1
|
Pilaka-Akella P, Sadek NH, Fusca D, Cutter AD, Calarco JA. Neuron-specific repression of alternative splicing by the conserved CELF protein UNC-75 in Caenorhabditis elegans. Genetics 2025; 229:iyaf025. [PMID: 40059624 PMCID: PMC12005262 DOI: 10.1093/genetics/iyaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025] Open
Abstract
Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA-binding proteins (RBPs). Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RBPs are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders. In this study, we sought to characterize specific mechanisms that drive tissue-specific splicing in vivo of a model switch-like exon regulated by the neuronal-enriched CELF ortholog in Caenorhabditis elegans, UNC-75. Using sequence alignments, we identified deeply conserved intronic UNC-75 binding motifs overlapping the 5' splice site and upstream of the 3' splice site, flanking a strongly neural-repressed alternative exon in the Zonula Occludens gene zoo-1. We confirmed that loss of UNC-75 or mutations in either of these cis-elements lead to substantial de-repression of the alternative exon in neurons. Moreover, mis-expression of UNC-75 in muscle cells is sufficient to induce the neuron-like robust skipping of this alternative exon. Lastly, we demonstrate that overlapping an UNC-75 motif within a heterologous 5' splice site leads to increased skipping of the adjacent alternative exon in an unrelated splicing event. Together, we have demonstrated that a specific configuration and combination of cis elements bound by this important family of RBPs can achieve robust splicing outcomes in vivo.
Collapse
Affiliation(s)
- Pallavi Pilaka-Akella
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Nour H Sadek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Daniel Fusca
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
2
|
Zhang B, Zhang Y, Zhang Y, Liu X, Zhang R, Wang Z, Pan F, Xu N, Shao L. Identified five variants in CFTR gene that alter RNA splicing by minigene assay. Front Genet 2025; 16:1543623. [PMID: 40182926 PMCID: PMC11965618 DOI: 10.3389/fgene.2025.1543623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Cystic fibrosis (CF) is a common monogenic multisystem disease caused primarily by variants in the CFTR gene. Emerging evidence suggests that some variants, which are described as missense, synonymous or nonsense variants in the literature or databases, may be deleterious by affecting the pre-mRNA splicing process. Methods We analyzed 27 exonic variants in the CFTR gene utilizing bioinformatics tools and identified candidate variants that could lead to splicing changes through minigene assays. Ultimately, we selected eight candidate variants to assess their effects on pre-mRNA splicing. The numbering of DNA variants is based on the complementary DNA (cDNA)sequence of CFTR (Ref Seq NM_000492.4). Results This study assessed the impact of CFTR variants on exon splicing by combining predictive bioinformatics tools with minigene assays. Among the eight candidate single nucleotide alterations, five variants (c.488A>T,c.1117G>T, c.1209G>T, c.3239A>G and c.3367G>C) were identified as causing exon skipping. Conclusion Our study employed a minigene system, which offers great flexibility for assessing aberrant splicing patterns when patient mRNA samples are not accessible, to investigate the effects of exonic variants on pre-mRNA splicing. Our experimental outcomes highlight the importance of analyzing exonic variations at the mRNA level.
Collapse
Affiliation(s)
- Bingying Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yiyin Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Nephrology, Peking University Medical Lu Zhong Hospital, Zibo, China
| | - Xuyan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ran Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhi Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Fengjiao Pan
- Department of Nephrology, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Ning Xu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Kramárek M, Souček P, Réblová K, Grodecká L, Freiberger T. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Nucleic Acids Res 2024; 52:5959-5974. [PMID: 38426935 PMCID: PMC11162779 DOI: 10.1093/nar/gkae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
Collapse
Affiliation(s)
- Michal Kramárek
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital and Masaryk University, Brno, Czech Republic
| | - Lucie Kajan Grodecká
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Malard F, Wolter AC, Marquevielle J, Morvan E, Ecoutin A, Rüdisser S, Allain FT, Campagne S. The diversity of splicing modifiers acting on A-1 bulged 5'-splice sites reveals rules for rational drug design. Nucleic Acids Res 2024; 52:4124-4136. [PMID: 38554107 PMCID: PMC11077090 DOI: 10.1093/nar/gkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.
