bacteriol 2015; 197:3409-20. [PMID: 26283767 DOI: 10.1128/jb.00496-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED GINS is a key component of the eukaryotic Cdc45-minichromosome maintenance (MCM)-GINS (CMG) complex, which unwinds duplex DNA at the moving replication fork. Archaeal GINS complexes have been shown to stimulate the helicase activity of their cognate MCM mainly by elevating its ATPase activity. Here, we report that GINS from the thermoacidophilic crenarchaeon Sulfolobus solfataricus (SsoGINS) is capable of DNA binding and binds preferentially to single-stranded DNA (ssDNA) over double-stranded DNA (dsDNA). Notably, SsoGINS binds more strongly to dsDNA with a 5' ssDNA tail than to dsDNA with a 3' tail and more strongly to an ssDNA fragment blocked at the 3' end than to one at the 5' end with a biotin-streptavidin (SA) complex, suggesting the ability of the protein complex to slide in a 5'-to-3' direction along ssDNA. DNA-bound SsoGINS enhances DNA binding by SsoMCM. Furthermore, SsoGINS increases the helicase activity of SsoMCM. However, the ATPase activity of SsoMCM is not affected by SsoGINS. Our results suggest that SsoGINS facilitates processive DNA unwinding by SsoMCM by enhancing the binding of the helicase to DNA. We propose that SsoGINS stabilizes the interaction of SsoMCM with the replication fork and moves along with the helicase as the fork progresses. IMPORTANCE GINS is a key component of the eukaryotic Cdc45-MCM-GINS complex, a molecular motor that drives the unwinding of DNA in front of the replication fork. Archaea also encode GINS, which interacts with MCM, the helicase. But how archaeal GINS serves its role remains to be understood. In this study, we show that GINS from the hyperthermophilic archaeon Sulfolobus solfataricus is able to bind to DNA and slide along ssDNA in a 5'-to-3' direction. Furthermore, Sulfolobus GINS enhances DNA binding by MCM, which slides along ssDNA in a 3'-to-5' direction. Taken together, these results suggest that Sulfolobus GINS may stabilize the interaction of MCM with the moving replication fork, facilitating processive DNA unwinding.
Collapse
|
35
|
Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors. Exp Cell Res 2015; 334:183-93. [PMID: 25933513 DOI: 10.1016/j.yexcr.2015.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34(+) transiently amplifying HSCs but not in CD34(-) long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34(+) HSCs produce long functional PSF1 (PSF1a) but CD34(-) HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1.
Collapse
|
36
|
Gerhardt J, Guler GD, Fanning E. Human DNA helicase B interacts with the replication initiation protein Cdc45 and facilitates Cdc45 binding onto chromatin. Exp Cell Res 2015; 334:283-93. [PMID: 25933514 DOI: 10.1016/j.yexcr.2015.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
The chromosomal DNA replication in eukaryotic cells begins at replication initation sites, which are marked by the assembly of the pre-replication complexes in early G1. At the G1/S transition, recruitment of additional replication initiation proteins enables origin DNA unwinding and loading of DNA polymerases. We found that depletion of the human DNA helicase B (HDHB) inhibits the initiation of DNA replication, suggesting a role of HDHB in the beginning of the DNA synthesis. To gain insight into the function of HDHB during replication initiation, we examined the physical interactions of purified recombinant HDHB with key initiation proteins. HDHB interacts directly with two initiation factors TopBP1 and Cdc45. In addition we found that both, the N-terminus and helicase domain of HDHB bind to the N-terminus of Cdc45. Furthermore depletion of HDHB from human cells diminishes Cdc45 association with chromatin, suggesting that HDHB may facilitate Cdc45 recruitment at G1/S in human cells.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gulfem D Guler
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
37
|
Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, Cittaro D, Segalla S, Lemaitre JM, Tonon G. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res 2015; 43:2560-74. [PMID: 25712104 PMCID: PMC4357704 DOI: 10.1093/nar/gkv090] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3.
