1
|
Tian Y, Zhang C, Tian X, Zhang L, Yin T, Dang Y, Liu Y, Lou H, He Q. H3T11 phosphorylation by CKII is required for heterochromatin formation in Neurospora. Nucleic Acids Res 2024; 52:9536-9550. [PMID: 39106166 PMCID: PMC11381320 DOI: 10.1093/nar/gkae664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.
Collapse
Affiliation(s)
- Yuan Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiqiang Lou
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Deep learning strategies for active secondary metabolites biosynthesis from fungi: Harnessing artificial manipulation and application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Klocko AD, Summers CA, Glover ML, Parrish R, Storck WK, McNaught KJ, Moss ND, Gotting K, Stewart A, Morrison AM, Payne L, Hatakeyama S, Selker EU. Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa. Genetics 2020; 216:671-688. [PMID: 32873602 PMCID: PMC7648584 DOI: 10.1534/genetics.120.303471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus Neurospora crassa places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render N. crassa an excellent model to genetically dissect elements of the DNA methylation pathway. We implemented a forward genetic selection on a massive scale, utilizing two engineered antibiotic-resistance genes silenced by DNA methylation, to isolate mutants d efective i n m ethylation (dim). Hundreds of potential mutants were characterized, yielding a rich collection of informative alleles of 11 genes important for DNA methylation, most of which were already reported. In parallel, we characterized the pairwise interactions in nuclei of the DCDC, the only histone H3 lysine 9 methyltransferase complex in Neurospora, including those between the DIM-5 catalytic subunit and other complex members. We also dissected the N- and C-termini of the key protein DIM-7, required for DIM-5 histone methyltransferase localization and activation. Lastly, we identified two alleles of a novel gene, dim-10 - a homolog of Clr5 in Schizosaccharomyces pombe - that is not essential for DNA methylation, but is necessary for repression of the antibiotic-resistance genes used in the selection, which suggests that both DIM-10 and DNA methylation promote silencing of constitutive heterochromatin.
Collapse
Affiliation(s)
- Andrew D Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Calvin A Summers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Marissa L Glover
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Robert Parrish
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - William K Storck
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Nicole D Moss
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kirsten Gotting
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Aurelian Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Ariel M Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Laurel Payne
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Shin Hatakeyama
- Laboratory of Genetics, Faculty of Science, Shimo-ohkubo 255, Saitama University, Sakura-ward, 338-8570, JAPAN
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
4
|
Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol 2018; 97:32-43. [DOI: 10.1016/j.ejcb.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
|
5
|
Affiliation(s)
- Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
6
|
de Castro IJ, Budzak J, Di Giacinto ML, Ligammari L, Gokhan E, Spanos C, Moralli D, Richardson C, de las Heras JI, Salatino S, Schirmer EC, Ullman KS, Bickmore WA, Green C, Rappsilber J, Lamble S, Goldberg MW, Vinciotti V, Vagnarelli P. Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun 2017; 8:14048. [PMID: 28091603 PMCID: PMC5241828 DOI: 10.1038/ncomms14048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
Repo-Man is a protein phosphatase 1 (PP1) targeting subunit that regulates mitotic progression and chromatin remodelling. After mitosis, Repo-Man/PP1 remains associated with chromatin but its function in interphase is not known. Here we show that Repo-Man, via Nup153, is enriched on condensed chromatin at the nuclear periphery and at the edge of the nucleopore basket. Repo-Man/PP1 regulates the formation of heterochromatin, dephosphorylates H3S28 and it is necessary and sufficient for heterochromatin protein 1 binding and H3K27me3 recruitment. Using a novel proteogenomic approach, we show that Repo-Man is enriched at subtelomeric regions together with H2AZ and H3.3 and that depletion of Repo-Man alters the peripheral localization of a subset of these regions and alleviates repression of some polycomb telomeric genes. This study shows a role for a mitotic phosphatase in the regulation of the epigenetic landscape and gene expression in interphase.
Collapse
Affiliation(s)
- Inês J. de Castro
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - James Budzak
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Maria L. Di Giacinto
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Lorena Ligammari
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | - Silvia Salatino
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | - Katharine S. Ullman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Catherine Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3BF, UK
- Technische Universitat Berlin, 13355 Berlin, Germany
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Martin W. Goldberg
- School of Biological and Medical Science, Durham University, Durham DH1 3LE, UK
| | - Veronica Vinciotti
- College of Engineering, Design and Technology, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| |
Collapse
|
7
|
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:E6135-E6144. [PMID: 27681634 DOI: 10.1073/pnas.1614279113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1-associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation.