Collapse
Affiliation(s)
- Florian Malard
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Antje C Wolter
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Julien Marquevielle
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR3033 CNRS, Université de Bordeaux, INSERM US01, Pessac 33600, France
| | - Agathe Ecoutin
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Simon H Rüdisser
- ETH Zürich, Department of Biology, BioNMR platform, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Frédéric H T Allain
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Sebastien Campagne
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
7
|
Ishigami Y, Wong MS, Martí-Gómez C, Ayaz A, Kooshkbaghi M, Hanson SM, McCandlish DM, Krainer AR, Kinney JB. Specificity, synergy, and mechanisms of splice-modifying drugs. Nat Commun 2024; 15:1880. [PMID: 38424098 PMCID: PMC10904865 DOI: 10.1038/s41467-024-46090-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.
Collapse
Affiliation(s)
- Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Beam Therapeutics, Cambridge, MA, 02142, USA
| | | | - Andalus Ayaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Mahdi Kooshkbaghi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- The Estée Lauder Companies, New York, NY, 10153, USA
| | | | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
8
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
9
|
Suzuki Y, Nomura N, Yamada K, Yamada Y, Fukuda A, Hoshino K, Abe S, Kurosawa K, Inaba M, Mizuno S, Wakamatsu N, Hayashi S. Pathogenicity evaluation of variants of uncertain significance at exon-intron junction by splicing assay in patients with Mowat-Wilson syndrome. Eur J Med Genet 2023; 66:104882. [PMID: 37944854 DOI: 10.1016/j.ejmg.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
High-throughput sequencing has identified vast numbers of variants in genetic disorders. However, the significance of variants at the exon-intron junction remains controversial. Even though most cases of Mowat-Wilson syndrome (MOWS) are caused by heterozygous loss-of-function variants in ZEB2, the pathogenicity of variants at exon-intron junction is often indeterminable. We identified four intronic variants in 5/173 patients with clinical suspicion for MOWS, and evaluated their pathogenicity by in vitro analyses. The minigene analysis showed that c.73+2T>G caused most of the transcripts skipping exon 2, while c.916+6T>G led to partial skipping of exon 7. No splicing abnormalities were detected in both c.917-21T>C and c.3067+6A>T. The minigene analysis reproduced the splicing observed in the blood cells of the patient with c.73+2T>G. The degree of the exon skipping was concordant with the severity of MOWS; while the patient with c.73+2T>G was typical MOWS, the patient with c.916+6T>G showed milder phenotype which has been seldom reported. Our results demonstrate that mRNA splicing assays using the minigenes are valuable for determining the clinical significance of intronic variants in patients with not only MOWS but also other genetic diseases with splicing aberrations and may explain atypical or milder cases, such as the current patient.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Noriko Nomura
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Yasukazu Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Ayumi Fukuda
- Department of Pediatrics, Nihon University Itabashi Hospital, Itabashi, Tokyo, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, Chiyoda, Tokyo, Japan
| | - Shinpei Abe
- Department of Pediatrics, Juntendo University, Faculty of Medicine, Bunkyo, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Mie Inaba
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan; Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.
| |
Collapse
|
10
|
Shen S, Zhang LS. The regulation of antiviral innate immunity through non-m 6A RNA modifications. Front Immunol 2023; 14:1286820. [PMID: 37915585 PMCID: PMC10616867 DOI: 10.3389/fimmu.2023.1286820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The post-transcriptional RNA modifications impact the dynamic regulation of gene expression in diverse biological and physiological processes. Host RNA modifications play an indispensable role in regulating innate immune responses against virus infection in mammals. Meanwhile, the viral RNAs can be deposited with RNA modifications to interfere with the host immune responses. The N6-methyladenosine (m6A) has boosted the recent emergence of RNA epigenetics, due to its high abundance and a transcriptome-wide widespread distribution in mammalian cells, proven to impact antiviral innate immunity. However, the other types of RNA modifications are also involved in regulating antiviral responses, and the functional roles of these non-m6A RNA modifications have not been comprehensively summarized. In this Review, we conclude the regulatory roles of 2'-O-methylation (Nm), 5-methylcytidine (m5C), adenosine-inosine editing (A-to-I editing), pseudouridine (Ψ), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), and N4-acetylcytidine (ac4C) in antiviral innate immunity. We provide a systematic introduction to the biogenesis and functions of these non-m6A RNA modifications in viral RNA, host RNA, and during virus-host interactions, emphasizing the biological functions of RNA modification regulators in antiviral responses. Furthermore, we discussed the recent research progress in the development of antiviral drugs through non-m6A RNA modifications. Collectively, this Review conveys knowledge and inspiration to researchers in multiple disciplines, highlighting the challenges and future directions in RNA epitranscriptome, immunology, and virology.