Collapse
Affiliation(s)
- Beatrice Rondinelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Hélène Schwerer
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Elena Antonini
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Lupi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Marc Lemaitre
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
38
|
Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem 2014; 290:1210-21. [PMID: 25471369 DOI: 10.1074/jbc.m114.608232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| |
Collapse
|
39
|
Ogino H, Ishino S, Oyama T, Kohda D, Ishino Y. Disordered interdomain region of Gins is important for functional tetramer formation to stimulate MCM helicase in Thermoplasma acidophilum. Biosci Biotechnol Biochem 2014; 79:432-8. [PMID: 25419910 DOI: 10.1080/09168451.2014.982503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The eukaryotic MCM is activated by forming the CMG complex with Cdc45 and GINS to work as a replicative helicase. The eukaryotic GINS consists of four different proteins to form tetrameric complex. In contrast, the TaGins51 protein from the thermophilic archaeon, Thermoplasma acidophilum forms a homotetramer (TaGINS), and interacts with the cognate MCM (TaMCM) to stimulate the DNA-binding, ATPase, and helicase activities of TaMCM. All Gins proteins from Archaea and Eukarya contain α-helical A- and β-stranded B-domains. Here, we found that TaGins51 forms the tetramer without the B-domain. However, the A-domain without the linker region between the A- and B-domains could not form a stable tetramer, and furthermore, the A-domain by itself could not stimulate the TaMCM activity. These results suggest that the formation of the Gins51 tetramer is necessary for MCM activation, and the disordered linker region between the two domains is critical for the functional complex formation.
Collapse
Affiliation(s)
- Hiromi Ogino
- a Department of Bioscience & Biotechnology , Graduate School of Bioresource & Bioenvironmental Sciences, Kyushu University , Fukuoka , Japan
| | | | | | | | | |
Collapse
|
40
|
Sun X, Sui W, Huang M, Wang Y, Xuan Y, Wang Z. Partner of Sld five 3: a potential prognostic biomarker for colorectal cancer. Diagn Pathol 2014; 9:217. [PMID: 25403684 PMCID: PMC4244056 DOI: 10.1186/s13000-014-0217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Partner of Sld five 3 (PSF3) is a member of the evolutionarily conserved heterotetrameric complex "Go-Ichi-Ni-San" (GINS), which consists of SLD5, PSF1, PSF2, and PSF3. Previous studies have suggested that some GINS complex members are upregulated in cancer, but the status of PSF3 expression in colorectal cancer has not been investigated. METHODS We investigated the status of PSF3 expression in 137 consecutive resected colorectal caners by quantitative reverse-transcription polymerase chain reaction. Univariable and multivariable Cox regression analyses were performed to assess independent prognostic factors for overall survival in colorectal cancer. RESULTS In 137 restected colorectal cancer samples, median messenger RNA (mRNA) expression levels of PSF3 were significantly higher in tumor tissues (1.35 × 10(-3), range 2.88 × 10(-4) to 3.16 × 10(-2)) than in adjacent normal tissues (2.94 × 10(-4), range 5.48 × 10(-5) to 1.27 × 10(-3)) (P < 0.05). Moreover, high expression of PSF3 in tumor tissues was associated with shorter disease-free survival and overall survival. When analyzed with a Cox regression model, the PSF3 expression was an independent prognostic factor for overall survival. In addition, in patients with early stage (stage I and II) colorectal cancer, the overall survival rate of the high PSF3 expression group was significantly lower than that of the low PSF3 expression group (P < 0.001). CONCLUSIONS The PSF3 expression plays an important role in the progression of colorectal cancer and acts as a factor significantly affecting the prognosis of patients. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_217.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of Laboratory, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Wu Sui
- General Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Miaoling Huang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Yeli Wang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Yuanjie Xuan
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Zaiqiu Wang
- Anorectal Surgery, Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
41
|
Long DT, Joukov V, Budzowska M, Walter JC. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol Cell 2014; 56:174-85. [PMID: 25219499 DOI: 10.1016/j.molcel.2014.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
The tumor suppressor protein BRCA1 promotes homologous recombination (HR), a high-fidelity mechanism to repair DNA double-strand breaks (DSBs) that arise during normal replication and in response to DNA-damaging agents. Recent genetic experiments indicate that BRCA1 also performs an HR-independent function during the repair of DNA interstrand crosslinks (ICLs). Here we show that BRCA1 is required to unload the CMG helicase complex from chromatin after replication forks collide with an ICL. Eviction of the stalled helicase allows leading strands to be extended toward the ICL, followed by endonucleolytic processing of the crosslink, lesion bypass, and DSB repair. Our results identify BRCA1-dependent helicase unloading as a critical, early event in ICL repair.
