1
|
Varghese SS, Hernandez-De La Peña AG, Dhawan S. Safeguarding genomic integrity in beta-cells: implications for beta-cell differentiation, growth, and dysfunction. Biochem Soc Trans 2024; 52:2133-2144. [PMID: 39364746 PMCID: PMC11555696 DOI: 10.1042/bst20231519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The maintenance of optimal glucose levels in the body requires a healthy reserve of the insulin producing pancreatic beta-cells. Depletion of this reserve due to beta-cell dysfunction and death results in development of diabetes. Recent findings highlight unresolved DNA damage as a key contributor to beta-cell defects in diabetes. Beta-cells face various stressors and metabolic challenges throughout life, rendering them susceptible to DNA breaks. The post-mitotic, long-lived phenotype of mature beta-cells further warrants robust maintenance of genomic integrity. Failure to resolve DNA damage during beta-cell development, therefore, can result in an unhealthy reserve of beta-cells and predispose to diabetes. Yet, the molecular mechanisms safeguarding beta-cell genomic integrity remain poorly understood. Here, we focus on the significance of DNA damage in beta-cell homeostasis and postulate how cellular expansion, epigenetic programming, and metabolic shifts during development may impact beta-cell genomic integrity and health. We discuss recent findings demonstrating a physiological role for DNA breaks in modulating transcriptional control in neurons, which share many developmental programs with beta-cells. Finally, we highlight key gaps in our understanding of beta-cell genomic integrity and discuss emerging areas of interest.
Collapse
Affiliation(s)
- Sneha S. Varghese
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| | | | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, U.S.A
| |
Collapse
|
2
|
Miranda-Roblero HO, Saavedra-Salazar LF, Galicia-Moreno M, Arceo-Orozco S, Caloca-Camarena F, Sandoval-Rodriguez A, García-Bañuelos J, Frias-Gonzalez C, Almeida-López M, Martínez-López E, Armendariz-Borunda J, Monroy-Ramirez HC. Pirfenidone Reverts Global DNA Hypomethylation, Promoting DNMT1/UHRF/PCNA Coupling Complex in Experimental Hepatocarcinoma. Cells 2024; 13:1013. [PMID: 38920644 PMCID: PMC11201610 DOI: 10.3390/cells13121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) development is associated with altered modifications in DNA methylation, changing transcriptional regulation. Emerging evidence indicates that DNA methyltransferase 1 (DNMT1) plays a key role in the carcinogenesis process. This study aimed to investigate how pirfenidone (PFD) modifies this pathway and the effect generated by the association between c-Myc expression and DNMT1 activation. Rats F344 were used for HCC development using 50 mg/kg of diethylnitrosamine (DEN) and 25 mg/kg of 2-Acetylaminofluorene (2-AAF). The HCC/PFD group received simultaneous doses of 300 mg/kg of PFD. All treatments lasted 12 weeks. On the other hand, HepG2 cells were used to evaluate the effects of PFD in restoring DNA methylation in the presence of the inhibitor 5-Aza. Histopathological, biochemical, immunohistochemical, and western blot analysis were carried out and our findings showed that PFD treatment reduced the amount and size of tumors along with decreased Glipican-3, β-catenin, and c-Myc expression in nuclear fractions. Also, this treatment improved lipid metabolism by modulating PPARγ and SREBP1 signaling. Interestingly, PFD augmented DNMT1 and DNMT3a protein expression, which restores global methylation, both in our in vivo and in vitro models. In conclusion, our results suggest that PFD could slow down HCC development by controlling DNA methylation.
Collapse
MESH Headings
- Animals
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Pyridones/pharmacology
- Rats
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Hep G2 Cells
- Proliferating Cell Nuclear Antigen/metabolism
- Male
- Rats, Inbred F344
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Diethylnitrosamine
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/genetics
Collapse
Affiliation(s)
- Hipolito Otoniel Miranda-Roblero
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Liliana Faridi Saavedra-Salazar
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Scarlet Arceo-Orozco
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Fernando Caloca-Camarena
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Claudia Frias-Gonzalez
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, CUCS, University of Guadalajara, Guadalajara 44340, Mexico; (H.O.M.-R.); (L.F.S.-S.)
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| | - Mónica Almeida-López
- University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Juan Armendariz-Borunda
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45138, Mexico
| | - Hugo Christian Monroy-Ramirez
- Institute of Molecular Biology in Medicine and Gene Therapy, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico; (M.G.-M.); (S.A.-O.); (F.C.-C.); (A.S.-R.); (J.G.-B.)
| |
Collapse
|
3
|
Lu P, Xu J, Shen X, Sun J, Liu M, Niu N, Wang Q, Xue J. Spatiotemporal role of SETD2-H3K36me3 in murine pancreatic organogenesis. Cell Rep 2024; 43:113703. [PMID: 38265933 DOI: 10.1016/j.celrep.2024.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Pancreas development is tightly controlled by multilayer mechanisms. Despite years of effort, large gaps remain in understanding how histone modifications coordinate pancreas development. SETD2, a predominant histone methyltransferase of H3K36me3, plays a key role in embryonic stem cell differentiation, whose role in organogenesis remains elusive. Here, by combination of cleavage under targets and tagmentation (CUT&Tag), assay for transposase-accessible chromatin using sequencing (ATAC-seq), and bulk RNA sequencing, we show a dramatic increase in the H3K36me3 level from the secondary transition phase and decipher the related transcriptional alteration. Using single-cell RNA sequencing, we define that pancreatic deletion of Setd2 results in abnormalities in both exocrine and endocrine lineages: hyperproliferative tip progenitor cells lead to abnormal differentiation; Ngn3+ endocrine progenitors decline due to the downregulation of Nkx2.2, leading to insufficient endocrine development. Thus, these data identify SETD2 as a crucial player in embryonic pancreas development, providing a clue to understanding the dysregulation of histone modifications in pancreatic disorders.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junyi Xu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningning Niu
- Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Sun J, Wang Y, Fu H, Kang F, Song J, Xu M, Ning G, Wang J, Wang W, Wang Q. Mettl3-Mediated m6A Methylation Controls Pancreatic Bipotent Progenitor Fate and Islet Formation. Diabetes 2024; 73:237-249. [PMID: 37963393 DOI: 10.2337/db23-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
The important role of m6A RNA modification in β-cell function has been established; however, how it regulates pancreatic development and endocrine differentiation remains unknown. Here, we generated transgenic mice lacking RNA methyltransferase-like 3 (Mettl3) specifically in Pdx1+ pancreatic progenitor cells and found the mice with the mutation developed hyperglycemia and hypoinsulinemia at age 2 weeks, along with an atrophic pancreas, reduced islet mass, and abnormal increase in ductal formation. At embryonic day 15.5, Mettl3 deletion had caused a significant loss of Ngn3+ endocrine progenitor cells, which was accompanied by increased Sox9+ ductal precursor cells. We identified histone deacetylase 1 (Hdac1) as the critical direct m6A target in bipotent progenitors, the degeneration of which caused abnormal activation of the Wnt/Notch signaling pathway and blocked endocrine differentiation. This transformation could be manipulated in embryonic pancreatic culture in vitro through regulation of the Mettl3-Hdac1-Wnt/Notch signaling axis. Our finding that Mettl3 determines endocrine lineage by modulating Hdac1 activity during the transition of bipotent progenitors might help in the development of targeted endocrine cell protocols for diabetes treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Parveen N, Wang JK, Bhattacharya S, Cuala J, Rajkumar MS, Butler AE, Wu X, Shih HP, Georgia SK, Dhawan S. DNA Methylation-Dependent Restriction of Tyrosine Hydroxylase Contributes to Pancreatic β-Cell Heterogeneity. Diabetes 2023; 72:575-589. [PMID: 36607262 PMCID: PMC10130487 DOI: 10.2337/db22-0506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The molecular and functional heterogeneity of pancreatic β-cells is well recognized, but the underlying mechanisms remain unclear. Pancreatic islets harbor a subset of β-cells that co-express tyrosine hydroxylase (TH), an enzyme involved in synthesis of catecholamines that repress insulin secretion. Restriction of the TH+ β-cells within islets is essential for appropriate function in mice, such that a higher proportion of these cells corresponds to reduced insulin secretion. Here, we use these cells as a model to dissect the developmental control of β-cell heterogeneity. We define the specific molecular and metabolic characteristics of TH+ β-cells and show differences in their developmental restriction in mice and humans. We show that TH expression in β-cells is restricted by DNA methylation during β-cell differentiation. Ablation of de novo DNA methyltransferase Dnmt3a in the embryonic progenitors results in a dramatic increase in the proportion of TH+ β-cells, whereas β-cell-specific ablation of Dnmt3a does not. We demonstrate that maintenance of Th promoter methylation is essential for its continued restriction in postnatal β-cells. Loss of Th promoter methylation in response to chronic overnutrition increases the number of TH+ β-cells, corresponding to impaired β-cell function. These results reveal a regulatory role of DNA methylation in determining β-cell heterogeneity.