Collapse
Affiliation(s)
- Shenghai Shen
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| | - Li-Sheng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
12
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
14
|
Love SL, Emerson JD, Koide K, Hoskins AA. Pre-mRNA splicing-associated diseases and therapies. RNA Biol 2023; 20:525-538. [PMID: 37528617 PMCID: PMC10399480 DOI: 10.1080/15476286.2023.2239601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Kumar J, Lackey L, Waldern JM, Dey A, Mustoe AM, Weeks KM, Mathews DH, Laederach A. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 2022; 11:73888. [PMID: 35695373 PMCID: PMC9236610 DOI: 10.7554/elife.73888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.
Collapse
Affiliation(s)
- Jayashree Kumar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, United States
| | - Justin M Waldern
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
16
|
Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, Chen L, Eperon LP, Hodson MJ, Hudson AJ, Allain FHT, Eperon IC. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. EMBO J 2022; 41:e107640. [PMID: 34779515 PMCID: PMC8724738 DOI: 10.15252/embj.2021107640] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
MRC London Institute of Medical SciencesLondonUK
- Present address:
Institute of Clinical SciencesImperial College LondonLondonUK
| | - Sébastien Campagne
- Institute of BiochemistryETH ZürichSwitzerland
- Present address:
Inserm U1212CNRS UMR5320ARNA LaboratoryBordeaux CedexFrance
| | - Robert Weinmeister
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Alison R Gosliga
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
Institut für Industrielle GenetikAbt.(eilung) SystembiologieUniversität StuttgartStuttgartGermany
| | | | - Li Chen
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Lucy P Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Mark J Hodson
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | | | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| |
Collapse
|
17
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
18
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wong J, Martelly W, Sharma S. A Reporter Based Cellular Assay for Monitoring Splicing Efficiency. J Vis Exp 2021. [PMID: 34605821 DOI: 10.3791/63014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During gene expression, the vital step of pre-mRNA splicing involves accurate recognition of splice sites and efficient assembly of spliceosomal complexes to join exons and remove introns prior to cytoplasmic export of the mature mRNA. Splicing efficiency can be altered by the presence of mutations at splice sites, the influence of trans-acting splicing factors, or the activity of therapeutics. Here, we describe the protocol for a cellular assay that can be applied for monitoring the splicing efficiency of any given exon. The assay uses an adaptable plasmid encoded 3-exon/2-intron minigene reporter, which can be expressed in mammalian cells by transient transfection. Post-transfection, total cellular RNA is isolated, and the efficiency of exon splicing in the reporter mRNA is determined by either primer extension or semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We describe how the impact of disease associated 5' splice-site mutations can be determined by introducing them in the reporter; and how the suppression of these mutations can be achieved by co-transfection with U1 small nuclear RNA (snRNA) construct carrying compensatory mutations in its 5' region that basepairs with the 5'-splice sites at exon-intron junctions in pre-mRNAs. Thus, the reporter can be used for the design of therapeutic U1 particles to improve recognition of mutant 5' splice-sites. Insertion of cis-acting regulatory sites, such as splicing enhancer or silencer sequences, into the reporter can also be used to examine the role of U1 snRNP in regulation mediated by a specific alternative splicing factor. Finally, reporter expressing cells can be incubated with small molecules to determine the effect of potential therapeutics on constitutive pre-mRNA splicing or on exons carrying mutant 5' splice sites. Overall, the reporter assay can be applied to monitor splicing efficiency in a variety of conditions to study fundamental splicing mechanisms and splicing-associated diseases.
Collapse
Affiliation(s)
- Jason Wong
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona;
| |
Collapse
|
20
|
Campagne S, de Vries T, Malard F, Afanasyev P, Dorn G, Dedic E, Kohlbrecher J, Boehringer D, Cléry A, Allain FHT. An in vitro reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Res 2021; 49:e63. [PMID: 33677607 PMCID: PMC8216277 DOI: 10.1093/nar/gkab135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.
