1
|
Brown VE, Bradley E, Asaed TA, Lo SB, Bellini ZS, Blackett DJ, Callaway JJ, Hallesy J, Joshlin ZE, Kaneko TL, Kaneshiro CH, Kidd KR, Lee J, Leung KM, Li JS, Luo BP, Mbaeri CC, O’Neill A, Omomofe P, Schmidt JD, Truong M, Glater EE. The AWC OFF neuron is important for attraction to 1-butanol in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001370. [PMID: 39882098 PMCID: PMC11775657 DOI: 10.17912/micropub.biology.001370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
C. elegans uses chemosensation to recognize a variety of odors, many of which are released by bacteria, the major food source of C. elegans . Specific amphid sensory neurons are known to detect different odorants. Here we show that the AWC OFF neuron detects the attractive odorant 1-butanol. Because few odorants that are specifically recognized by the AWC OFF neuron have been identified, we hope that the identification of this additional odorant will facilitate studies of the role of the AWC OFF neuron in odor detection and discrimination.
Collapse
Affiliation(s)
- Vaughn E. Brown
- Molecular Biology Program, Pomona College, Claremont, California, United States of America
| | - Ella Bradley
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Tymmaa A. Asaed
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Sokhna B. Lo
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Zach S. Bellini
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Dylan J. Blackett
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Jeremy J. Callaway
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Jacob Hallesy
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Zoey E. Joshlin
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Taryn L. Kaneko
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Catie H. Kaneshiro
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Kae R. Kidd
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Jacinda Lee
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Kaitlyn M. Leung
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Janelle S. Li
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Ben P. Luo
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Charlene C. Mbaeri
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Alanna O’Neill
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Precious Omomofe
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - James D. Schmidt
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Minh Truong
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| | - Elizabeth E. Glater
- Department of Neuroscience, Pomona College, Claremont, California, United States of America
| |
Collapse
|
2
|
Hsieh YW, Xiong R, Chuang CF. Synergistic roles of homeodomain proteins UNC-62 homothorax and MLS-2 HMX/NKX in the specification of olfactory neurons in Caenorhabditis elegans. Genetics 2021; 219:6350488. [PMID: 34849889 DOI: 10.1093/genetics/iyab133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
General identity of the Caenorhabditis elegans AWC olfactory neuron pair is specified by the OTX/OTD transcription factor CEH-36 and the HMG-box transcription factor SOX-2, followed by asymmetrical differentiation of the pair into two distinct subtypes, default AWCOFF and induced AWCON, through a stochastic signaling event. The HMX/NKX transcription factor MLS-2 regulates the expression of ceh-36 to specify general AWC identity. However, general AWC identity is lost in only one of the two AWC cells in the majority of mls-2 null mutants displaying defective general AWC identity, suggesting that additional transcription factors have a partially overlapping role with MLS-2 in the specification of general AWC identity. Here, we identify a role of unc-62, encoding a homothorax/Meis/TALE homeodomain protein, in the specification of general AWC identity. As in mls-2 null mutants, unc-62 null mutants showed an incomplete penetrance in loss of general AWC identity. However, unc-62; mls-2 double mutants display a nearly complete penetrance of identity loss in both AWC cells. Thus, unc-62 and mls-2 have a partially overlapping function in the specification of general AWC identity. Furthermore, our genetic results suggest that mls-2 and unc-62 act cell autonomously in promoting the AWCON subtype. Together, our findings reveal the sequential roles of the unc-62 and mls-2 pair in AWC development, specification of general AWC identity in early embryogenesis, and asymmetric differentiation of AWC subtypes in late embryogenesis.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
3
|
Taylor SR, Santpere G, Weinreb A, Barrett A, Reilly MB, Xu C, Varol E, Oikonomou P, Glenwinkel L, McWhirter R, Poff A, Basavaraju M, Rafi I, Yemini E, Cook SJ, Abrams A, Vidal B, Cros C, Tavazoie S, Sestan N, Hammarlund M, Hobert O, Miller DM. Molecular topography of an entire nervous system. Cell 2021; 184:4329-4347.e23. [PMID: 34237253 DOI: 10.1016/j.cell.2021.06.023] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.