Collapse
Affiliation(s)
- Nazia Parveen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jean Kimi Wang
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | | | - Janielle Cuala
- Medical Biophysics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Senta K. Georgia
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Center for Endocrinology, Diabetes, and Metabolism, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
7
|
Wong A, Pritchard S, Moore M, Akhaphong B, Avula N, Beetch M, Fujitani Y, Alejandro EU. Overexpression of Pdx1, reduction of p53, or deletion of CHOP attenuates pancreas hypoplasia in mice with pancreas-specific O-GlcNAc transferase deletion. J Biol Chem 2023; 299:102878. [PMID: 36623733 PMCID: PMC9932656 DOI: 10.1016/j.jbc.2023.102878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in β-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of β-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and β-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA; Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samantha Pritchard
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Akhaphong
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nandini Avula
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Megan Beetch
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
8
|
p53 Inhibition in Pancreatic Progenitors Enhances the Differentiation of Human Pluripotent Stem Cells into Pancreatic β-Cells. Stem Cell Rev Rep 2023; 19:942-952. [PMID: 36707464 DOI: 10.1007/s12015-023-10509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
The multipotent pancreatic progenitor cells (MPCs) co-expressing the transcription factors, PDX1 and NKX6.1, are the source of functional pancreatic β-cells. The aim of this study was to examine the effect of p53 inhibition in MPCs on the generation of PDX1+/NKX6.1+ MPCs and pancreatic β-cell generation. Human embryonic stem cells (hESCs) were differentiated into MPCs and β-cells. hESC-MPCs (stage 4) were treated with different concentrations of p53 inhibitors, and their effect was evaluated using different approaches. NKX6.1 was overexpressed during MPCs specification. Inhibition of p53 using pifithrin-μ (PFT-μ) at the MPC stage resulted in a significant increase in the number of PDX1+/NKX6.1+ cells and a reduction in the number of CHGA+/NKX6.1- cells. Further differentiation of MPCs treated with PFT-μ into pancreatic β-cells showed that PFT-μ treatment did not significantly change the number of C-Peptide+ cells; however, the number of C-PEP+ cells co-expressing glucagon (polyhormonal) was significantly reduced in the PFT-μ treated cells. Interestingly, overexpression of NKX6.1 in hESC-MPCs enhanced the expression of key MPC genes and dramatically suppressed p53 expression. Our findings demonstrated that the p53 inhibition during stage 4 of differentiation enhanced MPC generation, prevented premature endocrine induction and favored the differentiation into monohormonal β-cells. These findings suggest that adding a p53 inhibitor to the differentiation media can significantly enhance the generation of monohormonal β-cells.
Collapse
|
9
|
Seo BJ, Hong TK, Yoon SH, Song JH, Uhm SJ, Song H, Hong K, Schöler HR, Do JT. Embryonic Stem Cells Lacking DNA Methyltransferases Differentiate into Neural Stem Cells that Are Defective in Self-Renewal. Int J Stem Cells 2022; 16:44-51. [PMID: 36310027 PMCID: PMC9978838 DOI: 10.15283/ijsc22138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 03/01/2023] Open
Abstract
Background and Objectives DNA methyltransferases (Dnmts) play an important role in regulating DNA methylation during early developmental processes and cellular differentiation. In this study, we aimed to investigate the role of Dnmts in neural differentiation of embryonic stem cells (ESCs) and in maintenance of the resulting neural stem cells (NSCs). Methods and Results We used three types of Dnmt knockout (KO) ESCs, including Dnmt1 KO, Dnmt3a/3b double KO (Dnmt3 DKO), and Dnmt1/3a/3b triple KO (Dnmt TKO), to investigate the role of Dnmts in neural differentiation of ESCs. All three types of Dnmt KO ESCs could form neural rosette and differentiate into NSCs in vitro. Interestingly, however, after passage three, Dnmt KO ESC-derived NSCs could not maintain their self-renewal and differentiated into neurons and glial cells. Conclusions Taken together, the data suggested that, although deficiency of Dnmts had no effect on the differentiation of ESCs into NSCs, the latter had defective maintenance, thereby indicating that Dnmts are crucial for self-renewal of NSCs.
Collapse
Affiliation(s)
- Bong Jong Seo
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea,3D Tissue Culture Research Center, Konkuk University, Seoul, Korea
| | - Sang Hoon Yoon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea,3D Tissue Culture Research Center, Konkuk University, Seoul, Korea
| | - Jae Hoon Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, Korea,3D Tissue Culture Research Center, Konkuk University, Seoul, Korea,Correspondence to Jeong Tae Do, Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea, Tel: +82-2-450-3673, Fax: +82-2-455-1044, E-mail:
| |
Collapse
|
10
|
Teng D, Xia S, Hu S, Yan Y, Liu B, Yang Y, Du X. miR-887-3p Inhibits the Progression of Colorectal Cancer via Downregulating DNMT1 Expression and Regulating P53 Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7179733. [PMID: 35795731 PMCID: PMC9252659 DOI: 10.1155/2022/7179733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide and the second leading cause of cancer-related deaths. Many researchers have reported that abnormal microRNAs (miRs) were expressed in CRC and participated in the occurrence and progression of CRC. However, there are few reports of miR-887-3p regulating CRC development. In the current study, we investigated the abnormal expression of miR-887-3p and also demonstrated its regulatory role and detailed molecular mechanism in CRC. Initially, miRNA expression data were obtained from TCGA-COAD that consisted of 453 CRC samples and 8 normal tissue samples. These were downloaded and analyzed to compare the expression level of miR-887-3p in CRC tissues to that in normal tissues. Moreover, 32 pairs of surgically resected CRC tumors and para-cancer tissues from our hospital were collected. Quantitative real-time PCR (qRT-PCR) was performed to detect miR-887-3p expression levels in CRC tissues, para-cancer tissues, several CRC cell lines, and an intestinal epithelial cell line. Following miR-887-3p mimic transfection in colon cancer SW480 cell line, the regulatory roles of miR-887-3p on cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were detected through CCK-8, flow cytometry, transwell assay, and Western blot. After potential targeting protein was predicted by bioinformatic websites, the luciferase reporter assay and Western blot were used to confirm the target of miR-887-3p. The targeting protein expressions were detected by Western blot and qRT-PCR. The relationship between miR-887-3p level and the effect of miR-887-3p on P53 expression was evaluated by Western blot and qRT-PCR. The effects of miR-887-3p on CRC cell growth in vivo by xenograft tumor experiments were investigated, and Ki-67 in tumor tissue was determined by immunohistochemistry. Results. The COAD data demonstrated that the expression levels of miR-887-3p in CRC clinical sample tissues and cell line cultures were remarkably lower than para-cancer normal tissues and NCM460 cells (normal colonic epithelial cell line). Functional experiments demonstrated that overexpression of miR-887-3p in SW480 cells significantly reduced proliferation, migration, invasion, and EMT, and promoted cancer cell apoptosis. Additionally, Western blot, qRT-PCR, and luciferase reporter assays confirmed that DNMT1 was a downstream target of miR-887-3p. Moreover, the blocking of DNMT1 by miR-887-3p mimics also promoted P53 expression. Finally, overexpression of DNMT1 in SW480 cells could partially reverse the regulatory effect of miR-887-3p mimics on CRC cell development. From in vivo experiments, overexpression of miR-887-3p could inhibit tumor growth in CRC xenograft mice and reduce the Ki-67 level. Conclusion. The microRNA miR-887-3p is a potential biomarker of CRC. It inhibited CRC cell proliferation, invasion, and EMT, and promoted cell apoptosis through targeting and downregulating DNMT1 and promoting P53 expression. Therefore, miR-887-3p may be a good biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Da Teng
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shaoyou Xia
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Boyan Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Yang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med 2022; 7:21. [PMID: 35351894 PMCID: PMC8964678 DOI: 10.1038/s41536-022-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
In cases of extensive liver injury, biliary epithelial cells (BECs) dedifferentiate into bipotential progenitor cells (BPPCs), then redifferentiate into hepatocytes and BECs to accomplish liver regeneration. Whether epigenetic regulations, particularly DNA methylation maintenance enzymes, play a role in this biliary-mediated liver regeneration remains unknown. Here we show that in response to extensive hepatocyte damages, expression of dnmt1 is upregulated in BECs to methylate DNA at the p53 locus, which represses p53 transcription, and in turn, derepresses mTORC1 signaling to activate BEC dedifferentiation. After BEC dedifferentiation and BPPC formation, DNA methylation at the p53 locus maintains in BPPCs to continue blocking p53 transcription, which derepresses Bmp signaling to induce BPPC redifferentiation. Thus, this study reveals promotive roles and mechanisms of DNA methylation at the p53 locus in both dedifferentiation and redifferentiation stages of biliary-mediated liver regeneration, implicating DNA methylation and p53 as potential targets to stimulate regeneration after extensive liver injury.