Collapse
Affiliation(s)
- Sébastien Campagne
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Florian Malard
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | | | - Daniel Boehringer
- Cryo-EM Knowledge Hub (CEMK), ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Antoine Cléry
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| |
Collapse
|
21
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Mishra A, Siwach P, Misra P, Dhiman S, Pandey AK, Srivastava P, Jayaram B. Intron exon boundary junctions in human genome have in-built unique structural and energetic signals. Nucleic Acids Res 2021; 49:2674-2683. [PMID: 33621338 PMCID: PMC7969029 DOI: 10.1093/nar/gkab098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/21/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Precise identification of correct exon–intron boundaries is a prerequisite to analyze the location and structure of genes. The existing framework for genomic signals, delineating exon and introns in a genomic segment, seems insufficient, predominantly due to poor sequence consensus as well as limitations of training on available experimental data sets. We present here a novel concept for characterizing exon–intron boundaries in genomic segments on the basis of structural and energetic properties. We analyzed boundary junctions on both sides of all the exons (3 28 368) of protein coding genes from human genome (GENCODE database) using 28 structural and three energy parameters. Study of sequence conservation at these sites shows very poor consensus. It is observed that DNA adopts a unique structural and energy state at the boundary junctions. Also, signals are somewhat different for housekeeping and tissue specific genes. Clustering of 31 parameters into four derived vectors gives some additional insights into the physical mechanisms involved in this biological process. Sites of structural and energy signals correlate well to the positions playing important roles in pre-mRNA splicing.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Priyanka Siwach
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India.,Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Pallavi Misra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India
| | - Simran Dhiman
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India
| | | | - Parul Srivastava
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.,Department of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
23
|
Morais P, Adachi H, Yu YT. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021; 12:652129. [PMID: 33737950 PMCID: PMC7960923 DOI: 10.3389/fgene.2021.652129] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are critical components of the spliceosome that catalyze the splicing of pre-mRNA. snRNAs are each complexed with many proteins to form RNA-protein complexes, termed as small nuclear ribonucleoproteins (snRNPs), in the cell nucleus. snRNPs participate in pre-mRNA splicing by recognizing the critical sequence elements present in the introns, thereby forming active spliceosomes. The recognition is achieved primarily by base-pairing interactions (or nucleotide-nucleotide contact) between snRNAs and pre-mRNA. Notably, snRNAs are extensively modified with different RNA modifications, which confer unique properties to the RNAs. Here, we review the current knowledge of the mechanisms and functions of snRNA modifications and their biological relevance in the splicing process.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
24
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
25
|
Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. RNA Biol 2020; 18:118-130. [PMID: 32693676 DOI: 10.1080/15476286.2020.1798111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum Düsseldorf , Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
26
|
Galmozzi E. Letter to the Editor: Does the HSD17B13 rs72613567 Splice Variant Actually Yield a New Type of Alternative Splicing? Hepatology 2020; 71:1885-1886. [PMID: 31755564 DOI: 10.1002/hep.31044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Enrico Galmozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Li L, Cao Y, Zhao F, Mao B, Ren X, Wang Y, Guan Y, You Y, Li S, Yang T, Zhao X. Validation and Classification of Atypical Splicing Variants Associated With Osteogenesis Imperfecta. Front Genet 2019; 10:979. [PMID: 31737030 PMCID: PMC6832110 DOI: 10.3389/fgene.2019.00979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023] Open
Abstract
Osteogenesis Imperfecta (OI) is a rare inherited bone dysplasia, which is mainly caused by mutations in genes encoding type I collagen including COL1A1 and COL1A2. It has been well established to identify the classical variants as well as consensus splicing-site-variants in these genes in our previous studies. However, how atypical variants affect splicing in OI patients remains unclear. From a cohort of 867 OI patients, we collected blood samples from 34 probands which contain 29 variants that are located close to splice donor/acceptor sites in either COL1A1 or COL1A2. By conducting minigene assay and sequencing analysis, we found that 17 out of 29 variants led to aberrant splicing effects, while no remarkable aberrant splicing effect was observed in the remaining 12 variants. Among the 17 variants that affect splicing, 14 variants led to single splicing influence: 9 led to exon skipping, 2 resulted in truncated exon, and 3 caused intron retention. There were three complicated cases showing more than one mutant transcript caused by recognition of several different splice sites. This functional study expands our knowledge of atypical splicing variants, and emphasizes the importance of clarifying the splicing effect for variants near exon/intron boundaries in OI.