Collapse
Affiliation(s)
- Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Alexis Weinreb
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Alec Barrett
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Chuan Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Erdem Varol
- Department of Statistics, Columbia University, New York, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abigail Poff
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manasa Basavaraju
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ibnul Rafi
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Alexander Abrams
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Berta Vidal
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Cyril Cros
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience 2021; 24:102105. [PMID: 33659873 PMCID: PMC7890410 DOI: 10.1016/j.isci.2021.102105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health, and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amelia K. Pollard
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Christopher J. Gaffney
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
- Lancaster Medical School, Health Innovation One, Lancaster University, Lancaster, LA1 4AT, UK
| | - Colleen S. Deane
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Nathaniel J. Szewczyk
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, University of Nottingham, Medical School Royal Derby Hospital, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Fusogen-mediated neuron-neuron fusion disrupts neural circuit connectivity and alters animal behavior. Proc Natl Acad Sci U S A 2020; 117:23054-23065. [PMID: 32855296 PMCID: PMC7502713 DOI: 10.1073/pnas.1919063117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ramón y Cajal’s neuron doctrine, which states that neurons are individual cells that do not share any membrane or cytoplasmic continuity between them, has underpinned our view of modern neuroscience. However, there is considerable evidence that fusogens, specialized proteins essential and sufficient for the fusion of cells in other tissues, are expressed in the nervous system of several species in response to viral infection, stress conditions, and neurological disease. By manipulating the expression of fusogens in the chemosensory neurons of Caenorhabditis elegans, our results provide conclusive evidence that deregulation of fusogen expression causes neuronal fusion and can have deleterious effects on neural circuitry and behavioral outputs, revealing a possible novel underlying cause of neurological disorders. The 100-y-old neuron doctrine from Ramón y Cajal states that neurons are individual cells, rejecting the process of cell−cell fusion in the normal development and function of the nervous system. However, fusogens—specialized molecules essential and sufficient for the fusion of cells—are expressed in the nervous system of different species under conditions of viral infection, stress, or disease. Despite these findings, whether the expression of fusogens in neurons leads to cell−cell fusion, and, if so, whether this affects neuronal fate, function, and animal behavior, has not been explored. Here, using Caenorhabditis elegans chemosensory neurons as a model system, we provide proof-of-principle that aberrant expression of fusogens in neurons results in neuron−neuron fusion and behavioral impairments. We demonstrate that fusion between chemoattractive neurons does not affect the response to odorants, whereas fusion between chemoattractive and chemorepulsive neurons compromises chemosensation. Moreover, we provide evidence that fused neurons are viable and retain their original specific neuronal fate markers. Finally, analysis of calcium transients reveals that fused neurons become electrically coupled, thereby compromising neural circuit connectivity. Thus, we propose that aberrant expression of fusogens in the nervous system disrupts neuronal individuality, which, in turn, leads to a change in neural circuit connectivity and disruption of normal behavior. Our results expose a previously uncharacterized basis of circuit malfunction, and a possible underlying cause of neurological diseases.
Collapse
|
6
|
Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E, Naranjo Galindo FJ, Kieswetter A, Mirabeau O, Chew YL, Beets I, Schoofs L. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans. J Neurosci 2020; 40:6018-6034. [PMID: 32576621 PMCID: PMC7392509 DOI: 10.1523/jneurosci.2674-19.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.
Collapse
Affiliation(s)
- Melissa Fadda
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, Institut National de la Santé et de la Recherche Médicale U830, Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Yee Lian Chew
- Illawarra Health & Medical Research Institute School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, 2522 New South Wales, Australia
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | |
Collapse
|
7
|
Capp JP, Laforge B. A Darwinian and Physical Look at Stem Cell Biology Helps Understanding the Role of Stochasticity in Development. Front Cell Dev Biol 2020; 8:659. [PMID: 32793600 PMCID: PMC7391792 DOI: 10.3389/fcell.2020.00659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/01/2020] [Indexed: 11/27/2022] Open
Abstract
Single-cell analysis allows biologists to gain huge insight into cell differentiation and tissue structuration. Randomness of differentiation, both in vitro and in vivo, of pluripotent (multipotent) stem cells is now demonstrated to be mainly based on stochastic gene expression. Nevertheless, it remains necessary to incorporate this inherent stochasticity of developmental processes within a coherent scheme. We argue here that the theory called ontophylogenesis is more relevant and better fits with experimental data than alternative theories which have been suggested based on the notions of self-organization and attractor states. The ontophylogenesis theory considers the generation of a differentiated state as a constrained random process: randomness is provided by the stochastic dynamics of biochemical reactions while the environmental constraints, including cell inner structures and cell-cell interactions, drive the system toward a stabilized state of equilibrium. In this conception, biological organization during development can be seen as the result of multiscale constraints produced by the dynamical organization of the biological system which retroacts on the stochastic dynamics at lower scales. This scheme makes it possible to really understand how the generation of reproducible structures at higher organization levels can be fully compatible with probabilistic behavior at the lower levels. It is compatible with the second law of thermodynamics but allows the overtaking of the limitations exhibited by models only based on entropy exchanges which cannot cope with the description nor the dynamics of the mesoscopic and macroscopic organization of biological systems.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Bertrand Laforge
- LPNHE, UMR 7585, Sorbonne Université, CNRS/IN2P3, Université de Paris, Paris, France
| |
Collapse
|
8
|
Shao H, Wang D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113649. [PMID: 31767235 DOI: 10.1016/j.envpol.2019.113649] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Functional state of intestinal barrier plays an important role for environmental animals in being against various toxicants. We investigated GATA transcriptional factor ELT-2-mediated intestinal response to nanopolystyrere in Caenorhabditis elegans. Prolonged exposure to nanopolystyrene (≥1 μg/L) induced an increase in expression of ELT-2, and intestinal RNA interference (RNAi) knockdown of elt-2 caused enhancement in intestinal permeability. Meanwhile, mutation of elt-2 resulted in susceptibility to nanopolystyrene toxicity, and ELT-2 functioned in intestine to regulate the nanopolystyrene toxicity. ERM-1, CLEC-63, and CLEC-85 were identified as targets of ELT-2 in regulating the nanopolystyrene toxicity. ERM-1 was required for maintaining functional state in intestinal barrier, and functioned synergistically with CLEC-63 or CLEC-85 to regulate nanopolystyrene toxicity. Therefore, activation of intestinal ELT-2 by nanopolystyrere could mediate a protective strategy to maintain the functional state of intestinal barrier. During this process, intestinal ELT-2 activated two different molecular signals (ERM-1 signal and CLEC-63/85 signal) for nematodes against the nanopolystyrene toxicity.