Collapse
|
12
|
Tao C, Liu J, Li Z, Lai P, Zhang S, Qu J, Tang Y, Liu A, Zou Z, Bai X, Li J. DNMT1 is a negative regulator of osteogenesis. Biol Open 2022; 11:274589. [PMID: 35238333 PMCID: PMC8905718 DOI: 10.1242/bio.058534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The role and underlying mechanisms of DNA methylation in osteogenesis/chondrogenesis remain poorly understood. We here reveal DNA methyltransferase 1 (DNMT1), which is responsible for copying DNA methylation onto the newly synthesized DNA strand after DNA replication, is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors. Depletion of DNMT1 results in demethylation at the promoters of key osteogenic genes such as RORA and Fgfr2, and consequent upregulation of their transcription in vitro. Mechanistically, DNMT1 binds exactly to the promoters of these genes and are responsible for their 5-mc methylation. Conversely, simultaneous depletion of RORA or Fgfr2 blunts the effects of DNMT1 silencing on OB differentiation, suggesting RORA or Fgfr2 may be crucial for modulating osteogenic differentiation downstream of DNMT1. Collectively, these results reveal DNMT1 as a key repressor of OB differentiation and bone formation while providing us a new rationale for specific inhibition of DNMT1 as a potential therapeutic strategy to treat age-related bone loss. Summary: DNMT1 is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors.
Collapse
Affiliation(s)
- Chen Tao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Ziqi Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiankun Qu
- Department of Surgery, Tan Cheng County Maternal and Child Health Care Hospital, Linyi, Shandong 276100, China
| | - Yujin Tang
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jianwei Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
14
|
Jiang W, Block ME, Boosani CS. Short communication: TNF-α and IGF-1 regulates epigenetic mechanisms of HDAC2 and HDAC10. PLoS One 2022; 17:e0263190. [PMID: 35143520 PMCID: PMC8830685 DOI: 10.1371/journal.pone.0263190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Vascular restenosis often presents as a consequence of injury to the vessel wall, resulting from stenting and other interventional procedures. Such injury to the arteries induces proliferation of Vascular Smooth Muscle Cells (VSMCs), resulting in cellular hyperplasia and restenosis. We and others have previously reported de-novo production of different cytokines and growth factors such as Tumor Necrosis Factor Alpha (TNF-α) and Insulin like Growth Factor 1 (IGF-1), after vascular injury. As complex as it is, the profuse proliferation of VSMCs appears to be occurring due to several induced factors which initiate molecular mechanisms and exacerbate disease conditions. In many pathological events, the deleterious effects of TNF-α and IGF-1 in initiating disease mechanisms was reported. In the present work, we explored whether TNF-α and IGF-1 can regulate epigenetic mechanisms that promote proliferation of VSMCs. We investigated the mechanistic roles of proteins which can structurally interact with DNMT1 and initiate cellular pathways that promote proliferation of VSMCs. Our findings here, identify a novel molecular mechanism that is initiated by TNF-α and IGF-1. It was previously reported that DNMT1 expression is directly induced by TNF-α and IGF-1 treatment and increased/induced expression of DNMT1 causes silencing of genes that are essential to maintaining cellular homeostasis such as the tumor suppressor genes. We have earlier reported that TNF-α and IGF-1 treatment elevates DNMT1 expression in VSMCs and causes increased VSMC proliferation. However, the molecular mechanisms involved were not fully deciphered. Interestingly, in the present study we found that TNF-α and IGF-1 treatment failed to elevate DNMT1 expression levels in absence of HDAC2 and HDAC10. Also, while HDAC2 expression was not affected by HDAC10 knockdown, HDAC2 is essentially required for HDAC10 expression. Further, in TNF-α and IGF-1 induced epigenetic signaling mechanism, the expression of two important proteins EZH2 and PCNA seem to be regulated in an HDAC2-HDAC10 dependent manner. Our results show an inter-dependence of epigenetic mediators in inducing proliferation in VSMCs. To our knowledge, this is the first report that shows HDAC2 dependent expression of HDAC10, and suggests a novel mechanistic link between DNMT1, HDAC10 and HDAC2 that regulates EZH2 and PCNA to enhance cell proliferation of VSMCs which is the underlying cause for neointimal hyperplasia and restenosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Megan E. Block
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Chandra S. Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| |
Collapse
|
15
|
Kudo M, Zalles N, Distefano R, Nigita G, Veneziano D, Gasparini P, Croce CM. Synergistic apoptotic effect of miR-183-5p and Polo-Like kinase 1 inhibitor NMS-P937 in breast cancer cells. Cell Death Differ 2022; 29:407-419. [PMID: 34561554 PMCID: PMC8816952 DOI: 10.1038/s41418-021-00864-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as endogenous regulatory molecules targeting specific mRNAs for translational repression. Studies of breast cancer genomics indicate that breast cancer subtypes are distinguished and regulated by specific sets of miRNAs which affect activities such as tumor initiation, progression, and even drug response. Polo-like Kinase 1 (PLK1) is widely considered to be a proto-oncogene due to its increased expression in multiple tumor types, as well as its crucial role in regulating mitosis. Pharmacological inhibition of PLK1 can reduce tumor volume and induce tumor cell death in solid and hematologic malignancies. This prompted us to investigate how PLK1 inhibition with the target-specific inhibitor NMS-P937 would impact breast cancer cells, and how miRNAs may influence the overall response of these cells to this inhibition. We found that miR-183-5p targets PLK1 gene, effectively reducing its protein expression. Such miRNA-driven regulation of PLK1 expression sensitizes breast cancer cells to NMS-P937, resulting in synergistically increased apoptosis. We also show that the miRNA-regulated reduction of PLK1 influences the expression of apoptosis-related key proteins and possibly inducing further indirect PLK1 downmodulation through a DNMT1-p53 axis. These results suggest a potential biologically significant link between the expression of miR-183-5p and the efficacy of PLK1-specific inhibitors in breast cancer cells. Our work further elucidates how miR-183-5p regulates PLK1 gene while also enhancing NMS-P937 effect in breast cancer. Future studies assessing the role of miR-183-5p as a novel biomarker for anti-PLK1 chemotherapy agents are warranted.
Collapse
Affiliation(s)
- Masahisa Kudo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole Zalles
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Dario Veneziano
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
16
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
17
|
Beck MA, Fischer H, Grabner LM, Groffics T, Winter M, Tangermann S, Meischel T, Zaussinger‐Haas B, Wagner P, Fischer C, Folie C, Arand J, Schöfer C, Ramsahoye B, Lagger S, Machat G, Eisenwort G, Schneider S, Podhornik A, Kothmayer M, Reichart U, Glösmann M, Tamir I, Mildner M, Sheibani‐Tezerji R, Kenner L, Petzelbauer P, Egger G, Sibilia M, Ablasser A, Seiser C. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J 2021; 40:e108234. [PMID: 34586646 PMCID: PMC8591534 DOI: 10.15252/embj.2021108234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.