Collapse
Affiliation(s)
- Lulu Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feiyue Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bin Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuzhi Ren
- Department of Orthopaedics, The People's Hospital of Wuqing District, Tianjin, China
| | - Yanzhou Wang
- Department of Pediatric Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM, Chong MS, Kierzek R, Decout JL, Roca X, Chen G. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules 2019; 24:molecules24163020. [PMID: 31434312 PMCID: PMC6720520 DOI: 10.3390/molecules24163020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing of tau pre-mRNA is regulated by a 5' splice site (5'ss) hairpin present at the exon 10-intron 10 junction. Single mutations within the hairpin sequence alter hairpin structural stability and/or the binding of splicing factors, resulting in disease-causing aberrant splicing of exon 10. The hairpin structure contains about seven stably formed base pairs and thus may be suitable for targeting through antisense strands. Here, we used antisense peptide nucleic acids (asPNAs) to probe and target the tau pre-mRNA exon 10 5'ss hairpin structure through strand invasion. We characterized by electrophoretic mobility shift assay the binding of the designed asPNAs to model tau splice site hairpins. The relatively short (10-15 mer) asPNAs showed nanomolar binding to wild-type hairpins as well as a disease-causing mutant hairpin C+19G, albeit with reduced binding strength. Thus, the structural stabilizing effect of C+19G mutation could be revealed by asPNA binding. In addition, our cell culture minigene splicing assay data revealed that application of an asPNA targeting the 3' arm of the hairpin resulted in an increased exon 10 inclusion level for the disease-associated mutant C+19G, probably by exposing the 5'ss as well as inhibiting the binding of protein factors to the intronic spicing silencer. On the contrary, the application of asPNAs targeting the 5' arm of the hairpin caused an increased exon 10 exclusion for a disease-associated mutant C+14U, mainly by blocking the 5'ss. PNAs could enter cells through conjugation with amino sugar neamine or by cotransfection with minigene plasmids using a commercially available transfection reagent.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiazi Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Malini Bhadra
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Clément Dezanet
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Mei Sian Chong
- Geriatic Education & Research Institute, 2 Yishun Central 2, Singapore 768024, Singapore
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jean-Luc Decout
- University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
30
|
Chen JL, Moss WN, Spencer A, Zhang P, Childs-Disney JL, Disney MD. The RNA encoding the microtubule-associated protein tau has extensive structure that affects its biology. PLoS One 2019; 14:e0219210. [PMID: 31291322 PMCID: PMC6619747 DOI: 10.1371/journal.pone.0219210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are neurodegenerative diseases that affect millions of people worldwide including those with Alzheimer’s disease. While many efforts have focused on understanding the role of tau protein in neurodegeneration, there has been little done to systematically analyze and study the structures within tau’s encoding RNA and their connection to disease pathology. Knowledge of RNA structure can provide insights into disease mechanisms and how to affect protein production for therapeutic benefit. Using computational methods based on thermodynamic stability and evolutionary conservation, we identified structures throughout the tau pre-mRNA, especially at exon-intron junctions and within the 5′ and 3′ untranslated regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The 5′ UTR contains one structured region, which lies within a known internal ribosome entry site. The 3′ UTR contains eight structured regions, including one that contains a polyadenylation signal. A series of functional experiments were carried out to assess the effects of mutations associated with mis-regulation of alternative splicing of exon 10 and to identify regions of the 3′ UTR that contain cis-regulatory elements. These studies defined novel structural regions within the mRNA that affect stability and pre-mRNA splicing and may lead to new therapeutic targets for treating tau-associated diseases.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Adam Spencer
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Peiyuan Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lin JH, Tang XY, Boulling A, Zou WB, Masson E, Fichou Y, Raud L, Le Tertre M, Deng SJ, Berlivet I, Ka C, Mort M, Hayden M, Leman R, Houdayer C, Le Gac G, Cooper DN, Li ZS, Férec C, Liao Z, Chen JM. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Hum Mutat 2019; 40:1856-1873. [PMID: 31131953 DOI: 10.1002/humu.23821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.