Collapse
Affiliation(s)
- Huimin Shao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
A universal transportin protein drives stochastic choice of olfactory neurons via specific nuclear import of a sox-2-activating factor. Proc Natl Acad Sci U S A 2019; 116:25137-25146. [PMID: 31767767 DOI: 10.1073/pnas.1908168116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stochastic neuronal cell fate choice involving notch-independent mechanisms is a poorly understood biological process. The Caenorhabditis elegans AWC olfactory neuron pair asymmetrically differentiates into the default AWCOFF and induced AWCON subtypes in a stochastic manner. Stochastic choice of the AWCON subtype is established using gap junctions and SLO BK potassium channels to repress a calcium-activated protein kinase pathway. However, it is unknown how the potassium channel-repressed calcium signaling is translated into the induction of the AWCON subtype. Here, we identify a detailed working mechanism of how the homeodomain-like transcription factor NSY-7, previously described as a repressor in the maintenance of AWC asymmetry, couples SLO BK potassium channels to transactivation of sox-2 expression for the induction of the AWCON subtype through the identification of a unique imb-2 (transportin 1) allele. imb-2 loss-of-function mutants are not viable; however, we identify a viable imb-2 allele from an unbiased forward genetic screen that reveals a specific role of imb-2 in AWC olfactory neuron asymmetry. IMB-2 specifically drives nuclear import of NSY-7 within AWC neurons to transactivate the expression of the high mobility group (HMG)-box transcription factor SOX-2 for the specification of the AWCON subtype. This study provides mechanistic insight into how NSY-7 couples SLO BK potassium channels to transactivation of sox-2 expression for the induction of the AWCON subtype. Our findings also provide structure-function insight into a conserved amino acid residue of transportins in brain development and suggest its dysfunction may lead to human neurological disorders.
Collapse
|
10
|
Abstract
Numerous studies based on new single-cell and single-gene techniques show that individual genes can be transcribed in short bursts or pulses accompanied by changes in pulsing frequencies. Since so many examples of such discontinuous or fluctuating transcription have been found from prokaryotes to mammals, it now seems to be a common mode of gene expression. In this review we discuss the occurrence of the transcriptional fluctuations, the techniques used for their detection, their putative causes, kinetic characteristics, and probable physiological significance.
Collapse
Affiliation(s)
- Evgeny Smirnov
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Matúš Hornáček
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Tomáš Vacík
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Dušan Cmarko
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
11
|
Worthy SE, Rojas GL, Taylor CJ, Glater EE. Identification of Odor Blend Used by Caenorhabditis elegans for Pathogen Recognition. Chem Senses 2019; 43:169-180. [PMID: 29373666 PMCID: PMC6018680 DOI: 10.1093/chemse/bjy001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Animals have evolved specialized pathways to detect appropriate food sources and avoid harmful ones. Caenorhabditis elegans can distinguish among the odors of various species of bacteria, its major food source, but little is known about what specific chemical cue or combination of chemical cues C. elegans uses to detect and recognize different microbes. Here, we examine the strong innate attraction of C. elegans for the odor of the pathogenic bacterium, Serratia marcescens. This initial attraction likely facilitates ingestion and infection of the C. elegans host. Using solid-phase microextraction and gas chromatography coupled with mass spectrometry, we identify 5 volatile odors released by S. marcescens and identify those that are attractive to C. elegans. We use genetic methods to show that the amphid chemosensory neuron, AWCON, senses both S. marcescens-released 2-butanone and acetone and drives attraction to S. marcescens. In C. elegans, pairing a single odorant with food deprivation results in a reduced attractive response for that specific odor. We find that pairing the natural odor of S. marcescens with food deprivation results in a reduced attraction for the natural odor of S. marcescens and a similar reduced attraction for the synthetic blend of acetone and 2-butanone. This result indicates that only 2 odorants represent the more complex odor bouquet of S. marcescens. Although bacterial-released volatiles have long been known to be attractive to C. elegans, this study defines for the first time specific volatile cues that represent a particular bacterium to C. elegans.