Collapse
Affiliation(s)
- David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Joukov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Magda Budzowska
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Activation of the MCM helicase from the thermophilic archaeon, Thermoplasma acidophilum by interactions with GINS and Cdc6-2. Extremophiles 2014; 18:915-24. [PMID: 25107272 DOI: 10.1007/s00792-014-0673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
In DNA replication studies, the mechanism for regulation of the various steps from initiation to elongation is a crucial subject to understand cell cycle control. The eukaryotic minichromosome maintenance (MCM) protein complex is recruited to the replication origin by Cdc6 and Cdt1 to form the pre-replication complex, and participates in forming the CMG complex formation with Cdc45 and GINS to work as the active helicase. Intriguingly, Thermoplasma acidophilum, as well as many other archaea, has only one Gins protein homolog, contrary to the heterotetramer of the eukaryotic GINS made of four different proteins. The Gins51 protein reportedly forms a homotetramer (TaGINS) and physically interacts with TaMCM. In addition, TaCdc6-2, one of the two Cdc6/Orc1 homologs in T. acidophilum reportedly stimulates the ATPase and helicase activities of TaMCM in vitro. Here, we found a reaction condition, in which TaGINS stimulated the ATPase and helicase activities of TaMCM in a concentration dependent manner. Furthermore, the stimulation of the TaMCM helicase activity by TaGINS was enhanced by the addition of TaCdc6-2. A gel retardation assay revealed that TaMCM, TaGINS, and TaCdc6-2 form a complex on ssDNA. However, glutaraldehyde-crosslinking was necessary to detect the shifted band, indicating that the ternary complex of TaMCM-TaGINS-TaCdc6-2 is not stable in vitro. Immunoprecipitation experiment supported a weak interaction of these three proteins in vivo. Activation of the replicative helicase by a mechanism including a Cdc6-like protein suggests the divergent evolution after the division into Archaea and Eukarya.
Collapse
|
43
|
Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol 2014; 92:659-80. [PMID: 24628792 DOI: 10.1111/mmi.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
Abstract
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.
Collapse
Affiliation(s)
- Ewa Grabowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2014; 4:1-32. [PMID: 23599899 PMCID: PMC3627427 DOI: 10.3390/genes4010001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.
Collapse
Affiliation(s)
- Adam R. Leman
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| | - Eishi Noguchi
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| |
Collapse
|
45
|
Abstract
The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells.
Collapse
Affiliation(s)
- Vincent Archambault
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, UK.
| |
Collapse
|
46
|
Abstract
SLD5 forms a GINS complex with PSF1, PSF2 and PSF3, which is essential for the initiation of DNA replication in lower eukaryotes. Although these components are conserved in mammals, their biological function is unclear. We show here that targeted disruption of SLD5 in mice causes a defect in cell proliferation in the inner cell mass, resulting in embryonic lethality at the peri-implantation stage, indicating that SLD5 is essential for embryogenesis. Moreover, this phenotype of SLD5 mutant mice is quite similar compared with that of PSF1 mutant mice. We have previously reported that haploinsufficiency of PSF1 resulted in failure of acute proliferation of bone marrow hematopoietic stem cells (HSCs) during reconstitution of bone marrow ablated by 5-FU treatment. Since SLD5 was highly expressed in bone marrow, we investigated its involvement in bone marrow reconstitution after bone marrow ablation as observed in PSF1 heterozygous mutant mice. However, heterozygous deletion of the SLD5 gene was found not to significantly affect bone marrow reconstitution. On the other hand, abundant SLD5 expression was observed in human cancer cell lines and heterozygous deletion of the gene attenuated tumor progression in a murine model of spontaneous gastric cancer. These indicated that requirement and dependency of SLD5 for cell proliferation is different in different cell types.