Collapse
Affiliation(s)
- Jin-Huan Lin
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xin-Ying Tang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Arnaud Boulling
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Emmanuelle Masson
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France
| | - Yann Fichou
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Loann Raud
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | | | - Shun-Jiang Deng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Chandran Ka
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthew Hayden
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Raphaël Leman
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, France.,Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Gerald Le Gac
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France.,CHU Brest, Service de Génétique, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Claude Férec
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, F-29200, Brest, France
| |
Collapse
|
32
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
33
|
Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. RNA Biol 2019; 16:1364-1376. [PMID: 31213135 DOI: 10.1080/15476286.2019.1630796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Collapse
Affiliation(s)
- Přemysl Souček
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Kamila Réblová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Michal Kramárek
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Lenka Radová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Tereza Grymová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tatiana Kováčová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University , Brno , Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tomáš Freiberger
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.,Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
34
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
36
|
Viita T, Kyheröinen S, Prajapati B, Virtanen J, Frilander MJ, Varjosalo M, Vartiainen MK. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J Cell Sci 2019; 132:jcs226852. [PMID: 30890647 PMCID: PMC6503952 DOI: 10.1242/jcs.226852] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiina Viita
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Bina Prajapati
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Jori Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Proteomics Unit, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
37
|
Tan J, Yang L, Ong AAL, Shi J, Zhong Z, Lye ML, Liu S, Lisowiec-Wachnicka J, Kierzek R, Roca X, Chen G. A Disease-Causing Intronic Point Mutation C19G Alters Tau Exon 10 Splicing via RNA Secondary Structure Rearrangement. Biochemistry 2019; 58:1565-1578. [DOI: 10.1021/acs.biochem.9b00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiazi Tan
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jiahao Shi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Zhensheng Zhong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Mun Leng Lye
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Shiyi Liu
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Gang Chen
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
38
|
Nguyen H, Xie J. Widespread Separation of the Polypyrimidine Tract From 3' AG by G Tracts in Association With Alternative Exons in Metazoa and Plants. Front Genet 2019; 9:741. [PMID: 30693020 PMCID: PMC6339879 DOI: 10.3389/fgene.2018.00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/22/2018] [Indexed: 12/23/2022] Open
Abstract
At the end of introns, the polypyrimidine tract (Py) is often close to the 3′ AG in a consensus (Y)20NCAGgt in humans. Interestingly, we have found that they could also be separated by purine-rich elements including G tracts in thousands of human genes. These regulatory elements between the Py and 3′ AG (REPA) mainly regulate alternative 3′ splice sites (3′ SS) and intron retention. Here we show their widespread distribution and special properties across kingdoms. The purine-rich 3′ SS are found in up to about 60% of the introns among more than 1,000 species/lineages by whole genome analysis, and up to 18% of these introns contain the REPA G-tracts (REPAG) in about 0.6 million of 3′ SS in total. In particular, they are significantly enriched over their 3′ SS and genome backgrounds in metazoa and plants, and highly associated with alternative splicing of genes in diverse functional clusters. Cryptic splice sites harboring such G- and the other purine-triplets tend to be enriched (2–9 folds over the disrupted canonical 3′ SS) and aberrantly used in cancer patients carrying mutations of the SF3B1 or U2AF35, factors critical for branch point (BP) or 3′ AG recognition, respectively. Moreover, the REPAGs are significantly associated with reduced occurrences of BP motifs between the −24 and −4 positions, in particular absent between the −7 and −5 positions in several model organisms examined. The more distant BPs are associated with increased occurrences of alternative splicing in humans and zebrafish. The REPAGs appear to have evolved in a species- or phylum-specific way. Thus, there is widespread separation of the Py and 3′ AG by REPAGs that have evolved differentially. This special 3′ SS arrangement likely contributes to the generation of diverse transcript or protein isoforms in biological functions or diseases through alternative or aberrant splicing.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Applied Computer Sciences, University of Winnipeg, Winnipeg, MB, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
39
|
Erkelenz S, Theiss S, Kaisers W, Ptok J, Walotka L, Müller L, Hillebrand F, Brillen AL, Sladek M, Schaal H. Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays. Genome Res 2018; 28:1826-1840. [PMID: 30355602 PMCID: PMC6280755 DOI: 10.1101/gr.235861.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