Collapse
Affiliation(s)
| | - German L Rojas
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | |
Collapse
|
12
|
Vidal B, Aghayeva U, Sun H, Wang C, Glenwinkel L, Bayer EA, Hobert O. An atlas of Caenorhabditis elegans chemoreceptor expression. PLoS Biol 2018; 16:e2004218. [PMID: 29293491 PMCID: PMC5749674 DOI: 10.1371/journal.pbio.2004218] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Haosheng Sun
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Emily A. Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
13
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
14
|
Alqadah A, Hsieh YW, Morrissey ZD, Chuang CF. Asymmetric development of the nervous system. Dev Dyn 2017; 247:124-137. [PMID: 28940676 DOI: 10.1002/dvdy.24595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/09/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
The human nervous system consists of seemingly symmetric left and right halves. However, closer observation of the brain reveals anatomical and functional lateralization. Defects in brain asymmetry correlate with several neurological disorders, yet our understanding of the mechanisms used to establish lateralization in the human central nervous system is extremely limited. Here, we review left-right asymmetries within the nervous system of humans and several model organisms, including rodents, Zebrafish, chickens, Xenopus, Drosophila, and the nematode Caenorhabditis elegans. Comparing and contrasting mechanisms used to develop left-right asymmetry in the nervous system can provide insight into how the human brain is lateralized. Developmental Dynamics 247:124-137, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Zachery D Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
16
|
Kotera I, Tran NA, Fu D, Kim JH, Byrne Rodgers J, Ryu WS. Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior. eLife 2016; 5. [PMID: 27849153 PMCID: PMC5142811 DOI: 10.7554/elife.19021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022] Open
Abstract
Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of the C. elegans nervous system in response to thermal stimuli. A single pass of the screening procedure can identify much of the previously reported thermosensory circuitry as well as identify several unreported thermosensory neurons. Among the newly discovered neural functions, we investigated in detail the role of the AWCOFF neuron in thermal nociception. Combining functional calcium imaging and behavioral assays, we show that AWCOFF is essential for avoidance behavior following noxious heat stimulation by modifying the forward-to-reversal behavioral transition rate. We also show that the AWCOFF signals adapt to repeated noxious thermal stimuli and quantify the corresponding behavioral adaptation. DOI:http://dx.doi.org/10.7554/eLife.19021.001
Collapse
Affiliation(s)
- Ippei Kotera
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Nhat Anh Tran
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Donald Fu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jimmy Hj Kim
- Department of Physics, University of Toronto, Toronto, Canada
| | - Jarlath Byrne Rodgers
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - William S Ryu
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Physics, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Jin X, Pokala N, Bargmann CI. Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell 2016; 164:632-43. [PMID: 26871629 PMCID: PMC5065712 DOI: 10.1016/j.cell.2016.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/13/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022]
Abstract
Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. We show that exposing newly hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted, but not for adult-learned, aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning.
Collapse
Affiliation(s)
- Xin Jin
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Navin Pokala
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
18
|
Abstract
Differences between the left and right sides of the brain are found throughout the animal kingdom, but the consequences of altered neural asymmetry are not well understood. In the zebrafish epithalamus, the parapineal is located on the left side of the brain where it influences development of the adjacent dorsal habenular (dHb) nucleus, causing the left and right dHb to differ in their organization, gene expression, and connectivity. Left-right (L-R) reversal of parapineal position and dHb asymmetry occurs spontaneously in a small percentage of the population, whereas the dHb develop symmetrically following experimental ablation of the parapineal. The habenular region was previously implicated in modulating fear in both mice and zebrafish, but the relevance of its L-R asymmetry is unclear. We now demonstrate that disrupting directionality of the zebrafish epithalamus causes reduced exploratory behavior and increased cortisol levels, indicative of enhanced anxiety. Accordingly, exposure to buspirone, an anxiolytic agent, significantly suppresses atypical behavior. Axonal projections from the parapineal to the dHb are more variable when it is located on the right side of the brain, revealing that L-R reversals do not necessarily represent a neuroanatomical mirror image. The results highlight the importance of directional asymmetry of the epithalamus in the regulation of stress responses in zebrafish.
Collapse
|
19
|
Alqadah A, Hsieh YW, Schumacher JA, Wang X, Merrill SA, Millington G, Bayne B, Jorgensen EM, Chuang CF. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification. PLoS Genet 2016; 12:e1005654. [PMID: 26771544 PMCID: PMC4714817 DOI: 10.1371/journal.pgen.1005654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jennifer A. Schumacher
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaohong Wang
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Sean A. Merrill
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Grethel Millington
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Brittany Bayne
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Erik M. Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Alqadah A, Hsieh YW, Vidal B, Chang C, Hobert O, Chuang CF. Postmitotic diversification of olfactory neuron types is mediated by differential activities of the HMG-box transcription factor SOX-2. EMBO J 2015; 34:2574-89. [PMID: 26341465 DOI: 10.15252/embj.201592188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/06/2015] [Indexed: 12/23/2022] Open
Abstract
Diversification of neuron classes is essential for functions of the olfactory system, but the underlying mechanisms that generate individual olfactory neuron types are only beginning to be understood. Here we describe a role of the highly conserved HMG-box transcription factor SOX-2 in postmitotic specification and alternative differentiation of the Caenorhabditis elegans AWC and AWB olfactory neurons. We show that SOX-2 partners with different transcription factors to diversify postmitotic olfactory cell types. SOX-2 functions cooperatively with the OTX/OTD transcription factor CEH-36 to specify an AWC "ground state," and functions with the LIM homeodomain factor LIM-4 to suppress this ground state and drive an AWB identity instead. Our findings provide novel insights into combinatorial codes that drive terminal differentiation programs in the nervous system and reveal a biological function of the deeply conserved Sox2 protein that goes beyond its well-known role in stem cell biology.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Berta Vidal
- Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute Columbia University, New York, NY, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Oliver Hobert
- Department of Biological Sciences, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute Columbia University, New York, NY, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, Walhout AJM, Weirauch MT, Hughes TR. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 2015; 4. [PMID: 25905672 PMCID: PMC4434323 DOI: 10.7554/elife.06967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI:http://dx.doi.org/10.7554/eLife.06967.001 Many scientists use ‘model’ species—such as the fruit fly or a nematode worm called Caenorhabditis elegans—in their research because these organisms have useful features that make it easier to carry out many experiments. For example, C. elegans has a smaller genome compared to many other animals, which is useful for studying the roles of individual genes or stretches of DNA. Transcription factors are a type of protein that can bind to specific stretches of DNA and help to switch certain genes on or off. These ‘motifs’ may be close to the gene or further away in the genome, and therefore, must stand out amongst the rest of the DNA, like lights on a landing strip. However, the motifs for only 10% of the estimated 763 transcription factors in C. elegans have been identified so far. In this study, Narasimhan, Lambert, Yang et al. used a technique called a ‘protein binding microarray’ to identify the motifs for many more of the C. elegans transcription factors. These findings were then used to predict motifs for other transcription factors. Together, these methods increased the proportion of C. elegans transcription factors with known DNA-binding motifs from 10% to around 40%. Now that more DNA motifs have been identified, it is possible to look for similarities and differences between them. For example, Narasimhan, Lambert, Yang et al. found that transcription factors with similar sequences can bind to very varied motifs. On the other hand, some transcription factors that are very different are able to recognize very similar motifs. The experiments also indicate that motifs found very close to genes—in sequences known as ‘promoters’—may be able to interact with many proteins to influence the activity of genes. Narasimhan, Lambert, Yang et al.'s findings increase the number of C. elegans transcription factors with a motif, bringing the knowledge of these proteins more in line with the better-studied transcription factors of humans and fruit flies. The next challenge is to identify DNA motifs for the remaining 60% of transcription factors. DOI:http://dx.doi.org/10.7554/eLife.06967.002
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jeremy Riddell
- Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
| | - Sanie Mnaimneh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Juan I Fuxman Bass
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Kniazeva M, Zhu H, Sewell AK, Han M. A Lipid-TORC1 Pathway Promotes Neuronal Development and Foraging Behavior under Both Fed and Fasted Conditions in C. elegans. Dev Cell 2015; 33:260-71. [PMID: 25892013 DOI: 10.1016/j.devcel.2015.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Food deprivation suppresses animal growth and development but spares the systems essential for foraging. The mechanisms underlying this selective development, and potential roles of lipids in it, are unclear. When C. elegans hatch in a food-free environment, postembryonic growth and development stall, but sensory neuron differentiation and neuronal development required for food responses continue. Here, we show that monomethyl branched-chain fatty acids (mmBCFAs) and their derivative, d17iso-glucosylceramide, function in the intestine to promote foraging behavior and sensory neuron maturation through both TORC1-dependent and -independent mechanisms. We show that mmBCFAs impact the expression of a subset of genes, including ceh-36/Hox, which we show to play a key role in mediating the regulation of the neuronal functions by this lipid pathway. This study uncovers that a lipid pathway promotes neuronal functions involved in foraging under both fed and fasting conditions and adds critical insight into the physiological functions of TORC1.
Collapse
Affiliation(s)
- Marina Kniazeva
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | - Huanhu Zhu
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Aileen K Sewell
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
23
|
Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 2014; 43:D117-22. [PMID: 25378322 PMCID: PMC4383892 DOI: 10.1093/nar/gku1045] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Universal PBM Resource for Oligonucleotide Binding Evaluation (UniPROBE) serves as a convenient source of information on published data generated using universal protein-binding microarray (PBM) technology, which provides in vitro data about the relative DNA-binding preferences of transcription factors for all possible sequence variants of a length k (‘k-mers’). The database displays important information about the proteins and displays their DNA-binding specificity data in terms of k-mers, position weight matrices and graphical sequence logos. This update to the database documents the growth of UniPROBE since the last update 4 years ago, and introduces a variety of new features and tools, including a new streamlined pipeline that facilitates data deposition by universal PBM data generators in the research community, a tool that generates putative nonbinding (i.e. negative control) DNA sequences for one or more proteins and novel motifs obtained by analyzing the PBM data using the BEEML-PBM algorithm for motif inference. The UniPROBE database is available at http://uniprobe.org.
Collapse
Affiliation(s)
- Maxwell A Hume
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Bioinformatics Graduate Program, Northeastern University, Boston, MA 02115, USA
| | - Luis A Barrera
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA Bioinformatics and Integrative Genomics Graduate Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA Bioinformatics and Integrative Genomics Graduate Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans. Nat Commun 2014; 5:4442. [PMID: 25026983 PMCID: PMC4109004 DOI: 10.1038/ncomms5442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022] Open
Abstract
Neural circuits are functional ensembles of neurons that are selectively interconnected by chemical or electrical synapses. Here we describe a synthetic biology approach to the study of neural circuits, whereby new electrical synapses can be introduced in novel sites in the neuronal circuitry to reprogram behaviour. We added electrical synapses composed of the vertebrate gap junction protein Cx36 between Caenorhabditis elegans chemosensory neurons with opposite intrinsic responses to salt. Connecting these neurons by an ectopic electrical synapse led to a loss of lateral asymmetry and altered chemotaxis behaviour. In a second example, introducing Cx36 into an inhibitory chemical synapse between an olfactory receptor neuron and an interneuron changed the sign of the connection from negative to positive, and abolished the animal’s behavioural response to benzaldehyde. These data demonstrate a synthetic strategy to rewire behavioural circuits by engineering synaptic connectivity in C. elegans. Neural circuits are functional ensembles of neurons that are selectively interconnected by chemical or electrical synapses. Here the authors describe an approach to the study of neural circuits in C. elegans whereby electrical synapses are introduced between previously unconnected neurons to reprogram behaviour.
