1
|
Belin D, Costafrolaz J, Silva F. AraC Functional Suppressors of Mutations in the C-Terminal Domain of the RpoA Subunit of the Escherichia coli RNA Polymerase. Microorganisms 2024; 12:1928. [PMID: 39338602 PMCID: PMC11434276 DOI: 10.3390/microorganisms12091928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In E. coli, transcriptional activation is often mediated by the C-terminal domain of RpoA, the α subunit of RNA polymerase. Random mutations that prevent activation of the arabinose PBAD promoter are clustered in the RpoA C-terminal domain (α-CTD). We have isolated functional suppressors of rpoA α-CTD mutations that map to araC, the main transcriptional regulator of ara genes, or to the PBAD promoter. No mutation was found in the DNA regulatory region between araC and PBAD. Most suppressors that improve PBAD transcription are localized to the N-terminal domain of AraC. One class of araC mutations generates substitutions in the core of the N-terminal domain, suggesting that they affect its conformation. Other suppressors localize to the flexible N-terminal arm of AraC. Some, but not all, suppressors confer an arabinose constitutive phenotype. Suppression by both classes of araC mutations requires the α-CTD to stimulate expression from PBAD. Surprisingly, in rpoA+ strains lacking Crp, the cAMP receptor protein, these araC mutations largely restore arabinose gene expression and can essentially bypass Crp activation. Thus, the N-terminal domain of AraC exhibits at least three distinct activities: dimerization, arabinose binding, and transcriptional activation. Finally, one mutation maps to the AraC C-terminal domain and can synergize with AraC mutations in the N-terminal domain.
Collapse
Affiliation(s)
- Dominique Belin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Jordan Costafrolaz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland
| | - Filo Silva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland
| |
Collapse
|
2
|
Shi J, Li F, Wen A, Yu L, Wang L, Wang F, Jin Y, Jin S, Feng Y, Lin W. Structural basis of transcription activation by the global regulator Spx. Nucleic Acids Res 2021; 49:10756-10769. [PMID: 34530448 PMCID: PMC8501982 DOI: 10.1093/nar/gkab790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Spx is a global transcriptional regulator in Gram-positive bacteria and has been inferred to efficiently activate transcription upon oxidative stress by engaging RNA polymerase (RNAP) and promoter DNA. However, the precise mechanism by which it interacts with RNAP and promoter DNA to initiate transcription remains obscure. Here, we report the cryo-EM structure of an intact Spx-dependent transcription activation complex (Spx-TAC) from Bacillus subtilis at 4.2 Å resolution. The structure traps Spx in an active conformation and defines key interactions accounting for Spx-dependent transcription activation. Strikingly, an oxidized Spx monomer engages RNAP by simultaneously interacting with the C-terminal domain of RNAP alpha subunit (αCTD) and σA. The interface between Spx and αCTD is distinct from those previously reported activators, indicating αCTD as a multiple target for the interaction between RNAP and various transcription activators. Notably, Spx specifically wraps the conserved -44 element of promoter DNA, thereby stabilizing Spx-TAC. Besides, Spx interacts extensively with σA through three different interfaces and promotes Spx-dependent transcription activation. Together, our structural and biochemical results provide a novel mechanistic framework for the regulation of bacterial transcription activation and shed new light on the physiological roles of the global Spx-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
3
|
Doniselli N, Rodriguez-Aliaga P, Amidani D, Bardales JA, Bustamante C, Guerra DG, Rivetti C. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Nucleic Acids Res 2015; 43:5249-62. [PMID: 25916853 PMCID: PMC4446441 DOI: 10.1093/nar/gkv391] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/13/2015] [Indexed: 11/21/2022] Open
Abstract
The stringent response modulators, guanosine tetraphosphate (ppGpp) and protein DksA, bind RNA polymerase (RNAP) and regulate gene expression to adapt bacteria to different environmental conditions. Here, we use Atomic Force Microscopy and in vitro transcription assays to study the effects of these modulators on the conformation and stability of the open promoter complex (RPo) formed at the rrnA P1, rrnB P1, its discriminator (dis) variant and λ pR promoters. In the absence of modulators, RPo formed at these promoters show different extents of DNA wrapping which correlate with the position of UP elements. Addition of the modulators affects both DNA wrapping and RPo stability in a promoter-dependent manner. Overall, the results obtained under different conditions of ppGpp, DksA and initiating nucleotides (iNTPs) indicate that ppGpp allosterically prevents the conformational changes associated with an extended DNA wrapping that leads to RPo stabilization, while DksA interferes directly with nucleotide positioning into the RNAP active site. At the iNTPs-sensitive rRNA promoters ppGpp and DksA display an independent inhibitory effect, while at the iNTPs-insensitive pR promoter DksA reduces the effect of ppGpp in accordance with their antagonistic role.