Collapse
|
47
|
Sahashi R, Matsuda R, Suyari O, Kawai M, Yoshida H, Cotterill S, Yamaguchi M. Functional analysis of Drosophila DNA polymerase ε p58 subunit. Am J Cancer Res 2013; 3:478-489. [PMID: 24224125 PMCID: PMC3816967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023] Open
Abstract
DNA polymerase ε (polε) plays a central role in DNA replication in eukaryotic cells, and has been suggested to the main synthetic polymerase on the leading strand. It is a hetero-tetrameric enzyme, comprising a large catalytic subunit (the A subunit ~250 kDa), a B subunit of ~60 kDa in most species (~80 kDa in budding yeast) and two smaller subunits (each ~20 kDa). In Drosophila, two subunits of polε (dpolε) have been identified. One is the 255 kDa catalytic subunit (dpolεp255), and the other is the 58 kDa subunit (dpolεp58). The functions of the B subunit have been mainly studied in budding yeast and mammalian cell culture, few studies have been performed in the context of an intact multicellular organism and therefore its functions in this context remain poorly understood. To address this we examined the in vivo role of dpolεp58 in Drosophila. A homozygous dpolεp58 mutant is pupal lethal, and the imaginal discs are less developed in the third instar larvae. In the eye discs of this mutant S phases, as measured by BrdU incorporation assays, were significantly reduced. In addition staining with an anti-phospho histone H3 (PH3) antibody, (a marker of M phase), was increased in the posterior region of eye discs, where usually cells stop replicating and start differentiation. These results indicate that dpolεp58 is essential for Drosophila development and plays an important role in progression of S phase in mitotic cell cycles. We also observed that the size of nuclei in salivary gland cells were decreased in dpolεp58 mutant, indicating that dpolεp58 also plays a role in endoreplication. Furthermore we detect a putative functional interaction between dpolε and ORC2 in discs suggesting that polε plays a role in the initiation of DNA replication in Drosophila.
Collapse
Affiliation(s)
- Ritsuko Sahashi
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Risa Matsuda
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Current address: Environmental Research Laboratory of Public Health, Kankyo Eisei Yakuhin Co. Ltd.3-6-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Osamu Suyari
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Mieko Kawai
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University LondonCranmer Terrace, London SW17 0RE, UK
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
48
|
Hassan BH, Lindsey-Boltz LA, Kemp MG, Sancar A. Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. J Biol Chem 2013; 288:18903-10. [PMID: 23696651 DOI: 10.1074/jbc.m113.475517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TopBP1 (topoisomerase IIβ-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling.
Collapse
Affiliation(s)
- Bachar H Hassan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
49
|
Efficient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Mol Cell Biol 2013; 33:2614-22. [PMID: 23629628 DOI: 10.1128/mcb.00431-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dpb11/Cut5/TopBP1 is evolutionarily conserved and is essential for the initiation of DNA replication in eukaryotes. The Dpb11 of the budding yeast Saccharomyces cerevisiae has four BRCT domains (BRCT1 to -4). The N-terminal pair (BRCT1 and -2) and the C-terminal pair (BRCT3 and -4) bind to cyclin-dependent kinase (CDK)-phosphorylated Sld3 and Sld2, respectively. These phosphorylation-dependent interactions trigger the initiation of DNA replication. BRCT1 and -2 and BRCT3 and -4 of Dpb11 are separated by a short stretch of ~100 amino acids. It is unknown whether this inter-BRCT region functions in DNA replication. Here, we showed that the inter-BRCT region is a GINS interaction domain that is essential for cell growth and that mutations in this domain cause replication defects in budding yeast. We found the corresponding region in the vertebrate ortholog, TopBP1, and showed that the corresponding region also interacts with GINS and is required for efficient DNA replication. We propose that the inter-BRCT region of Dpb11 is a functionally conserved GINS interaction domain that is important for the initiation of DNA replication in eukaryotes.
Collapse
|
50
|
Li Y, Araki H. Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 2013; 18:266-77. [PMID: 23461534 PMCID: PMC3657122 DOI: 10.1111/gtc.12040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/11/2013] [Indexed: 11/27/2022]
Abstract
Evolution has led to diversification of all living organisms from a common ancestor. Consequently, all living organisms use a common method to duplicate their genetic information and thus pass on their inherited traits to their offspring. To duplicate chromosomal DNA, double-stranded DNA must first be unwound by helicase, which is loaded to replication origins and activated during the DNA replication initiation step. In this review, we discuss the common features of, and differences in, replicative helicases between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Yan Li
- Division of Microbial Genetics, National Institute of Genetics, Yata 1111, Mishima City, Shizuoka, 411-8540, Japan
| | | |
Collapse
|