Collapse
|
8
|
Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PLoS One 2016; 11:e0159745. [PMID: 27505431 PMCID: PMC4978505 DOI: 10.1371/journal.pone.0159745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the hippocampi of pediatric and adult epileptic patients. Additionally, we have also found that despite of its transient nature, the histone modification H3S10ph is strongly and gradually accumulated during epileptogenesis in the cell nuclei and in the proximal Mmp-9 gene promoter in the hippocampus, which suggests that H3S10ph can be involved in DNA demethylation in mammals, and not only in Neurospora. The study identifies MMP-9 as the first protein coding gene which expression is regulated by DNA methylation in human epilepsy. We present a detailed epigenetic model of the epileptogenesis-evoked upregulation of MMP-9 expression in the hippocampus. To our knowledge, it is the most complex and most detailed mechanism of epigenetic regulation of gene expression ever revealed for a particular gene in epileptogenesis. Our results also suggest for the first time that dysregulation of DNA methylation found in epilepsy is a cause rather than a consequence of this condition.
Collapse
|
9
|
Jamieson K, Wiles ET, McNaught KJ, Sidoli S, Leggett N, Shao Y, Garcia BA, Selker EU. Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res 2015; 26:97-107. [PMID: 26537359 PMCID: PMC4691754 DOI: 10.1101/gr.194555.115] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/04/2015] [Indexed: 12/25/2022]
Abstract
Methylated lysine 27 on histone H3 (H3K27me) marks repressed “facultative heterochromatin,” including developmentally regulated genes in plants and animals. The mechanisms responsible for localization of H3K27me are largely unknown, perhaps in part because of the complexity of epigenetic regulatory networks. We used a relatively simple model organism bearing both facultative and constitutive heterochromatin, Neurospora crassa, to explore possible interactions between elements of heterochromatin. In higher eukaryotes, reductions of H3K9me3 and DNA methylation in constitutive heterochromatin have been variously reported to cause redistribution of H3K27me3. In Neurospora, we found that elimination of any member of the DCDC H3K9 methylation complex caused massive changes in the distribution of H3K27me; regions of facultative heterochromatin lost H3K27me3, while regions that are normally marked by H3K9me3 became methylated at H3K27. Elimination of DNA methylation had no obvious effect on the distribution of H3K27me. Elimination of HP1, which “reads” H3K9me3, also caused major changes in the distribution of H3K27me, indicating that HP1 is important for normal localization of facultative heterochromatin. Because loss of HP1 caused redistribution of H3K27me2/3, but not H3K9me3, these normally nonoverlapping marks became superimposed. Indeed, mass spectrometry revealed substantial cohabitation of H3K9me3 and H3K27me2 on H3 molecules from an hpo strain. Loss of H3K27me machinery (e.g., the methyltransferase SET-7) did not impact constitutive heterochromatin but partially rescued the slow growth of the DCDC mutants, suggesting that the poor growth of these mutants is partly attributable to ectopic H3K27me. Altogether, our findings with Neurospora clarify interactions of facultative and constitutive heterochromatin in eukaryotes.