Collapse
|
25
|
Hsieh YW, Alqadah A, Chuang CF. Asymmetric neural development in the Caenorhabditis elegans olfactory system. Genesis 2014; 52:544-54. [PMID: 24478264 PMCID: PMC4065219 DOI: 10.1002/dvg.22744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/02/2023]
Abstract
Asymmetries in the nervous system have been observed throughout the animal kingdom. Deviations of brain asymmetries are associated with a variety of neurodevelopmental disorders; however, there has been limited progress in determining how normal asymmetry is established in vertebrates. In the Caenorhabditis elegans chemosensory system, two pairs of morphologically symmetrical neurons exhibit molecular and functional asymmetries. This review focuses on the development of antisymmetry of the pair of amphid wing "C" (AWC) olfactory neurons, from transcriptional regulation of general cell identity, establishment of asymmetry through neural network formation and calcium signaling, to the maintenance of asymmetry throughout the life of the animal. Many of the factors that are involved in AWC development have homologs in vertebrates, which may potentially function in the development of vertebrate brain asymmetry.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
| | - Amel Alqadah
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, OH, USA
| | - Chiou-Fen Chuang
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
26
|
Simske JS. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans. Tissue Barriers 2013; 1:e25502. [PMID: 24665403 PMCID: PMC3879130 DOI: 10.4161/tisb.25502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.
Collapse
|
27
|
Hsieh YW, Chang C, Chuang CF. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genet 2012; 8:e1002864. [PMID: 22876200 PMCID: PMC3410857 DOI: 10.1371/journal.pgen.1002864] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/12/2012] [Indexed: 01/06/2023] Open
Abstract
The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON) and AWC(OFF), by inhibiting a calcium-mediated signaling pathway in the future AWC(ON) cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON) fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON) cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON) identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON) neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON), in which mir-71 is expressed at a higher level than in AWC(OFF). In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON) identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center Research Foundation, Cincinnati, Ohio, United States of America
| | - Chieh Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail: (CC); (C-FC)
| | - Chiou-Fen Chuang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail: (CC); (C-FC)
| |
Collapse
|
28
|
Reece-Hoyes JS, Diallo A, Lajoie B, Kent A, Shrestha S, Kadreppa S, Pesyna C, Dekker J, Myers CL, Walhout AJM. Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nat Methods 2011; 8:1059-64. [PMID: 22037705 PMCID: PMC3235803 DOI: 10.1038/nmeth.1748] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022]
Abstract
A major challenge in systems biology is to understand the gene regulatory networks that drive development, physiology and pathology. Interactions between transcription factors and regulatory genomic regions provide the first level of gene control. Gateway-compatible yeast one-hybrid (Y1H) assays present a convenient method to identify and characterize the repertoire of transcription factors that can bind a DNA sequence of interest. To delineate genome-scale regulatory networks, however, large sets of DNA fragments need to be processed at high throughput and high coverage. Here we present enhanced Y1H (eY1H) assays that use a robotic mating platform with a set of improved Y1H reagents and automated readout quantification. We demonstrate that eY1H assays provide excellent coverage and identify interacting transcription factors for multiple DNA fragments in a short time. eY1H assays will be an important tool for mapping gene regulatory networks in Caenorhabditis elegans and other model organisms as well as in humans.
Collapse
Affiliation(s)
- John S Reece-Hoyes
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| | - Alos Diallo
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| | - Bryan Lajoie
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, MA, USA
| | - Amanda Kent
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| | - Shaleen Shrestha
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| | - Sreenath Kadreppa
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| | - Colin Pesyna
- Department of Computer Science and Engineering, University of Minnesota–Twin Cities, Minneapolis, MN, USA
| | - Job Dekker
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, MA, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota–Twin Cities, Minneapolis, MN, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Worcester, MA, USA
- Program in Gene Function and Expression, Worcester, MA, USA
- Program in Molecular Medicine, Worcester, MA, USA
| |
Collapse
|
29
|
Suter DM, Molina N, Naef F, Schibler U. Origins and consequences of transcriptional discontinuity. Curr Opin Cell Biol 2011; 23:657-62. [PMID: 21963300 DOI: 10.1016/j.ceb.2011.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/15/2011] [Accepted: 09/09/2011] [Indexed: 02/04/2023]
Abstract
In both prokaryotes and eukaryotes, transcription has been described as being temporally discontinuous, most genes being active mainly during short activity windows interspersed by silent periods. In mammalian cells, recent studies performed at the single cell level have revealed that transcriptional kinetics are highly gene-specific and constrained by the presence of refractory periods of inactivity before a gene can be turned on again. While the underlying mechanisms generating gene-specific kinetic characteristics remain unclear, various biological consequences of transcriptional discontinuity have been unravelled during the past few years. Here we review recent advances on understanding transcriptional kinetics of individual genes at the single cell level and discuss its possible origins and consequences.
Collapse
Affiliation(s)
- David M Suter
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Chang C, Hsieh YW, Lesch BJ, Bargmann CI, Chuang CF. Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans. Development 2011; 138:3509-18. [PMID: 21771813 DOI: 10.1242/dev.069740] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWC(ON) and AWC(OFF). However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWC(ON) neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWC(ON) phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWC(ON) phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWC(ON) neuron to regulate the AWC(OFF) identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWC(ON) cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWC(OFF) identity.