Collapse
|
18
|
Jetton TL, Flores-Bringas P, Leahy JL, Gupta D. SetD7 (Set7/9) is a novel target of PPARγ that promotes the adaptive pancreatic β-cell glycemic response. J Biol Chem 2021; 297:101250. [PMID: 34592314 PMCID: PMC8526774 DOI: 10.1016/j.jbc.2021.101250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of functional pancreatic β-cell mass leads to type 2 diabetes (T2D), attributable to modified β-cell-dependent adaptive gene expression patterns. SetD7 is a histone methyltransferase enriched in pancreatic islets that mono- and dimethylates histone-3-lysine-4 (H3K4), promoting euchromatin modifications, and also maintains the regulation of key β-cell function and survival genes. However, the transcriptional regulation of this important epigenetic modifier is unresolved. Here we identified the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARγ) as a major transcriptional regulator of SetD7 and provide evidence for direct binding and functionality of PPARγ in the SetD7 promoter region. Furthermore, constitutive shRNA-mediated PPARγ knockdown in INS-1 β-cells or pancreas-specific PPARγ deletion in mice led to downregulation of SetD7 expression as well as its nuclear enrichment. The relevance of the SetD7-PPARγ interaction in β-cell adaptation was tested in normoglycemic 60% partial pancreatectomy (Px) and hyperglycemic 90% Px rat models. Whereas a synergistic increase in islet PPARγ and SetD7 expression was observed upon glycemic adaptation post-60% Px, in hyperglycemic 90% Px rats, islet PPARγ, and PPARγ targets SetD7 and Pdx1 were downregulated. PPARγ agonist pioglitazone treatment in 90% Px rats partially restored glucose homeostasis and β-cell mass and enhanced expression of SetD7 and Pdx1. Collectively, these data provide evidence that the SetD7-PPARγ interaction serves as an important element of the adaptive β-cell response.
Collapse
Affiliation(s)
- Thomas L Jetton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricio Flores-Bringas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - John L Leahy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
19
|
Making it or breaking it: DNA methylation and genome integrity. Essays Biochem 2021; 64:687-703. [PMID: 32808652 DOI: 10.1042/ebc20200009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Cells encounter a multitude of external and internal stress-causing agents that can ultimately lead to DNA damage, mutations and disease. A cascade of signaling events counters these challenges to DNA, which is termed as the DNA damage response (DDR). The DDR preserves genome integrity by engaging appropriate repair pathways, while also coordinating cell cycle and/or apoptotic responses. Although many of the protein components in the DDR are identified, how chemical modifications to DNA impact the DDR is poorly understood. This review focuses on our current understanding of DNA methylation in maintaining genome integrity in mammalian cells. DNA methylation is a reversible epigenetic mark, which has been implicated in DNA damage signaling, repair and replication. Sites of DNA methylation can trigger mutations, which are drivers of human diseases including cancer. Indeed, alterations in DNA methylation are associated with increased susceptibility to tumorigenesis but whether this occurs through effects on the DDR, transcriptional responses or both is not entirely clear. Here, we also highlight epigenetic drugs currently in use as therapeutics that target DNA methylation pathways and discuss their effects in the context of the DDR. Finally, we pose unanswered questions regarding the interplay between DNA methylation, transcription and the DDR, positing the potential coordinated efforts of these pathways in genome integrity. While the impact of DNA methylation on gene regulation is widely understood, how this modification contributes to genome instability and mutations, either directly or indirectly, and the potential therapeutic opportunities in targeting DNA methylation pathways in cancer remain active areas of investigation.
Collapse
|
20
|
Parveen N, Dhawan S. DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Front Endocrinol (Lausanne) 2021; 12:651258. [PMID: 34025578 PMCID: PMC8137853 DOI: 10.3389/fendo.2021.651258] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta cells play a central role in regulating glucose homeostasis by secreting the hormone insulin. Failure of beta cells due to reduced function and mass and the resulting insulin insufficiency can drive the dysregulation of glycemic control, causing diabetes. Epigenetic regulation by DNA methylation is central to shaping the gene expression patterns that define the fully functional beta cell phenotype and regulate beta cell growth. Establishment of stage-specific DNA methylation guides beta cell differentiation during fetal development, while faithful restoration of these signatures during DNA replication ensures the maintenance of beta cell identity and function in postnatal life. Lineage-specific transcription factor networks interact with methylated DNA at specific genomic regions to enhance the regulatory specificity and ensure the stability of gene expression patterns. Recent genome-wide DNA methylation profiling studies comparing islets from diabetic and non-diabetic human subjects demonstrate the perturbation of beta cell DNA methylation patterns, corresponding to the dysregulation of gene expression associated with mature beta cell state in diabetes. This article will discuss the molecular underpinnings of shaping the islet DNA methylation landscape, its mechanistic role in the specification and maintenance of the functional beta cell phenotype, and its dysregulation in diabetes. We will also review recent advances in utilizing beta cell specific DNA methylation patterns for the development of biomarkers for diabetes, and targeting DNA methylation to develop translational approaches for supplementing the functional beta cell mass deficit in diabetes.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
21
|
Vanderkruk B, Hoffman BG. Metabolism as a central regulator of β-cell chromatin state. FEBS J 2020; 288:3683-3693. [PMID: 32926557 DOI: 10.1111/febs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are critical mediators of glucose homeostasis in the body, and proper cellular nutrient metabolism is critical to β-cell function. Several interacting signaling networks that uniquely control β-cell metabolism produce essential substrates and co-factors for catalytic reactions, including reactions that modify chromatin. Chromatin modifications, in turn, regulate gene expression. The reactions that modify chromatin are therefore well-positioned to adjust gene expression programs according to nutrient availability. It follows that dysregulation of nutrient metabolism in β-cells may impact chromatin state and gene expression through altering the availability of these substrates and co-factors. Metabolic disorders such as type 2 diabetes (T2D) can significantly alter metabolite levels in cells. This suggests that a driver of β-cell dysfunction during T2D may be the altered availability of substrates or co-factors necessary to maintain β-cell chromatin state. Induced changes in the β-cell chromatin modifications may then lead to dysregulation of gene expression, in turn contributing to the downward cascade of events that leads to the loss of functional β-cell mass, and loss of glucose homeostasis, that occurs in T2D.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Campbell SA, McDonald CL, Krentz NAJ, Lynn FC, Hoffman BG. TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation. Cell Rep 2020; 28:1830-1844.e6. [PMID: 31412250 DOI: 10.1016/j.celrep.2019.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/04/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Appropriate regulation of genes that coordinate pancreas progenitor proliferation and differentiation is required for pancreas development. Here, we explore the role of H3K4 methylation and the Trithorax group (TrxG) complexes in mediating gene expression during pancreas development. Disruption of TrxG complex assembly, but not catalytic activity, prevented endocrine cell differentiation in pancreas progenitor spheroids. In vivo loss of TrxG catalytic activity in PDX1+ cells increased apoptosis and the fraction of progenitors in the G1 phase of the cell cycle. Pancreas progenitors were reallocated to the acinar lineage, primarily at the expense of NEUROG3+ endocrine progenitors. Later in development, acinar and endocrine cell numbers were decreased, and increased gene expression variance and reduced terminal marker activation in acinar cells led to their incomplete differentiation. These findings demonstrate that TrxG co-activator activity is required for gene induction, whereas TrxG catalytic activity and H3K4 methylation help maintain transcriptional stability.
Collapse
Affiliation(s)
- Stephanie A Campbell
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Cassandra L McDonald
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Nicole A J Krentz
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Francis C Lynn
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Brad G Hoffman
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4E3, Canada; Diabetes Research Group, British Columbia Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
23
|
Xu F, Liu J, Na L, Chen L. Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic β-Cells. Front Cell Dev Biol 2020; 8:748. [PMID: 32984307 PMCID: PMC7484512 DOI: 10.3389/fcell.2020.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes, a metabolic disease with multiple causes characterized by high blood sugar, has become a public health problem. Hyperglycaemia is caused by deficiencies in insulin secretion, impairment of insulin function, or both. The insulin secreted by pancreatic β cells is the only hormone in the body that lowers blood glucose levels and plays vital roles in maintaining glucose homeostasis. Therefore, investigation of the molecular mechanisms of pancreatic β cell differentiation and function is necessary to elucidate the processes involved in the onset of diabetes. Although numerous studies have shown that transcriptional regulation is essential for the differentiation and function of pancreatic β cells, increasing evidence indicates that epigenetic mechanisms participate in controlling the fate and regulation of these cells. Epigenetics involves heritable alterations in gene expression caused by DNA methylation, histone modification and non-coding RNA activity that does not result in DNA nucleotide sequence alterations. Recent research has revealed that a variety of epigenetic modifications play an important role in the development of diabetes. Here, we review the mechanisms by which epigenetic regulation affects β cell differentiation and function.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Liu
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
24
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
25
|
Liu Y, Feng Y, Li Y, Hu Y, Zhang Q, Huang Y, Shi K, Ran C, Hou J, Zhou G, Wang X. Chlorogenic Acid Decreases Malignant Characteristics of Hepatocellular Carcinoma Cells by Inhibiting DNMT1 Expression. Front Pharmacol 2020; 11:867. [PMID: 32655395 PMCID: PMC7325898 DOI: 10.3389/fphar.2020.00867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant tumor of the adult liver, exhibiting rapid progression and poor prognosis. Chlorogenic acid (CGA), a polyphenol, has several biological activities, including the suppression of liver cancer cell invasion and metastasis. Increased levels or alterations in the function of DNMT1 are associated with the inactivation of tumor suppressor genes. However, the CGA-affected DNMT1 expression mediated mechanism is still unclear. Methods The human hepatocellular carcinoma (HCC) HepG2 cells were treated with a positive control drug (5-AZA) or varying doses of CGA. DNA methyltransferase 1 (DNMT1) protein levels and other relevant proteins were evaluated using Western blotting and immunocytochemistry. Cell-cycle analysis was performed by flow cytometry-based PI staining, and cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The transwell invasion and wound healing assays were used to evaluate cell migration and invasion. In vivo proliferation of the HCC cells was detected. We investigated the expression of DNMT1, p53, p21, p-ERK, MMP-2, and MMP-9 in tumors using immunohistochemical analysis. Results Our results showed that CGA inhibited the proliferation, colony formation, invasion, and metastasis of HepG2 cells both in vitro and in vivo by down-regulating DNMT1 protein expression, which enhanced p53 and p21 activity, and resulting in a significant reduction in cell proliferation and metastasis. Moreover, CGA inactivated ERK1/2 and reduced MMP-2 and MMP-9 expression in HepG2 cells. Conclusions CGA can suppress liver cancer cell proliferation, invasion, and metastasis through several pathways. CGA could serve as a candidate chemopreventive agent for HCC.