Collapse
Affiliation(s)
- Kirsty Jamieson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Elizabeth T Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics and the Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA
| | - Neena Leggett
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Yanchun Shao
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and the Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| |
Collapse
|
10
|
Klocko AD, Rountree MR, Grisafi PL, Hays SM, Adhvaryu KK, Selker EU. Neurospora importin α is required for normal heterochromatic formation and DNA methylation. PLoS Genet 2015; 11:e1005083. [PMID: 25793375 PMCID: PMC4368784 DOI: 10.1371/journal.pgen.1005083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3) and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3), which encodes the nuclear import chaperone NUP-6 (Importin α). The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport. The epigenetic information contained in chromatin is essential for development of higher organisms, and if misregulated, can lead to the unregulated growth associated with human cancers. Chromatin is typically classified into two basic types: gene-rich 'euchromatin', and gene-poor heterochromatin, which is also rich in repeated DNA and 'repressive chromatin marks'. As in humans and eukaryotes generally, heterochromatin in Neurospora crassa is decorated with DNA methylation and histone H3 lysine 9 (H3K9) methylation, but unlike the case in mammals, loss of these epigenetic marks does not compromise viability. In Neurospora, the DCDC, a five-member Cul4-based protein complex, trimethylates H3K9. Little information is available on the regulation of DCDC or similar complexes in other organisms. Using forward genetics, we identified a novel role for Importin α (NUP-6) for the function of DCDC. Although NUP-6 typically functions in nucleocytoplasmic transport, the dim-3 strain, which contains an altered nup-6 gene that reduces DNA methylation and H3K9me3, shows normal nuclear transport of the heterochromatin machinery and a canonical transport substrate. Two DCDC members are mislocalized from heterochromatin in the dim-3 mutant, signifying that NUP-6 may be important for targeting key proteins to incipient heterochromatic DNA. The euchromatic complex SAGA has increased euchromatin localization in dim-3, suggesting that NUP-6 may localize multiple chromatin complexes to sub-nuclear genomic targets.
Collapse
Affiliation(s)
- Andrew D. Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michael R. Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Paula L. Grisafi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Shan M. Hays
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Keyur K. Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Transcription factor Sp3 represses expression of p21CIP¹ via inhibition of productive elongation by RNA polymerase II. Mol Cell Biol 2013; 33:1582-93. [PMID: 23401853 DOI: 10.1128/mcb.00323-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Like that of many protein-coding genes, expression of the p21(CIP1) cell cycle inhibitor is regulated at the level of transcription elongation. While many transcriptional activators have been shown to stimulate elongation, the mechanisms by which promoter-specific repressors regulate pausing and elongation by RNA polymerase II (RNA PolII) are not well described. Here we report that the transcription factor Sp3 inhibits basal p21(CIP1) gene expression by promoter-bound RNA PolII. Knockdown of Sp3 led to increased p21(CIP1) mRNA levels and reduced occupancy of the negative elongation factor (NELF) at the p21(CIP1) promoter, although the level of binding of the positive transcription elongation factor b (P-TEFb) kinase was not increased. Sp3 depletion correlated with increased H3K36me3 and H2Bub1, two histone modifications associated with transcription elongation. Further, Sp3 was shown to promote the binding of protein phosphatase 1 (PP1) to the p21(CIP1) promoter, leading to reduced H3S10 phosphorylation, a finding consistent with Sp3-dependent regulation of the local balance between kinase and phosphatase activities. Analysis of other targets of Sp3-mediated repression suggests that, in addition to previously described SUMO modification-dependent chromatin-silencing mechanisms, inhibition of the transition of paused RNA PolII to productive elongation, described here for p21(CIP1), is a general mechanism by which transcription factor Sp3 fine-tunes gene expression.
Collapse
|
13
|
Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation. PLoS Genet 2011; 7:e1002423. [PMID: 22242002 PMCID: PMC3248561 DOI: 10.1371/journal.pgen.1002423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/27/2011] [Indexed: 12/05/2022] Open
Abstract
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3K9L or hH3K9R) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3WT). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9. DNA methylation is a common feature of eukaryotic genomes. Methylation is typically associated with silenced chromosomal domains and is essential for development of plants and animals. Although the control of DNA methylation is not well understood, recent findings with model organisms, including the fungus Neurospora crassa, revealed connections between modifications of histones and DNA. DNA methylation is dispensable in Neurospora, facilitating genetic studies. Isolation of mutants defective in DNA methylation revealed that a histone H3 methyltransferase, DIM-5, is required for DNA methylation. DIM-5 trimethylates H3K9, which is then recognized by Heterochromatin Protein 1 (HP1), which recruits the DNA methyltransferase DIM-2. We investigated the possibility that H3 provides a platform to integrate information relevant to whether the associated DNA should be methylated. Indeed, we found that DIM-5 is sensitive to methylation of H3K4 and phosphorylation of H3S10. Our analyses further revealed that H3K14 is critical in vivo, but not because acetyl-K14 inhibits DIM-5. We also found that H3R2 is essential for DNA methylation in vivo but not important for DIM-5 activity. Interestingly, we found H3 mutants that show recessive defects in DNA methylation and others with dominant effects. We also defined a set of H3 mutations that are lethal.