Collapse
Affiliation(s)
- Chieh Chang
- Division of Developmental Biology, Children's Hospital Medical Center Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
In the last decade, the claudin family of integral membrane proteins has been identified as the major protein component of the tight junctions in all vertebrates. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Subsequently, claudin homologues have been identified in invertebrates, including Drosophila and Caenorhabditis elegans. Recent studies demonstrate that the C. elegans claudins, clc-1 to clc-5, and similar proteins in the greater PMP22/EMP/claudin/calcium channel γ subunit family, including nsy-1-nsy-4 and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in some cases play roles similar to those traditionally assigned to their vertebrate homologues. These include regulating cell adhesion and passage of small molecules through the paracellular space. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how core claudin protein function can be modified to serve various specific roles at regions of cell-cell contact in metazoans.
Collapse
|
32
|
Del Bianco C, Vedenko A, Choi SH, Berger MF, Shokri L, Bulyk ML, Blacklow SC. Notch and MAML-1 complexation do not detectably alter the DNA binding specificity of the transcription factor CSL. PLoS One 2010; 5:e15034. [PMID: 21124806 PMCID: PMC2991368 DOI: 10.1371/journal.pone.0015034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Canonical Notch signaling is initiated when ligand binding induces proteolytic release of the intracellular part of Notch (ICN) from the cell membrane. ICN then travels into the nucleus where it drives the assembly of a transcriptional activation complex containing the DNA-binding transcription factor CSL, ICN, and a specialized co-activator of the Mastermind family. A consensus DNA binding site motif for the CSL protein was previously defined using selection-based methods, but whether subsequent association of Notch and Mastermind-like proteins affects the DNA binding preferences of CSL has not previously been examined. PRINCIPAL FINDINGS Here, we utilized protein-binding microarrays (PBMs) to compare the binding site preferences of isolated CSL with the preferred binding sites of CSL when bound to the CSL-binding domains of all four different human Notch receptors. Measurements were taken both in the absence and in the presence of Mastermind-like-1 (MAML1). Our data show no detectable difference in the DNA binding site preferences of CSL before and after loading of Notch and MAML1 proteins. CONCLUSIONS/SIGNIFICANCE These findings support the conclusion that accrual of Notch and MAML1 promote transcriptional activation without dramatically altering the preferred sites of DNA binding, and illustrate the potential of PBMs to analyze the binding site preferences of multiprotein-DNA complexes.
Collapse
Affiliation(s)
- Cristina Del Bianco
- Department of Biological Chemistry and Molecular Pharmacology and Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anastasia Vedenko
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Sung Hee Choi
- Department of Biological Chemistry and Molecular Pharmacology and Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael F. Berger
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Leila Shokri
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Martha L. Bulyk
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SCB); (MLB)
| | - Stephen C. Blacklow
- Department of Biological Chemistry and Molecular Pharmacology and Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts, United States of America
- Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (SCB); (MLB)
| |
Collapse
|
33
|
Robasky K, Bulyk ML. UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 2010; 39:D124-8. [PMID: 21037262 PMCID: PMC3013812 DOI: 10.1093/nar/gkq992] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Universal PBM Resource for Oligonucleotide-Binding Evaluation (UniPROBE) database is a centralized repository of information on the DNA-binding preferences of proteins as determined by universal protein-binding microarray (PBM) technology. Each entry for a protein (or protein complex) in UniPROBE provides the quantitative preferences for all possible nucleotide sequence variants (‘words’) of length k (‘k-mers’), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In this update, we describe >130% expansion of the database content, incorporation of a protein BLAST (blastp) tool for finding protein sequence matches in UniPROBE, the introduction of UniPROBE accession numbers and additional database enhancements. The UniPROBE database is available at http://uniprobe.org.
Collapse
Affiliation(s)
- Kimberly Robasky
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Johnston RJ, Desplan C. Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Annu Rev Cell Dev Biol 2010; 26:689-719. [PMID: 20590453 DOI: 10.1146/annurev-cellbio-100109-104113] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although cell fate specification is tightly controlled to yield highly reproducible results and avoid extreme variation, developmental programs often incorporate stochastic mechanisms to diversify cell types. Stochastic specification phenomena are observed in a wide range of species and an assorted set of developmental contexts. In bacteria, stochastic mechanisms are utilized to generate transient subpopulations capable of surviving adverse environmental conditions. In vertebrate, insect, and worm nervous systems, stochastic fate choices are used to increase the repertoire of sensory and motor neuron subtypes. Random fate choices are also integrated into developmental programs controlling organogenesis. Although stochastic decisions can be maintained to produce a mosaic of fates within a population of cells, they can also be compensated for or directed to yield robust and reproducible outcomes.
Collapse
|
35
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
36
|
Nokes EB, Van Der Linden AM, Winslow C, Mukhopadhyay S, Ma K, Sengupta P. Cis-regulatory mechanisms of gene expression in an olfactory neuron type in Caenorhabditis elegans. Dev Dyn 2010; 238:3080-92. [PMID: 19924784 DOI: 10.1002/dvdy.22147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The generation of cellular diversity is dependent on the precise spatiotemporal regulation of gene expression by both cis- and trans-acting mechanisms. The developmental principles regulating expression of specific gene subsets in individual cell types are not fully understood. Here we define the cis-regulatory mechanisms driving expression of cell-selective and broadly expressed genes in vivo in the AWB olfactory neuron subtype in C. elegans. We identify an element that is necessary to drive expression of neuron-selective chemoreceptor genes in the AWB neurons, and show that this element functions in a context-dependent manner. We find that the expression of broadly expressed sensory neuronal genes in the AWB neurons is regulated by diverse cis- and trans-regulatory mechanisms that act partly in parallel to the pathways governing expression of AWB-selective genes. We further demonstrate that cis-acting mechanisms driving gene expression in the AWB neurons appear to have diverged in related nematode species. Our results provide insights into the cis-regulatory logic driving cell-specific gene expression, and suggest that variations in this logic contribute to the generation of functional diversity.