Most human pathogenic mutations in 5' splice sites affect the canonical GT in positions +1 and +2, leading to noncanonical dinucleotides. On the other hand, noncanonical dinucleotides are observed under physiological conditions in ∼1% of all human 5'ss. It is therefore a challenging task to understand the pathogenic mutation mechanisms underlying the conditions under which noncanonical 5'ss are used. In this work, we systematically examined noncanonical 5' splice site selection, both experimentally using splicing competition reporters and by analyzing a large RNA-seq data set of 54 fibroblast samples from 27 subjects containing a total of 2.4 billion gapped reads covering 269,375 exon junctions. From both approaches, we consistently derived a noncanonical 5'ss usage ranking GC > TT > AT > GA > GG > CT. In our competition splicing reporter assay, noncanonical splicing was strictly dependent on the presence of upstream or downstream splicing regulatory elements (SREs), and changes in SREs could be compensated by variation of U1 snRNA complementarity in the competing 5'ss. In particular, we could confirm splicing at different positions (i.e., -1, +1, +5) of a splice site for all noncanonical dinucleotides "weaker" than GC. In our comprehensive RNA-seq data set analysis, noncanonical 5'ss were preferentially detected in weakly used exon junctions of highly expressed genes. Among high-confidence splice sites, they were 10-fold overrepresented in clusters with a neighboring, more frequently used 5'ss. Conversely, these more frequently used neighbors contained only the dinucleotides GT, GC, and TT, in accordance with the above ranking.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfgang Kaisers
- Center for Biological and Medical Research (BMFZ), Center of Bioinformatics and Biostatistics (CBiBs), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Frank Hillebrand
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Anna-Lena Brillen
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Michael Sladek
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Zahler AM, Rogel LE, Glover ML, Yitiz S, Ragle JM, Katzman S. SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome. RNA (NEW YORK, N.Y.) 2018; 24:1314-1325. [PMID: 30006499 PMCID: PMC6140464 DOI: 10.1261/rna.066878.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 05/04/2023]
Abstract
The tri-snRNP 27K protein is a component of the human U4/U6-U5 tri-snRNP and contains an N-terminal phosphorylated RS domain. In a forward genetic screen in C. elegans, we previously identified a dominant mutation, M141T, in the highly-conserved C-terminal region of this protein. The mutant allele promotes changes in cryptic 5' splice site choice. To better understand the function of this poorly characterized splicing factor, we performed high-throughput mRNA sequencing analysis on worms containing this dominant mutation. Comparison of alternative splice site usage between the mutant and wild-type strains led to the identification of 26 native genes whose splicing changes in the presence of the snrp-27 mutation. The changes in splicing are specific to alternative 5' splice sites. Analysis of new alleles suggests that snrp-27 is an essential gene for worm viability. We performed a novel directed-mutation experiment in which we used the CRISPR-cas9 system to randomly generate mutations specifically at M141 of SNRP-27. We identified eight amino acid substitutions at this position that are viable, and three that are homozygous lethal. All viable substitutions at M141 led to varying degrees of changes in alternative 5' splicing of native targets. We hypothesize a role for this SR-related factor in maintaining the position of the 5' splice site as U1snRNA trades interactions at the 5' end of the intron with U6snRNA and PRP8 as the catalytic site is assembled.
Collapse
Affiliation(s)
- Alan M Zahler
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Lucero E Rogel
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Marissa L Glover
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Samira Yitiz
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - J Matthew Ragle
- Department of MCD Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
41
|
Wong MS, Kinney JB, Krainer AR. Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites. Mol Cell 2018; 71:1012-1026.e3. [PMID: 30174293 DOI: 10.1016/j.molcel.2018.07.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
Abstract
Pre-mRNA splicing is an essential step in the expression of most human genes. Mutations at the 5' splice site (5'ss) frequently cause defective splicing and disease due to interference with the initial recognition of the exon-intron boundary by U1 small nuclear ribonucleoprotein (snRNP), a component of the spliceosome. Here, we use a massively parallel splicing assay (MPSA) in human cells to quantify the activity of all 32,768 unique 5'ss sequences (NNN/GYNNNN) in three different gene contexts. Our results reveal that although splicing efficiency is mostly governed by the 5'ss sequence, there are substantial differences in this efficiency across gene contexts. Among other uses, these MPSA measurements facilitate the prediction of 5'ss sequence variants that are likely to cause aberrant splicing. This approach provides a framework to assess potential pathogenic variants in the human genome and streamline the development of splicing-corrective therapies.
Collapse
Affiliation(s)
- Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
42
|
Abstract
Single-cell analyses have revealed a tremendous variety among cells in the abundance and chemical composition of RNA. Much of this heterogeneity is due to alternative splicing by the spliceosome. Little is known about how many of the resulting isoforms are biologically functional or just provide noise with little to no impact. The dynamic nature of the spliceosome provides numerous opportunities for regulation but is also the source of stochastic fluctuations. We discuss possible origins of splicing stochasticity, the experimental approaches for studying heterogeneity in isoforms, and the potential biological significance of noisy splicing in development and disease.