Collapse
|
14
|
Cheng X, Blumenthal RM. Introduction--Epiphanies in epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:1-21. [PMID: 21507348 DOI: 10.1016/b978-0-12-387685-0.00001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The combinatorial pattern of DNA and histone modifications and their associated histone variants constitute an epigenetic code that shapes gene expression patterns by increasing or decreasing the transcriptional potential of genomic domains. The epigenetic coding status, at any given chromosomal location, is subject to modulation by noncoding RNAs and remodeling complexes. DNA methylation is associated with histone modifications, particularly the absence of histone H3 lysine 4 methylation (H3K4me0) and the presence of histone H3 lysine 9 methylation (H3K9m). We briefly discuss four protein domains (ADD, CXXC, MBD, and SRA), and the functional implications of their architecture in linking histone methylation to that of DNA in mammalian cells. We also consider the domain structure of the DNA methyltransferase DNMT1, its accessory protein UHRF1, and their associated proteins. Finally, we discuss a mechanism by which methylation of DNA and of histones may be coordinately maintained during mitotic cell division, allowing for the transmission of parental methylation patterns to newly replicated chromatin.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
15
|
Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev Cell 2011; 21:328-42. [PMID: 21820363 PMCID: PMC3480639 DOI: 10.1016/j.devcel.2011.06.020] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 05/05/2011] [Accepted: 06/15/2011] [Indexed: 01/23/2023]
Abstract
Repo-Man targets protein phosphatase 1 γ (PP1γ) to chromatin at anaphase onset and regulates chromosome structure during mitotic exit. Here, we show that a Repo-Man:PP1 complex forms in anaphase following dephosphorylation of Repo-Man. Upon activation, the complex localizes to chromosomes and causes the dephosphorylation of histone H3 (Thr3, Ser10, and Ser28). In anaphase, Repo-Man has both catalytic and structural functions that are mediated by two separate domains. A C-terminal domain localizes Repo-Man to bulk chromatin in early anaphase. There, it targets PP1 for the dephosphorylation of histone H3 and possibly other chromosomal substrates. An N-terminal domain localizes Repo-Man to the chromosome periphery later in anaphase. There, it is responsible for the recruitment of nuclear components such as Importin β and Nup153 in a PP1-independent manner. These observations identify Repo-Man as a key factor that coordinates chromatin remodeling and early events of nuclear envelope reformation during mitotic exit.
Collapse
|
16
|
Wang BJ, Tang W, Zhang P, Wei Q. Tyr306 near the C-terminus of protein phosphatase-1 affects enzyme stability and inhibitor binding. IUBMB Life 2011; 63:574-81. [DOI: 10.1002/iub.494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 2011; 48:62-9. [PMID: 20659575 PMCID: PMC3935439 DOI: 10.1016/j.fgb.2010.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 01/07/2023]
Abstract
Chromatin, composed of DNA wrapped around an octamer of histones, is the relevant substrate for all genetic processes in eukaryotic nuclei. Changes in chromatin structure are associated with the activation and silencing of gene transcription and reversible post-translational modifications of histones are now known to direct chromatin structure transitions. Recent studies in several fungal species have identified a chromatin-based regulation of secondary metabolism (SM) gene clusters representing an upper-hierarchical level for the coordinated control of large chromosomal elements. Regulation by chromatin transition processes provides a mechanistic model to explain how different SM clusters located at dispersed genomic regions can be simultaneously silenced during primary metabolism. Activation of SM clusters has been shown to be associated with increased acetylation of histones H3 and H4 and, consequently, inhibition of histone de-acetylase activities also leads to increased production of secondary metabolites. New findings suggest that SM clusters are silenced by heterochromatic histone marks and that the "closed" heterochromatic structures are reversed during SM activation. This process is mediated by the conserved activator of SM, LaeA. Despite the increase in knowledge about these processes, much remains to be learned from chromatin-level regulation of SM. For example, which proteins "position" the chromatin restructuring signal onto SM clusters or how exactly LaeA works to mediate the low level of heterochromatic marks inside different clusters remain open questions. Answers to these and other chromatin-related questions would certainly complete our understanding of SM gene regulation and signaling and, because for many predicted SM clusters corresponding products have not been identified so far, anti-silencing strategies would open new ways for the identification of novel bioactive substances.