Collapse
Affiliation(s)
- Eva B Nokes
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
37
|
Taylor RW, Hsieh YW, Gamse JT, Chuang CF. Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development. Development 2010; 137:681-91. [PMID: 20147373 DOI: 10.1242/dev.038695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain asymmetries are thought to increase neural processing capacity and to prevent interhemispheric conflict. In order to develop asymmetrically, neurons must be specified along the left-right axis, assigned left-side versus right-side identities and differentiate appropriately. In C. elegans and zebrafish, the cellular and molecular mechanisms that lead to neural asymmetries have recently come to light. Here, we consider recent insights into the mechanisms involved in asymmetrical neural development in these two species. Although the molecular details are divergent, both organisms use iterative cell-cell communication to establish left-right neuronal identity.
Collapse
Affiliation(s)
- Robert W Taylor
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
38
|
Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. Proc Natl Acad Sci U S A 2010; 107:6016-21. [PMID: 20220099 DOI: 10.1073/pnas.1000866107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To navigate a complex and changing environment, an animal's sensory neurons must continually adapt to persistent cues while remaining responsive to novel stimuli. Long-term exposure to an inherently attractive odor causes Caenorhabditis elegans to ignore that odor, a process termed odor adaptation. Odor adaptation is likely to begin within the sensory neuron, because it requires factors that act within these cells at the time of odor exposure. The process by which an olfactory sensory neuron makes a decisive shift over time from a receptive state to a lasting unresponsive one remains obscure. In C. elegans, adaptation to odors sensed by the AWC pair of olfactory neurons requires the cGMP-dependent protein kinase EGL-4. Using a fully functional, GFP-tagged EGL-4, we show here that prolonged odor exposure sends EGL-4 into the nucleus of the stimulated AWC neuron. This odor-induced nuclear translocation correlates temporally with the stable dampening of chemotaxis that is indicative of long-term adaptation. Long-term adaptation requires cGMP binding residues as well as an active EGL-4 kinase. We show here that EGL-4 nuclear accumulation is both necessary and sufficient to induce long-lasting odor adaptation. After it is in the AWC nucleus, EGL-4 decreases the animal's responsiveness to AWC-sensed odors by acting downstream of the primary sensory transduction. Thus, the EGL-4 protein kinase acts as a sensor that integrates odor signaling over time, and its nuclear translocation is an instructive switch that allows the animal to ignore persistent odors.
Collapse
|
39
|
Kim K, Kim R, Sengupta P. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans. Development 2010; 137:963-74. [PMID: 20150279 DOI: 10.1242/dev.044719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
40
|
O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000761. [PMID: 20011101 PMCID: PMC2780698 DOI: 10.1371/journal.pgen.1000761] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 11/09/2009] [Indexed: 01/29/2023] Open
Abstract
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron. Caenorhabditis elegans is capable of sensing a variety of attractive volatile compounds. These odors are the worm's “best guesses” as to how to track down food. Employing calculated approximations underlies a foraging strategy that is open to failure. When C. elegans track an odor which proves unrewarding, they must modify their behavior based on this experience. They also need to prevent over-stimulating their neurons. To accomplish this, C. elegans olfactory sensory neurons adapt to odors after a sustained exposure to odor in the absence of food. Within the pair of primary odor-sensory neurons, termed the AWCs, adaptation requires the cGMP-dependent protein kinase G (PKG), EGL-4. Exposing animals to AWC–sensed odors for approximately 60 minutes results in a long-lasting (∼3 hour) adaptation that requires the nuclear translocation of EGL-4. To understand how sensory transduction and desensitization machinery converge to achieve olfactory adaptation, we asked whether odor-induced EGL-4 nuclear accumulation was affected by gene mutations that abrogate either odor sensation of or adaptation to AWC–sensed odors. We find that G-protein signaling represents the integration point where primary odor sensation and odor adaptation pathways diverge. PUFA signaling, calcium, and decreased diacylglycerol all dampen the response of the AWC neuron to odor downstream of this divergence.
Collapse
Affiliation(s)
- Damien M. O'Halloran
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Svetlana Altshuler-Keylin
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Jin I. Lee
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Noelle D. L'Etoile
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Vasiliauskas D, Johnston R, Desplan C. Maintaining a stochastic neuronal cell fate decision. Genes Dev 2009; 23:385-90. [PMID: 19240127 DOI: 10.1101/gad.1780509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sensory systems generally contain a number of neuronal subtypes that express distinct sensory receptor proteins. This diversity is generated through deterministic and stochastic cell fate choices, while maintaining the subtype often requires a distinct mechanism. In a study published in the February 1, 2009, issue of Genes & Development, Lesch and colleagues (pp. 345-358) describe a new transcription factor, NSY-7, that acts to stabilize a stochastic subtype choice in AWC chemosensory neurons in Caenorhabditis elegans.
Collapse
|