Collapse
Affiliation(s)
- Nicola Doniselli
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Piere Rodriguez-Aliaga
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, CA, USA Biophysics Graduate Group, University of California, Berkeley, CA, USA Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Davide Amidani
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| | - Jorge A Bardales
- Biophysics Graduate Group, University of California, Berkeley, CA, USA Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, CA, USA Biophysics Graduate Group, University of California, Berkeley, CA, USA Departments of Physics, Chemistry, and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Daniel G Guerra
- Laboratorio de Moléculas Individuales, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av Honorio Delgado 430, San Martin de Porras, Lima-31, Peru
| | - Claudio Rivetti
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
4
|
Holt AK, Senear DF. The cooperative binding energetics of CytR and cAMP receptor protein support a quantitative model of differential activation and repression of CytR-regulated class III Escherichia coli promoters. Biochemistry 2013; 52:8209-18. [PMID: 24138566 DOI: 10.1021/bi401063c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cAMP receptor protein (CRP) and CytR mediate positive and negative control of nine genes in Escherichia coli, most of which are involved in nucleoside catabolism and recycling. Five promoters share a common architecture in which tandem CRP sites flank an intervening CytR operator (CytO). CytR and CRP bind cooperatively to these promoters to form a three-protein, DNA-bound complex that controls activation and repression, the levels of which vary markedly among the promoters. To understand the specific combinatorial control mechanisms that are responsible for this outcome, we have used quantitative DNase I footprinting to generate individual site isotherms for each site of protein-DNA interaction. The intrinsic affinities of each transcription factor for its respective site and the specific patterns of cooperativity and competition underlying the molecular interactions at each promoter were determined by a global analysis of these titration data. Here we present results obtained for nupGP and tsxP2, adding to results published previously for deoP2, udpP, and cddP. These data allowed us to correlate the reported levels of activation, repression, and induction with the ligation states of these five promoters under physiologically relevant conditions. A general pattern of transcriptional regulation emerges that allows for complex patterns of regulation in this seemingly simple system.
Collapse
Affiliation(s)
- Allison K Holt
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | | |
Collapse
|
5
|
Lee DJ, Busby SJW. Repression by cyclic AMP receptor protein at a distance. mBio 2012; 3:e00289-12. [PMID: 22967981 PMCID: PMC3445967 DOI: 10.1128/mbio.00289-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In a previous study of promoters dependent on the Escherichia coli cyclic AMP receptor protein (CRP), carrying tandem DNA sites for CRP, we found that the upstream-bound CRP could either enhance or repress transcription, depending on its location. Here, we have analyzed the interactions between CRP and the C-terminal domains of the RNA polymerase α subunits at some of these promoters. We report that the upstream-bound CRP interacts with these domains irrespective of whether it up- or downregulates promoter activity. Hence, disruption of this interaction can lead to either down- or upregulation, depending on its location. IMPORTANCE Many bacterial promoters carry multiple DNA sites for transcription factors. While most factors that downregulate promoter activity bind to targets that overlap or are downstream of the transcription start and -10 element, very few cases of repression from upstream locations have been reported. Since more Escherichia coli promoters are regulated by cyclic AMP receptor protein (CRP) than by any other transcription factor, and since multiple DNA sites for CRP are commonplace at promoters, our results suggest that promoter downregulation by transcription factors may be more prevalent than hitherto thought, and this will have implications for the annotation of promoters from new bacterial genome sequences.
Collapse
Affiliation(s)
- David J Lee
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
6
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
7
|
In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol 2010; 192:2111-27. [PMID: 20172998 DOI: 10.1128/jb.01524-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN(6)GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.
Collapse
|
8
|
Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc Natl Acad Sci U S A 2009; 106:19830-5. [PMID: 19903881 DOI: 10.1073/pnas.0908782106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-A electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP alpha subunit C-terminal domain (alphaCTD), interactions of alphaCTD with sigma(70) region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP beta', beta, and sigma(70) subunits.
Collapse
|
9
|
Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes. Appl Environ Microbiol 2009; 75:2705-11. [PMID: 19251886 DOI: 10.1128/aem.01888-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combinatorial or random methods for strain engineering have been extensively used for the improvement of multigenic phenotypes and other traits for which the underlying mechanism is not fully understood. Although the preferred method has traditionally been mutagenesis and selection, our laboratory has successfully used mutant transcription factors, which direct the RNA polymerase (RNAP) during transcription, to engineer complex phenotypes in microbial cells. Here, we show that it is also possible to impart new phenotypes by altering the RNAP core enzyme itself, in particular through mutagenesis of the alpha subunit of the bacterial polymerase. We present the use of this tool for improving tolerance of Escherichia coli to butanol and other solvents and for increasing the titers of two commercially relevant products, L-tyrosine and hyaluronic acid. In addition, we explore the underlying physiological changes that give rise to the solvent-tolerant mutant.