Collapse
Affiliation(s)
- Yihan Wan
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Dvinge H. Regulation of alternative
mRNA
splicing: old players and new perspectives. FEBS Lett 2018; 592:2987-3006. [DOI: 10.1002/1873-3468.13119] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heidi Dvinge
- Department of Biomolecular Chemistry School of Medicine and Public Health University of Wisconsin‐Madison WI USA
| |
Collapse
|
44
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
45
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
46
|
ATP7B Mutation Detection and Pathogenicity Analysis: One Atypical Case of Wilson's Disease with Adrenocortical Insufficiency. J Mol Neurosci 2017; 64:20-28. [PMID: 29181760 DOI: 10.1007/s12031-017-0997-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
Wilson's disease (WD) is an autosomal recessive disorder caused by defective function of the copper-transporting ATP7B protein. Symptoms are typically related to the brain and liver, while endocrinologic abnormalities are rare. Here, we reported a 12-year-old female patient that was initially presented with unusual skin darkening and low serum level of adrenocorticotropic hormone and diagnosed as having adrenocortical insufficiency. We further screened the mutation in ATP7B by direct DNA sequencing and found compound heterozygous mutations: a known pathogenic mutation in exon8:c.2333G>T (Arg778Leu) inherited from her mother and a variant in intron4:c.1707 + 5G>A inherited from her father. To explore the pathogenicity of the intronic variant, a minigene splicing assay was used to determine the effects of the splicing variant by analyzing reverse transcription PCR of ATP7B minigene transcript production. The result indicated that the c.1707 + 5G>A variant resulted in exon 4 skipping. We herein identified that 1707 + 5G>A intron 4 variant is a pathogenic mutation. Molecular genetic analysis and laboratory examination definitely confirmed the patient's condition as WD. Clinical status improved considerably after penicillamine treatment. Our results extended the mutation spectrum of ATP7B gene and highlighted the importance of molecular genetic analysis for the accurate diagnosis of atypical WD. WD may have diverse presentations and should be considered in children especially presenting with adrenocortical insufficiency as initial symptom, and this study highlights the importance of screening for hormone abnormal in WD.
Collapse
|
47
|
Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8:1476. [PMID: 29133793 PMCID: PMC5684323 DOI: 10.1038/s41467-017-01559-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/27/2017] [Indexed: 01/28/2023] Open
Abstract
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures. Small molecules correcting the splicing deficit of the survival of motor neuron 2 (SMN2) gene have been identified as having therapeutic potential. Here, the authors provide evidence that SMN2 mRNA forms a ribonucleoprotein complex that can be specifically targeted by these small molecules.
Collapse
|
48
|
Yeh CS, Chang SL, Chen JH, Wang HK, Chou YC, Wang CH, Huang SH, Larson A, Pleiss JA, Chang WH, Chang TH. The conserved AU dinucleotide at the 5' end of nascent U1 snRNA is optimized for the interaction with nuclear cap-binding-complex. Nucleic Acids Res 2017; 45:9679-9693. [PMID: 28934473 PMCID: PMC5766165 DOI: 10.1093/nar/gkx608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Splicing is initiated by a productive interaction between the pre-mRNA and the U1 snRNP, in which a short RNA duplex is established between the 5' splice site of a pre-mRNA and the 5' end of the U1 snRNA. A long-standing puzzle has been why the AU dincucleotide at the 5'-end of the U1 snRNA is highly conserved, despite the absence of an apparent role in the formation of the duplex. To explore this conundrum, we varied this AU dinucleotide into all possible permutations and analyzed the resulting molecular consequences. This led to the unexpected findings that the AU dinucleotide dictates the optimal binding of cap-binding complex (CBC) to the 5' end of the nascent U1 snRNA, which ultimately influences the utilization of U1 snRNP in splicing. Our data also provide a structural interpretation as to why the AU dinucleotide is conserved during evolution.
Collapse
Affiliation(s)
- Chung-Shu Yeh
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Jui-Hui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Kai Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yue-Chang Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shih-Hsin Huang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Amy Larson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tien-Hsien Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
49
|
Ohno K, Takeda JI, Masuda A. Rules and tools to predict the splicing effects of exonic and intronic mutations. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [DOI: 10.1002/wrna.1451] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
50
|
Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med 2017; 23:984-989. [DOI: 10.1038/nm.4367] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
|