Collapse
Affiliation(s)
- Joseph Strauss
- Corresponding author. Fax: +43 1 36006 6392. (J. Strauss)
| | | |
Collapse
|
18
|
Abstract
Post-translational modifications of histone proteins in conjunction with DNA methylation represent important events in the regulation of local and global genome functions. Advances in the study of these chromatin modifications established temporal and spatial co-localization of several distinct 'marks' on the same histone and/or the same nucleosome. Such complex modification patterns suggest the possibility of combinatorial effects. This idea was originally proposed to establish a code of histone modifications that regulates the interpretation of the genetic code of DNA. Indeed, interdependency of different modifications is now well documented in the literature. Our current understanding is that the function of a given histone modification is influenced by neighbouring or additional modifications. Such context sensitivity of the readout of a modification provides more flexible translation than would be possible if distinct modifications function as isolated units. The mechanistic principles for modification cross-talk can originate in the modulation of the activity of histone-modifying enzymes or may be due to selective recognition of these marks via modification of specific binding proteins. In the present chapter, we discuss fundamental biochemical principles of modification cross-talk and reflect on the interplay of chromatin marks in cellular signalling, cell-cycle progression and cell-fate determination.
Collapse
|
19
|
H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 2010; 186:1207-16. [PMID: 20876559 DOI: 10.1534/genetics.110.123315] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurospora crassa utilizes DNA methylation to inhibit transcription of heterochromatin. DNA methylation is controlled by the histone methyltransferase DIM-5, which trimethylates histone H3 lysine 9, leading to recruitment of the DNA methyltransferase DIM-2. Previous work demonstrated that the histone deacetylase (HDAC) inhibitor trichostatin A caused a reduction in DNA methylation, suggesting involvement of histone deacetylation in DNA methylation. We therefore created mutants of each of the four classical N. crassa HDAC genes and tested their effect on histone acetylation levels and DNA methylation. Global increases in H3 and H4 acetylation levels were observed in both the hda-3 and the hda-4 mutants. Mutation of two of the genes, hda-1 and hda-3, caused partial loss of DNA methylation. The site-specific loss of DNA methylation in hda-1 correlated with loss of H3 lysine 9 trimethylation and increased H3 acetylation. In addition, an increase in H2B acetylation was observed by two-dimensional gel electrophoresis of histones of the hda-1 mutant. We found a similar increase in the Schizosaccharomyces pombe Clr3 mutant, suggesting that this HDAC has a previously unrecognized substrate and raising the possibility that the acetylation state of H2B may play a role in the regulation of DNA methylation and heterochromatin formation.
Collapse
|
20
|
Anderson DC, Green GR, Smith K, Selker EU. Extensive and varied modifications in histone H2B of wild-type and histone deacetylase 1 mutant Neurospora crassa. Biochemistry 2010; 49:5244-57. [PMID: 20462202 DOI: 10.1021/bi100391w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is deficient in a histone deacetylase 1 (HDA1) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference two-dimensional (2D) gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC-MS/MS at five different lysines in wild-type H2B and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20-25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from the wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation, or deimination. H2B from wild-type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | |
Collapse
|
21
|
Xiong L, Adhvaryu KK, Selker EU, Wang Y. Mapping of lysine methylation and acetylation in core histones of Neurospora crassa. Biochemistry 2010; 49:5236-43. [PMID: 20433192 PMCID: PMC2902163 DOI: 10.1021/bi1001322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Core histones are susceptible to a variety of post-translational modifications (PTMs), among which methylation and acetylation play critical roles in various chromatin-dependent processes. The nature and biological functions of these PTMs have been extensively studied in plants, animals, and yeasts. In contrast, the histone modifications in Neurospora crassa, a convenient model organism for multicellular eukaryotes, remained largely undefined. In this study, we used several mass spectrometric techniques, coupled with HPLC separation and multiple-protease digestion, to identify the methylation and acetylation sites in core histones isolated from Neurospora. Electron transfer dissociation (ETD) was employed to fragment the heavily modified long N-terminal peptides. In addition, accurate mass measurement of fragment ions allowed for unambiguous differentiation of acetylation from trimethylation. Many modification sites conserved in other organisms were identified in Neurospora. In addition, some unique modification sites in histone H2B, including N-terminal alpha methylation, methylation at K3, and acetylation at K19, K28, and K29, were observed. Our analysis provides a potentially comprehensive picture of methylation and acetylation of core histones in Neurospora, which should serve as a foundation for future studies of the function of histone PTMs in this model organism.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | | | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, 97403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
22
|
Rountree MR, Selker EU. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity (Edinb) 2010; 105:38-44. [PMID: 20407471 DOI: 10.1038/hdy.2010.44] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Studies of the control and function of DNA methylation in Neurospora crassa have led to a greater understanding of heterochromatin formation. DNA methylation in Neurospora is dependent on trimethylation of histone H3 lysine 9 (H3K9me3) by the histone methyltransferase, DIM-5. The linkage between these two methyl marks is facilitated by heterochromatin protein 1 (HP1), which serves as an adapter protein. HP1 binds to the H3K9me3 and recruits the DNA methyltransferase, DIM-2. Although HP1 links H3K9me3 to DNA methylation, it also serves to recruit the DNA methylation modifier complex to the edges of heterochromatin regions, where it serves to limit the spreading of the heterochromatin by countering H3K9me3.