Collapse
|
10
|
Mangiarotti L, Cellai S, Ross W, Bustamante C, Rivetti C. Sequence-dependent upstream DNA-RNA polymerase interactions in the open complex with lambdaPR and lambdaPRM promoters and implications for the mechanism of promoter interference. J Mol Biol 2008; 385:748-60. [PMID: 19061900 DOI: 10.1016/j.jmb.2008.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 11/28/2022]
Abstract
Upstream interactions of Escherichia coli RNA polymerase (RNAP) in an open promoter complex (RPo) formed at the P(R) and P(RM) promoters of bacteriophage lambda have been studied by atomic force microscopy. We demonstrate that the previously described 30-nm DNA compaction observed upon RPo formation at P(R) [Rivetti, C., Guthold, M. & Bustamante, C. (1999). Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J., 18, 4464-4475.] is a consequence of the specific interaction of the RNAP with two AT-rich sequence determinants positioned from -36 to -59 and from -80 to -100. Likewise, RPos formed at P(RM) showed a specific contact between RNAP and the upstream DNA sequence. We further demonstrate that this interaction, which results in DNA wrapping against the polymerase surface, is mediated by the C-terminal domains of alpha-subunits (carboxy-terminal domain). Substitution of these AT-rich sequences with heterologous DNA reduces DNA wrapping but has only a small effect on the activity of the P(R) promoter. We find, however, that the frequency of DNA templates with both P(R) and P(RM) occupied by an RNAP significantly increases upon loss of DNA wrapping. These results suggest that alpha carboxy-terminal domain interactions with upstream DNA can also play a role in regulating the expression of closely spaced promoters. Finally, a model for a possible mechanism of promoter interference between P(R) and P(RM) is proposed.
Collapse
Affiliation(s)
- Laura Mangiarotti
- Department of Biochemistry and Molecular Biology, University of Parma, Viale G. P. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
11
|
Levy R, Molineux IJ, Iverson BL, Georgiou G. Isolation of trans-acting genes that enhance soluble expression of scFv antibodies in the E. coli cytoplasm by lambda phage display. J Immunol Methods 2007; 321:164-73. [PMID: 17328908 DOI: 10.1016/j.jim.2007.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 01/10/2007] [Accepted: 01/18/2007] [Indexed: 01/21/2023]
Abstract
Functional antibody fragments with native disulfide bonds can be expressed in Escherichia coli trxB gor mutant strains having an oxidizing cytoplasm that allows the formation of disulfide bonds. However, expression yields in the cytoplasm are generally lower than those obtained by secretion into the periplasm. We developed a novel methodology for the screening of genomic DNA fragments that enhance expression yields of scFvs in the cytoplasm of trxB gor cells by capitalizing on bacteriophage lambda display. The anti-digoxin 26.10 scFv was displayed on lambda as a fusion to the coat protein gpD. A genomic E. coli library was cloned into lambdagt11 downstream from the lac promoter and used to lysogenize cells transformed with a plasmid encoding the scFv-gpD fusion. Following induction of expression of the cloned gene fragments, phage was prepared and screened for improved functional display via panning against immobilized hapten. Phage exhibiting improved display was isolated after two rounds. One of the isolated clones, encoding the N-terminal domain of the alpha-subunit of RNA polymerase (alpha-NTD), was shown to increase the yield of scFv expressed in soluble form in the cytoplasm.
Collapse
Affiliation(s)
- Raphael Levy
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712-1064, USA
| | | | | | | |
Collapse
|
12
|
Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH. Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 2004; 14:10-20. [PMID: 15102444 PMCID: PMC2765107 DOI: 10.1016/j.sbi.2004.01.012] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently determined structures of the Escherichia coli catabolite activator protein (CAP) in complex with DNA, and in complex with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) and DNA, have yielded insights into how CAP binds DNA and activates transcription. Comparison of multiple structures of CAP-DNA complexes has revealed the contributions of direct and indirect readout to DNA binding by CAP. The structure of the CAP-alphaCTD-DNA complex has provided the first structural description of interactions between a transcription activator and its functional target within the general transcription machinery. Using the structure of the CAP-alphaCTD-DNA complex, the structure of an RNA polymerase-DNA complex, and restraints from biophysical, biochemical and genetic experiments, it has been possible to construct detailed three-dimensional models of intact class I and class II transcription activation complexes.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Barnard A, Wolfe A, Busby S. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 2004; 7:102-8. [PMID: 15063844 DOI: 10.1016/j.mib.2004.02.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Most bacterial promoters are regulated by several signals. This is reflected in the complexity of their organization, with multiple binding sites for different transcription factors. Studies of a small number of complex promoters have revealed different distinct mechanisms that integrate the effects of multiple transcription factors.