Collapse
Affiliation(s)
- Yao Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Feng
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Hu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qun Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunyi Huang
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Shi
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chongping Ran
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jie Hou
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiqin Zhou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Zhang Y, Jiang X, Wu Z, Hu D, Jia J, Guo J, Tang T, Yao J, Liu H, Tang H. Long Noncoding RNA LINC00467 Promotes Glioma Progression through Inhibiting P53 Expression via Binding to DNMT1. J Cancer 2020; 11:2935-2944. [PMID: 32226508 PMCID: PMC7086258 DOI: 10.7150/jca.41942] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: This study aimed to investigate whether long noncoding RNA (lncRNA) LINC00467 could regulate proliferative and invasive abilities of glioma cells via p53 and DNA methyltransferase 1 (DNMT1), so as to participate in the occurrence and progression of glioma. Methods: LINC00467 expression in glioma was analyzed by GEPIA database and LINC00467 expression in glioma cell lines was detected by qRT-PCR. The regulatory effects of LINC00467 and p53 on proliferative, invasive capacities and cell cycle were conducted by CCK-8 and EdU assays, transwell assay and flow cytometry, respectively. The binding conditions between LINC00467, DNMT1 and p53 were determined by RNA immunoprecipitation (RIP) and Chromatin immunoprecipitation (ChIP) assays. Western blot was conducted to determine whether LINC00467 could regulate p53 in glioma cells. Finally, rescue experiments were carried out to evaluate whether LINC00467 regulates proliferative and invasive abilities of glioma cells through p53. Results: The expression of LINC00467 was significantly up-regulated in tumor samples than that in normal samples, which was not correlated with patient survival time. Besides, expression of LINC00467 was higher in glioma cells than that of negative control cells. Upregulation of LINC00467 promoted proliferative and invasive abilities, and accelerated cell cycle in G0/G1 phase of U87 and LN229 cells. The results of RIP and ChIP assays demonstrated that LINC00467 could bind to DNMT1 and inhibit p53 expression. Overexpression of p53 partially reversed the enhancement of LINC00467 on proliferative and invasive abilities of glioma cells. Conclusion: These results indicated that high expression of LINC00467 could promote proliferative and invasive abilities of glioma cells through targeting inhibition of p53 expression by binding to DNMT1.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University.,School of Basic Medical Sciences, Nanjing Medical University
| | - Xuefeng Jiang
- School of Basic Medical Sciences, Nanjing Medical University
| | - Zhisheng Wu
- School of Basic Medical Sciences, Nanjing Medical University
| | - Daling Hu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University
| | - Junli Jia
- School of Basic Medical Sciences, Nanjing Medical University
| | - Jinfeng Guo
- School of Basic Medical Sciences, Nanjing Medical University
| | - Tian Tang
- School of Basic Medical Sciences, Nanjing Medical University
| | - Jialin Yao
- School of Basic Medical Sciences, Nanjing Medical University
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University
| | - Huamin Tang
- School of Basic Medical Sciences, Nanjing Medical University
| |
Collapse
|
27
|
Li X. Epigenetics and cell cycle regulation in cystogenesis. Cell Signal 2019; 68:109509. [PMID: 31874209 DOI: 10.1016/j.cellsig.2019.109509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
The role of genetic mutations in the development of polycystic kidney disease (PKD), such as alterations in PKD1 and PKD2 genes in autosomal dominant PKD (ADPKD), is well understood. However, the significance of epigenetic mechanisms in the progression of PKD remains unclear and is increasingly being investigated. The term of epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. Epigenetic information can be inherited during mammalian cell division to sustain phenotype specifically and physiologically responsive gene expression in the progeny cells. A multitude of functional studies of epigenetic modifiers and systematic genome-wide mapping of epigenetic marks reveal the importance of epigenomic mechanisms, including DNA methylation, histone/chromatin modifications and non-coding RNAs, in PKD pathologies. Deregulated proliferation is a characteristic feature of cystic renal epithelial cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cyst formation and progression. Recent evidence suggests that alterations of DNA methylation and histone modifications on specific genes and the whole genome involved in cell cycle regulation and contribute to the pathogenesis of PKD. This review summarizes the recent advances of epigenetic mechanisms in PKD, which helps us to define the term of "PKD epigenetics" and group PKD epigenetic changes in three categories. In particularly, this review focuses on the interplay of epigenetic mechanisms with cell cycle regulation during normal cell cycle progression and cystic cell proliferation, and discusses the potential to detect and quantify DNA methylation from body fluids as diagnostic/prognostic biomarkers. Collectively, this review provides concepts and examples of epigenetics in cell cycle regulation to reveal a broad view of different aspects of epigenetics in biology and PKD, which may facilitate to identify possible novel therapeutic intervention points and to explore epigenetic biomarkers in PKD.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
28
|
Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci 2019; 20:ijms20225573. [PMID: 31717266 PMCID: PMC6888083 DOI: 10.3390/ijms20225573] [Citation(s) in RCA: 562] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals. In this review, we summarize the functions and mechanisms of lncRNAs in plants, humans, and animals at different regulatory levels.
Collapse
|
29
|
Luo J, Liu H, Luan S, Li Z. Guidance of circular RNAs to proteins' behavior as binding partners. Cell Mol Life Sci 2019; 76:4233-4243. [PMID: 31270581 PMCID: PMC11105724 DOI: 10.1007/s00018-019-03216-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are single-stranded and covalently closed back-splicing products of pre-mRNAs. They can be derived from exons, introns, or exons with intron retained between exons of transcripts, as well as antisense transcripts. CircRNAs have been reported to function as microRNA sponges, regulate gene transcription mediated by RNA polymerase II, and modulate the splicing or stability of mRNA. However, emerging studies demonstrate that they affect the behavior of proteins via direct interactions with them. Here, we summarize that by binding directly with proteins; circRNAs can facilitate their nuclear or cytoplasmic localizations, regulate their functions or stability, promote or inhibit the interactions between them, or influence the interactions between them and DNA. Furthermore, these circRNA-binding proteins contain transcription factors, RNA processing proteins, proteases, and some other RNA-binding proteins. As a consequence, circRNAs are involved in the regulation of multiple physiological or pathological processes, including tumorigenesis, atherosclerosis, wound repair, cardiac senescence, myocardial ischemia/reperfusion injury, and so forth. Nonetheless, it is worthwhile to further explore more types of proteins that interact with circRNAs, which would be helpful in revealing other unknown biological functions of circRNAs that guide the variation in behavior of cellular proteins.