Collapse
Affiliation(s)
- M R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
23
|
Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proc Natl Acad Sci U S A 2010; 107:8310-5. [PMID: 20404183 DOI: 10.1073/pnas.1000328107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functionally distinct chromatin domains are delineated by distinct posttranslational modifications of histones, and in some organisms by differences in DNA methylation. Proper establishment and maintenance of chromatin domains is critical but not well understood. We previously demonstrated that heterochromatin in the filamentous fungus Neurospora crassa is marked by cytosine methylation directed by trimethylated Lysine 9 on histone H3 (H3K9me3). H3K9me3 is the product of the DIM-5 Lysine methyltransferase and is recognized by a protein complex containing heterochromatin protein-1 and the DIM-2 DNA methyltransferase. To identify additional components that control the establishment and function of DNA methylation and heterochromatin, we built a strain harboring two selectable reporter genes that are silenced by DNA methylation and employed this strain to select for mutants that are defective in DNA methylation (dim). We report a previously unidentified gene (dim-7) that is essential for H3K9me3 and DNA methylation. DIM-7 homologs are found only in fungi and are highly divergent. We found that DIM-7 interacts with DIM-5 in vivo and demonstrated that a conserved domain near the N terminus of DIM-7 is required for its stability. In addition, we found that DIM-7 is essential for recruitment of DIM-5 to form heterochromatin.
Collapse
|
24
|
Hayashi-Takanaka Y, Yamagata K, Nozaki N, Kimura H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. ACTA ACUST UNITED AC 2010; 187:781-90. [PMID: 19995936 PMCID: PMC2806314 DOI: 10.1083/jcb.200904137] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new technique illuminates differential H3S10 phosphorylation dynamics in normal and cancer cells; spatial and temporal regulation of this process by aurora B kinase is required for accurate chromosome segregation. Posttranslational histone modifications regulate both gene expression and genome integrity. Despite the dynamic nature of these modifications, appropriate real-time monitoring systems are lacking. In this study, we developed a method to visualize histone modifications in living somatic cells and preimplantation embryos by loading fluorescently labeled specific Fab antibody fragments. The technique was used to study histone H3 Ser10 (H3S10) phosphorylation, which occurs during chromosome condensation in mitosis mediated by the aurora B kinase. In aneuploid cancer cells that frequently missegregate chromosomes, H3S10 is phosphorylated just before the chromosomes condense, whereas aurora B already accumulates in nuclei during S phase. In contrast, in nontransformed cells, phosphorylated H3S10 foci appear for a few hours during interphase, and transient exposure to an aurora B–selective inhibitor during this period induces chromosome missegregation. These results suggest that, during interphase, moderate aurora B activity or H3S10 phosphorylation is required for accurate chromosome segregation. Visualizing histone modifications in living cells will facilitate future epigenetic and cell regulation studies.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
25
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
27
|
Fischle W. Talk is cheap--cross-talk in establishment, maintenance, and readout of chromatin modifications. Genes Dev 2008; 22:3375-82. [DOI: 10.1101/gad.1759708] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|