Collapse
Affiliation(s)
- Anne Barnard
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
14
|
Barnard AML, Lloyd GS, Green J, Busby SJW, Lee DJ. Location of the Escherichia coli RNA polymerase alpha subunit C-terminal domain at an FNR-dependent promoter: analysis using an artificial nuclease. FEBS Lett 2004; 558:13-8. [PMID: 14759508 DOI: 10.1016/s0014-5793(03)01518-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/22/2003] [Accepted: 12/22/2003] [Indexed: 11/28/2022]
Abstract
The Escherichia coli FNR protein is a global transcription regulator that activates gene expression via interactions with the RNA polymerase alpha subunit C-terminal domain. Using preparations of E. coli RNA polymerase holoenzyme, specifically labelled with a DNA cleavage reagent, we have determined the location and orientation of the C-terminal domain of the RNA polymerase alpha subunit in transcriptionally competent complexes at a class II FNR-dependent promoter. We conclude that one alpha subunit C-terminal domain binds immediately upstream of FNR, and that its position and orientation is the same as at similar promoters dependent on CRP, another E. coli transcription activator that is related to FNR. In complementary experiments, we show that the second alpha subunit C-terminal domain of RNA polymerase can be repositioned by upstream-bound CRP, but not by upstream-bound FNR.
Collapse
Affiliation(s)
- Anne M L Barnard
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
15
|
Lee DJ, Busby SJW, Lloyd GS. Exploitation of a Chemical Nuclease to Investigate the Location and Orientation of the Escherichia coli RNA Polymerase α Subunit C-terminal Domains at Simple Promoters That Are Activated by Cyclic AMP Receptor Protein. J Biol Chem 2003; 278:52944-52. [PMID: 14530288 DOI: 10.1074/jbc.m308300200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
16
|
Barnard AML, Green J, Busby SJW. Transcription regulation by tandem-bound FNR at Escherichia coli promoters. J Bacteriol 2003; 185:5993-6004. [PMID: 14526010 PMCID: PMC225037 DOI: 10.1128/jb.185.20.5993-6004.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FNR is an Escherichia coli transcription factor that regulates the transcription of many genes in response to anaerobiosis. We have constructed a series of artificial FNR-dependent promoters, based on the melR promoter, in which a consensus FNR binding site was centered at position -41.5 relative to the transcription start site. A second consensus FNR binding site was introduced at different upstream locations, and promoter activity was assayed in vivo. FNR can activate transcription from these promoters when the upstream FNR binding site is located at many different positions. However, sharp repression is observed when the upstream-bound FNR is located near positions -85 or -95. This repression is relieved by the FNR G74C substitution mutant, previously identified as being defective in transcription repression at the yfiD promoter. A parallel series of artificial FNR-dependent promoters, carrying a consensus FNR binding site at position -61.5 and a second upstream DNA site for FNR, was also constructed. Again, promoter activity was repressed by FNR when the upstream-bound FNR was located at particular positions.
Collapse
Affiliation(s)
- Anne M L Barnard
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
17
|
Chen H, Tang H, Ebright RH. Functional interaction between RNA polymerase alpha subunit C-terminal domain and sigma70 in UP-element- and activator-dependent transcription. Mol Cell 2003; 11:1621-33. [PMID: 12820974 DOI: 10.1016/s1097-2765(03)00201-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We show that the Escherichia coli RNA polymerase (RNAP) alpha subunit C-terminal domain (alphaCTD) functionally interacts with sigma(70) at a subset of UP-element- and activator-dependent promoters, we define the determinants of alphaCTD and sigma(70) required for the interaction, and we present a structural model for the interaction. The alphaCTD-sigma(70) interaction spans the upstream promoter and core promoter, thereby linking recognition of UP-elements and activators in the upstream promoter with recognition of the -35 element in the core promoter. We propose that the alphaCTD-sigma(70) interaction permits UP-elements and activators not only to "recruit" RNAP through direct interaction with alphaCTD, but also to "remodel" RNAP-core-promoter interaction through indirect, alphaCTD-bridged interactions with sigma(70).
Collapse
Affiliation(s)
- Hao Chen
- Waksman Institute, Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
18
|
Ray P, Klaholz BP, Finn RD, Orlova EV, Burrows PC, Gowen B, Buck M, van Heel M. Determination of Escherichia coli RNA Polymerase Structure by Single Particle Cryoelectron Microscopy. Methods Enzymol 2003; 370:24-42. [PMID: 14712631 DOI: 10.1016/s0076-6879(03)70003-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Pampa Ray
- Department of Biological Sciences, Wolfson Laboratories, Imperial College of London, Rm. 313, London SW7 2AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|