Collapse
Affiliation(s)
- Junyun Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Siyu Luan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
30
|
Sandoval JE, Reich NO. The R882H substitution in the human de novo DNA methyltransferase DNMT3A disrupts allosteric regulation by the tumor supressor p53. J Biol Chem 2019; 294:18207-18219. [PMID: 31640986 DOI: 10.1074/jbc.ra119.010827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
A myriad of protein partners modulate the activity of the human DNA methyltransferase 3A (DNMT3A), whose interactions with these other proteins are frequently altered during oncogenesis. We show here that the tumor suppressor p53 decreases DNMT3A activity by forming a heterotetramer complex with DNMT3A. Mutational and modeling experiments suggested that p53 interacts with the same region in DNMT3A as does the structurally characterized DNMT3L. We observed that the p53-mediated repression of DNMT3A activity is blocked by amino acid substitutions within this interface, but surprisingly, also by a distal DNMT3A residue, R882H. DNMT3A R882H occurs frequently in various cancers, including acute myeloid leukemia, and our results suggest that the effects of R882H and other DNMT3A mutations may go beyond changes in DNMT3A methylation activity. To further understand the dynamics of how protein-protein interactions modulate DNMT3A activity, we determined that p53 has a greater affinity for DNMT3A than for DNMT3L and that p53 readily displaces DNMT3L from the DNMT3A:DNMT3L heterotetramer. Interestingly, this occurred even when the preformed DNMT3A:DNMT3L complex was actively methylating DNA. The frequently identified p53 substitutions (R248W and R273H), whereas able to regulate DNMT3A function when forming the DNMT3A:p53 heterotetramer, no longer displaced DNMT3L from the DNMT3A:DNMT3L heterotetramer. The results of our work highlight the complex interplay between DNMT3A, p53, and DNMT3L and how these interactions are further modulated by clinically derived mutations in each of the interacting partners.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The influence of environmental factors on type 2 diabetes (T2D) risk is now well recognized and highlights the contribution of epigenetic mechanisms. This review will focus on the role of epigenetic factors in the risk and pathogenesis of T2D. RECENT FINDINGS Epigenetic dysregulation has emerged as a key mechanism underpinning the pathogenesis of T2D and its complications. Environmental variations, including alterations in lifestyle, nutrition, and metabolic demands during prenatal and postnatal life can induce epigenetic changes that may impact glucose homeostasis and the function of different metabolic organs. Accumulating data continues to uncover the specific pathways that are epigenetically dysregulated in T2D, providing an opportunity for therapeutic targeting. Environmental changes can disrupt specific epigenetic mechanisms underlying metabolic homeostasis, thus contributing to T2D pathogenesis. Such epigenetic changes can be transmitted to the next generation, contributing to the inheritance of T2D risk. Recent advances in epigenome-wide association studies and epigenetic editing tools present the attractive possibility of identifying epimutations associated with T2D, correcting specific epigenetic alterations, and designing novel epigenetic biomarkers and interventions for T2D.
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
32
|
Li SY, Park J, Guan Y, Chung K, Shrestha R, Palmer MB, Susztak K. DNMT1 in Six2 Progenitor Cells Is Essential for Transposable Element Silencing and Kidney Development. J Am Soc Nephrol 2019; 30:594-609. [PMID: 30850438 PMCID: PMC6442333 DOI: 10.1681/asn.2018070687] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/03/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytosine methylation of regulatory regions, such as promoters and enhancers, plays a key role in regulating gene expression, however, its role in kidney development has not been analyzed. METHODS To identify functionally important epigenome-modifying enzymes and genome regions where methylation modifications are functionally important for kidney development, we performed genome-wide methylation analysis, expression profiling, and systematic genetic targeting of DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) and Ten-eleven translocation methylcytosine hydroxylases (Tet2) in nephron progenitor cells (Six2Cre) in mice. RESULTS Genome-wide methylome analysis indicated dynamic changes on promoters and enhancers during development. Six2CreDnmt3af/f, Six2CreDnmt3bf/f, and Six2CreTet2f/f mice showed no significant structural or functional renal abnormalities. In contrast, Six2CreDnmt1f/f mice died within 24 hours of birth, from a severe kidney developmental defect. Genome-wide methylation analysis indicated a marked loss of methylation of transposable elements. RNA sequencing detected endogenous retroviral transcripts. Expression of intracellular viral sensing pathways (RIG-I), early embryonic, nonrenal lineage genes and increased cell death contributed to the phenotype development. In podocytes, loss of Dnmt1, Dnmt3a, Dnmt3b, or Tet2 did not lead to functional or structural differences at baseline or after toxic injury. CONCLUSIONS Genome-wide cytosine methylation and gene expression profiling showed that by silencing embryonic, nonrenal lineage genes and transposable elements, DNMT1-mediated cytosine methylation is essential for kidney development.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; and
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jihwan Park
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Yuting Guan
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Kiwung Chung
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Rojesh Shrestha
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katalin Susztak
- Renal-Electrolyte and Hypertension Division, Department of Medicine,
- Department of Genetics, and
| |
Collapse
|
33
|
Joseph DB, Chandrashekar AS, Abler LL, Chu LF, Thomson JA, Vezina CM. Epithelial DNA methyltransferase-1 regulates cell survival, growth and maturation in developing prostatic buds. Dev Biol 2019; 447:157-169. [PMID: 30659795 DOI: 10.1016/j.ydbio.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
DNA methyltransferase 1 (DNMT1) is required for embryogenesis but roles in late forming organ systems including the prostate, which emerges from the urethral epithelium, have not been fully examined. We used a targeted genetic approach involving a Shhcre recombinase to demonstrate requirement of epithelial DNA methyltransferase-1 (Dnmt1) in mouse prostate morphogenesis. Dnmt1 mutant urethral cells exhibit DNA hypomethylation, DNA damage, p53 accumulation and undergo cell cycle arrest and apoptosis. Urethral epithelial cells are disorganized in Dnmt1 mutants, leading to impaired prostate growth and maturation and failed glandular development. We evaluated oriented cell division as a mechanism of bud elongation and widening by demonstrating that mitotic spindle axes typically form parallel or perpendicular to prostatic bud elongation axes. We then deployed a ShhcreERT allele to delete Dnmt1 from a subset of urethral epithelial cells, creating mosaic mutants with which to interrogate the requirement for cell division in specific prostatic bud epithelial populations. DNMT1- cell distribution within prostatic buds is not random as would be expected in a process where DNMT1 was not required. Instead, replication competent DNMT1 + cells primarily accumulate in prostatic bud margins and tips while replication impeded DNMT1- cells accumulate in prostatic bud cores. Together, these results highlight the role of DNMT1 in regulating epithelial bud formation by maintaining cell cycle progression and survival of rapidly dividing urethral epithelial cells, which can be extended to the study of other developing epithelial organs. In addition, our results show that prostatic buds consist of two epithelial cell populations with distinct molecular and functional characteristics that could potentially contribute to specialized lineages in the adult prostate.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anoop S Chandrashekar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa L Abler
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53707-7365, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Joseph DB, Strand DW, Vezina CM. DNA methylation in development and disease: an overview for prostate researchers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:197-218. [PMID: 30697577 PMCID: PMC6334199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms including DNA methylation are critical regulators of organismal development and tissue homeostasis. DNA methylation is the transfer of methyl groups to cytosines, which adds an additional layer of complexity to the genome. DNA methylation marks are recognized by the cellular machinery to regulate transcription. Disruption of DNA methylation with aging or exposure to environmental toxins can change susceptibility to disease or trigger processes that lead to disease. In this review, we provide an overview of the DNA methylation machinery. More specifically, we describe DNA methylation in the context of prostate development, prostate cancer, and benign prostatic hyperplasia (BPH) as well as the impact of dietary and environmental factors on DNA methylation in the prostate.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical CenterDallas, TX 75390, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI 53706, USA
| |
Collapse
|
35
|
Song C, Xiong Y, Liao W, Meng L, Yang S. Long noncoding RNA ATB participates in the development of renal cell carcinoma by downregulating p53 via binding to DNMT1. J Cell Physiol 2018; 234:12910-12917. [PMID: 30536843 DOI: 10.1002/jcp.27957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Long noncoding RNA (lncRNA) exerts an essential role in the pathological processes of many diseases. Our previous study found that lncRNA ATB was highly expressed in renal cell carcinoma (RCC). Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and migration-related assays were conducted to access the regulatory effects of lncRNA ATB on proliferative and migratory capacities of RCC cells. Flow cytometry was carried out to determine cell cycle and apoptosis influenced by lncRNA ATB. The interaction among lncRNA ATB, DNMT1, and p53 was evaluated through RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and western blot analyses. The results showed that lncRNA ATB knockdown in RCC cell line ACHN inhibited proliferative and migratory capacities and promoted apoptosis. Meanwhile, overexpression of lncRNA ATB in RCC cell line A-498 promoted proliferative and migratory capacities but inhibited apoptosis. RIP and ChIP assays confirmed that lncRNA ATB can bind to DNMT1 and stabilize its expression; meanwhile, it can promote the binding of DNMT1 to p53. Overexpression of p53 partially reversed the proliferative and migratory changes caused by lncRNA ATB. To sum up, our study revealed that high expression of lncRNA ATB could accelerate the proliferative and migratory rates of RCC cells and inhibit cell apoptosis through downregulating p53 via binding to DNMT1.
Collapse
Affiliation(s)
- Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lingchao Meng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
36
|
Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, Xie Y, Zhang Y, He C, Wu N, Zhang C, Sdiri M, Dong J, Ma J, Gao C, Hibberd S, Yang BB. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 2018; 37:5829-5842. [PMID: 29973691 DOI: 10.1038/s41388-018-0369-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/29/2018] [Accepted: 05/26/2018] [Indexed: 11/08/2022]
Abstract
Circular RNAs are a large group of noncoding RNAs that are widely expressed in mammalian cells. Genome-wide analyses have revealed abundant and evolutionarily conserved circular RNAs across species, which suggest specific physiological roles of these species. Using a microarray approach, we detected increased expression of a circular RNA circ-Dnmt1 in eight breast cancer cell lines and in patients with breast carcinoma. Silencing circ-Dnmt1 inhibited cell proliferation and survival. Ectopic circ-Dnmt1 increased the proliferative and survival capacities of breast cancer cells by stimulating cellular autophagy. We found that circ-Dnmt1-mediated autophagy was essential in inhibiting cellular senescence and increasing tumor xenograft growth. We further found that ectopically expressed circ-Dnmt1 could interact with both p53 and AUF1, promoting the nuclear translocation of both proteins. Nuclear translocation of p53 induced cellular autophagy while AUF1 nuclear translocation reduced Dnmt1 mRNA instability, resulting in increased Dnmt1 translation. From here, functional Dnmt1 could then translocate into the nucleus, inhibiting p53 transcription. Computational algorithms revealed that both p53 and AUF1 could bind to different regions of circ-Dnmt1 RNA. Our results showed that the highly expressed circular RNA circ-Dnmt1 could bind to and regulate oncogenic proteins in breast cancer cells. Thus circ-Dnmt1 appears to be an oncogenic circular RNA with potential for further preclinical research.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, People's Republic of China
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Juanjuan Lyu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, 510070, People's Republic of China
- Yuewei Edible Fungi Technology Co. Ltd., Guangzhou, China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Jilin, China
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chao Zhang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mouna Sdiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jun Dong
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jian Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chunqi Gao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Steven Hibberd
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
In vivo replacement of damaged bladder urothelium by Wolffian duct epithelial cells. Proc Natl Acad Sci U S A 2018; 115:8394-8399. [PMID: 30061411 DOI: 10.1073/pnas.1802966115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bladder's remarkable regenerative capacity had been thought to derive exclusively from its own progenitors. While examining consequences of DNA methyltransferase 1 (Dnmt1) inactivation in mouse embryonic bladder epithelium, we made the surprising discovery that Wolffian duct epithelial cells can support bladder regeneration. Conditional Dnmt1 inactivation in mouse urethral and bladder epithelium triggers widespread apoptosis, depletes basal and intermediate bladder cells, and disrupts uroplakin protein expression. These events coincide with Wolffian duct epithelial cell recruitment into Dnmt1 mutant urethra and bladder where they are reprogrammed to express bladder markers, including FOXA1, keratin 5, P63, and uroplakin. This is evidence that Wolffian duct epithelial cells are summoned in vivo to replace damaged bladder epithelium and function as a reservoir of cells for bladder regeneration.
Collapse
|
38
|
Wang B, Du R, Xiao X, Deng ZL, Jian D, Xie HF, Li J. Microrna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1. Oncotarget 2018; 8:33475-33486. [PMID: 28380423 PMCID: PMC5464883 DOI: 10.18632/oncotarget.16509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator associated with many biological processes. However, the roles and mechanisms of DNMT1 in skin aging are incompletely understood. Here we explored the role of DNMT1 in human skin fibroblasts senescence and its related regulatory mechanisms. DNMT1 expression decreased in passage-aged fibroblasts and DNMT1 silencing in young fibroblasts induced the senescence phenotype. MiR-217 is predicted to target DNMT1 mRNA and miR-217 expression increased in passage-aged fibroblasts. MiR-217 directly targeted the 3′-untranslated region (3′-UTR) of DNMT1 in HEK 293T cells and inhibited DNMT1 expression in fibroblasts. MiR-217 overexpression induced a senescence phenotype in young fibroblasts, and miR-217 downregulation in old HSFs partially reversed the senescence phenotype. However, these effects could be significantly rescued by regulating DNMT1 expression in fibroblasts. After regulating miR-217 levels, we analyzed changes in the promoter methylation levels of 24 senescent-associated genes, finding that 6 genes were significantly altered, and verified p16 and phosphorylated retinoblastoma (pRb) protein levels. Finally, an inverse correlation between DNMT1 and miR-217 expression was observed in skin tissues and different-aged fibroblasts. Together, these findings revealed that miR-217 promotes fibroblasts senescence by suppressing DNMT1-mediated methylation of p16 and pRb by targeting the DNMT1 3′-UTR.
Collapse
Affiliation(s)
- Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Du
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha, China
| | - Zhi-Li Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Fu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Norlin S, Parekh V, Edlund H. The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Development 2018; 145:dev.154468. [PMID: 29180572 PMCID: PMC5825870 DOI: 10.1242/dev.154468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
Asna1, also known as TRC40, is implicated in the delivery of tail-anchored (TA) proteins into the endoplasmic reticulum (ER), in vesicle-mediated transport, and in chaperoning unfolded proteins during oxidative stress/ATP depletion. Here, we show that Asna1 inactivation in pancreatic progenitor cells leads to redistribution of the Golgi TA SNARE proteins syntaxin 5 and syntaxin 6, Golgi fragmentation, and accumulation of cytosolic p62+ puncta. Asna1−/− multipotent progenitor cells (MPCs) selectively activate integrated stress response signaling and undergo apoptosis, thereby disrupting endocrine and acinar cell differentiation, resulting in pancreatic agenesis. Rescue experiments implicate the Asna1 ATPase activity and a CXXC di-cysteine motif in ensuring Golgi integrity, syntaxin 5 localization and MPC survival. Ex vivo inhibition of retrograde transport reproduces the perturbed Golgi morphology, and syntaxin 5 and syntaxin 6 expression, whereas modulation of p53 activity, using PFT-α and Nutlin-3, prevents or reproduces apoptosis in Asna1-deficient and wild-type MPCs, respectively. These findings support a role for the Asna1 ATPase activity in ensuring the survival of pancreatic MPCs, possibly by counteracting p53-mediated apoptosis. Summary: Conditional inactivation of Asna1/TRC40 in pancreatic progenitor cells results in pancreatic agenesis resulting from pancreatic progenitor cell apoptosis, thus revealing a crucial role for Asna1/TRC40 in pancreatic progenitor cell survival.
Collapse
Affiliation(s)
- Stefan Norlin
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Vishal Parekh
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Helena Edlund
- Umeå Centre for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
40
|
Golson ML, Kaestner KH. Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab 2017; 6:1066-1076. [PMID: 28951829 PMCID: PMC5605720 DOI: 10.1016/j.molmet.2017.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Background Epigenetics, in the broadest sense, governs all aspects of the life of any multicellular organism, as it controls how differentiated cells arrive at their unique phenotype during development and differentiation, despite having a uniform (with some exceptions such as T-cells and germ cells) genetic make-up. The endocrine pancreas is no exception. Transcriptional regulators and epigenetic modifiers shape the differentiation of the five major endocrine cell types from their common precursor in the fetal pancreatic bud. Beyond their role in cell differentiation, interactions of the organism with the environment are also often encoded into permanent or semi-permanent epigenetic marks and affect cellular behavior and organismal health. Epigenetics is defined as any heritable – at least through one mitotic cell division – change in phenotype or trait that is not the result of a change in genomic DNA sequence, and it forms the basis that mediates the environmental impact on diabetes susceptibility and islet function. Scope of review We will summarize the impact of epigenetic regulation on islet cell development, maturation, function, and pathophysiology. We will briefly recapitulate the major epigenetic marks and their relationship to gene activity, and outline novel strategies to employ targeted epigenetic modifications as a tool to improve islet cell function. Major conclusions The improved understanding of the epigenetic underpinnings of islet cell differentiation, function and breakdown, as well as the development of innovative tools for their manipulation, is key to islet cell biology and the discovery of novel approaches to therapies for islet cell failure.
Collapse
Affiliation(s)
- Maria L Golson
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| | - Klaus H Kaestner
- University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA
| |
Collapse
|
41
|
Quan Z, He Y, Luo C, Xia Y, Zhao Y, Liu N, Wu X. Interleukin 6 induces cell proliferation of clear cell renal cell carcinoma by suppressing hepaCAM via the STAT3-dependent up-regulation of DNMT1 or DNMT3b. Cell Signal 2017; 32:48-58. [PMID: 28093267 DOI: 10.1016/j.cellsig.2017.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
Interleukin 6 (IL-6), a tumor promoting cytokine, has been largely implicated in the development of renal cell carcinoma (RCC). Hepatocyte cell adhesion molecule (hepaCAM) is a novel tumor suppressor, which is lost or down-regulated in many cancer types including RCC. In the present study, we intensively investigated the connection between IL-6 and hepaCAM in RCC. Our analysis of RCC tissues, adjacent tissues and paired serum samples from RCC patients revealed that IL-6 was elevated in patient serum and RCC tissue, whereas hepaCAM was completely lost or significantly down-regulated. Furthermore, we observed an association between IL-6 increase and hepaCAM decrease in RCC tissue samples. In the section of cytological researches, we found in RCC cell lines that IL-6 was a direct upstream regulator of hepaCAM, and that hepaCAM down-regulation was involved in IL-6-driven cell proliferation. We also demonstrated that IL-6-mediated promoter hypermethylation largely accounted for the hepaCAM loss in RCC, and it was STAT3-dependent. Additionally, our data showed that DNMT1 up-regulation induced by IL-6/STAT3 signaling was indispensable for IL-6-mediated hepaCAM loss in RCC cell lines ACHN and 769-P, while DNMT3b up-regulation was crucial for hepaCAM loss in A498. Our findings provide a novel signal pathway regulating cell proliferation, potentially representing a therapeutic target for RCC.
Collapse
Affiliation(s)
- Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yunfeng He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Xia
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yan Zhao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, People's Republic of China
| | - Nanjing Liu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
42
|
Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis. Int J Biochem Cell Biol 2017; 88:226-235. [PMID: 28119131 DOI: 10.1016/j.biocel.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023]
Abstract
In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types.
Collapse
|
43
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
45
|
Spaeth JM, Walker EM, Stein R. Impact of Pdx1-associated chromatin modifiers on islet β-cells. Diabetes Obes Metab 2016; 18 Suppl 1:123-7. [PMID: 27615141 PMCID: PMC5918695 DOI: 10.1111/dom.12730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus arises from insufficient insulin secretion from pancreatic islet β-cells. In type 2 diabetes (T2D), β-cell dysfunction is associated with inactivation and/or loss of transcription factor (TF) activity, including Pdx1. Notably, this particular TF is viewed as a master regulator of pancreas development and islet β-cell formation, identity and function. TFs, like Pdx1, recruit coregulators to transduce activating and/or repressing signals to the general transcriptional machinery for controlling gene expression, including modifiers of DNA, histones and nucleosome architecture. These coregulators impart a secondary layer of control that can be exploited to modulate TF activity. In this review, we describe Pdx1-recruited coregulators that impact chromatin structure, consequently influencing normal β-cell function and likely Pdx1 activity in pathophysiological settings.
Collapse
Affiliation(s)
- J M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - E M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - R Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
46
|
Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway. Sci Rep 2016; 6:30922. [PMID: 27488808 PMCID: PMC4973228 DOI: 10.1038/srep30922] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/11/2016] [Indexed: 01/22/2023] Open
Abstract
Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus.
Collapse
|
47
|
Kaji K, Factor VM, Andersen JB, Durkin ME, Tomokuni A, Marquardt JU, Matter MS, Hoang T, Conner EA, Thorgeirsson SS. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology 2016; 64:582-98. [PMID: 26999257 PMCID: PMC5841553 DOI: 10.1002/hep.28563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED DNA methyltransferase 1 (DNMT1) is an essential regulator maintaining both epigenetic reprogramming during DNA replication and genome stability. We investigated the role of DNMT1 in the regulation of postnatal liver histogenesis under homeostasis and stress conditions. We generated Dnmt1 conditional knockout mice (Dnmt1(Δalb) ) by crossing Dnmt1(fl/fl) with albumin-cyclization recombination transgenic mice. Serum, liver tissues, and primary hepatocytes were collected from 1-week-old to 20-week old mice. The Dnmt1(Δalb) phenotype was assessed by histology, confocal and electron microscopy, biochemistry, as well as transcriptome and methylation profiling. Regenerative growth was induced by partial hepatectomy and exposure to carbon tetrachloride. The impact of Dnmt1 knockdown was also analyzed in hepatic progenitor cell lines; proliferation, apoptosis, DNA damage, and sphere formation were assessed. Dnmt1 loss in postnatal hepatocytes caused global hypomethylation, enhanced DNA damage response, and initiated a senescence state causing a progressive inability to maintain tissue homeostasis and proliferate in response to injury. The liver regenerated through activation and repopulation from progenitors due to lineage-dependent differences in albumin-cyclization recombination expression, providing a basis for selection of less mature and therefore less damaged hepatic progenitor cell progeny. Consistently, efficient knockdown of Dnmt1 in cultured hepatic progenitor cells caused severe DNA damage, cell cycle arrest, senescence, and cell death. Mx1-cyclization recombination-driven deletion of Dnmt1 in adult quiescent hepatocytes did not affect liver homeostasis. CONCLUSION These results establish the indispensable role of DNMT1-mediated epigenetic regulation in postnatal liver growth and regeneration; Dnmt1(Δalb) mice provide a unique experimental model to study the role of senescence and the contribution of progenitor cells to physiological and regenerative liver growth. (Hepatology 2016;64:582-598).
Collapse
Affiliation(s)
- Kosuke Kaji
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jesper B. Andersen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark
| | - Marian E. Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Akira Tomokuni
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Jens U. Marquardt
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA,Department of Medicine I, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Matthias S. Matter
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Tanya Hoang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Elizabeth A. Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, 20892, USA
| |
Collapse
|
48
|
Campbell SA, Hoffman BG. Chromatin Regulators in Pancreas Development and Diabetes. Trends Endocrinol Metab 2016; 27:142-152. [PMID: 26783078 DOI: 10.1016/j.tem.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022]
Abstract
The chromatin landscape of a cell is dynamic and can be altered by chromatin regulators that control nucleosome placement and DNA or histone modifications. Together with transcription factors, these complexes help dictate the transcriptional output of a cell and, thus, balance cell proliferation and differentiation while restricting tissue-specific gene expression. In this review, we describe current research on chromatin regulators and their roles in pancreas development and the maintenance of mature β cell function, which, once elucidated, will help us better understand how β cell differentiation occurs and is maintained. These studies have so far implicated proteins from several complexes that regulate DNA methylation, nucleosome remodeling, and histone acetylation and methylation that could become promising targets for diabetes therapy and stem cell differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Histones/genetics
- Histones/metabolism
- Humans
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans/cytology
- Islets of Langerhans/growth & development
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Models, Biological
- Nucleosomes/metabolism
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Stephanie A Campbell
- Child and Family Research Institute, British Columbia Children's Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Brad G Hoffman
- Child and Family Research Institute, British Columbia Children's Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, BC, V5Z 4H4, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4E3, Canada.
| |
Collapse
|
49
|
Elliott EN, Sheaffer KL, Kaestner KH. The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. eLife 2016; 5:e12975. [PMID: 26808831 PMCID: PMC4786433 DOI: 10.7554/elife.12975] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
Dnmt1 is critical for immediate postnatal intestinal development, but is not required for the survival of the adult intestinal epithelium, the only rapidly dividing somatic tissue for which this has been shown. Acute Dnmt1 deletion elicits dramatic hypomethylation and genomic instability. Recovery of DNA methylation state and intestinal health is dependent on the de novo methyltransferase Dnmt3b. Ablation of both Dnmt1 and Dnmt3b in the intestinal epithelium is lethal, while deletion of either Dnmt1 or Dnmt3b has no effect on survival. These results demonstrate that Dnmt1 and Dnmt3b cooperate to maintain DNA methylation and genomic integrity in the intestinal epithelium.
Collapse
Affiliation(s)
- Ellen N Elliott
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Karyn L Sheaffer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
50
|
Abstract
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|