1
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
2
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
3
|
Castro VL, Paz D, Virrueta V, Estevao IL, Grajeda BI, Ellis CC, Quintana AM. Missense and nonsense mutations of the zebrafish hcfc1a gene result in contrasting mTor and radial glial phenotypes. Gene 2023; 864:147290. [PMID: 36804358 PMCID: PMC11373874 DOI: 10.1016/j.gene.2023.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| | - David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Valeria Virrueta
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
4
|
Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet 2022; 18:e1010273. [PMID: 36383567 PMCID: PMC9710795 DOI: 10.1371/journal.pgen.1010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating remains unclear. The nutrient sensor O-GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O-GlcNAc transferase (ogt-1) is dispensable in Caenorhabditis elegans, allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males had a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that ogt-1 males transferred sperm less often, and virgin males had reduced sperm count. ogt-1 males were also less likely to engage in mate-searching and mate-response behaviors. Surprisingly, we found normal fertility for males with hypodermal expression of ogt-1 and for ogt-1 strains with catalytic-dead mutations. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting male fertility and mating behavior. This study builds upon research on the nutrient sensor O-GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival.
Collapse
Affiliation(s)
- Daniel Konzman
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mesgana Dagnachew
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Abstract
Detection of protein O-GlcNAcylation could be challenging. By using the host-cell factor 1 (HCF-1), a known O-GlcNAcylated protein, we immunoprecipitated HCF-1 from transfected HEK293T cells or endogenous HCF-1 from HeLa cells to detect its O-GlcNAc levels by Western blotting. We also take advantage of RNAi or chemical inhibitors to modulate OGT and OGA activities before HCF-1 immunoprecipitation. For complete details on the use and execution of this protocol, please refer to Daou et al. (2011).
Collapse
|
6
|
Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Oncol 2021; 12:54. [PMID: 35201498 PMCID: PMC8777512 DOI: 10.1007/s12672-021-00450-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Prevalent dysregulation of epigenetic modifications plays a pivotal role in cancer. Targeting epigenetic abnormality is a new strategy for cancer therapy. Understanding how conventional oncogenic factors cause epigenetic abnormality is of great basic and translational value. O-GlcNAcylation is a protein modification which affects physiology and pathophysiology. In mammals, O-GlcNAcylation is catalyzed by one single enzyme OGT and removed by one single enzyme OGA. O-GlcNAcylation is affected by the availability of the donor, UDP-GlcNAc, generated by the serial enzymatic reactions in the hexoamine biogenesis pathway (HBP). O-GlcNAcylation regulates a wide spectrum of substrates including many proteins involved in epigenetic modification. Like epigenetic modifications, abnormality of O-GlcNAcylation is also common in cancer. Studies have revealed substantial impact on HBP enzymes and OGT/OGA by oncogenic signals. In this review, we will first summarize how oncogenic signals regulate HBP enzymes, OGT and OGA in cancer. We will then integrate this knowledge with the up to date understanding how O-GlcNAcylation regulates epigenetic machinery. With this, we propose a signal axis from oncogenic signals through O-GlcNAcylation dysregulation to epigenetic abnormality in cancer. Further elucidation of this axis will not only advance our understanding of cancer biology but also provide new revenues towards cancer therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
7
|
Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci U S A 2021; 118:2016778118. [PMID: 33419956 DOI: 10.1073/pnas.2016778118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
O-GlcNAc transferase (OGT), found in the nucleus and cytoplasm of all mammalian cell types, is essential for cell proliferation. Why OGT is required for cell growth is not known. OGT performs two enzymatic reactions in the same active site. In one, it glycosylates thousands of different proteins, and in the other, it proteolytically cleaves another essential protein involved in gene expression. Deconvoluting OGT's myriad cellular roles has been challenging because genetic deletion is lethal; complementation methods have not been established. Here, we developed approaches to replace endogenous OGT with separation-of-function variants to investigate the importance of OGT's enzymatic activities for cell viability. Using genetic complementation, we found that OGT's glycosyltransferase function is required for cell growth but its protease function is dispensable. We next used complementation to construct a cell line with degron-tagged wild-type OGT. When OGT was degraded to very low levels, cells stopped proliferating but remained viable. Adding back catalytically inactive OGT rescued growth. Therefore, OGT has an essential noncatalytic role that is necessary for cell proliferation. By developing a method to quantify how OGT's catalytic and noncatalytic activities affect protein abundance, we found that OGT's noncatalytic functions often affect different proteins from its catalytic functions. Proteins involved in oxidative phosphorylation and the actin cytoskeleton were especially impacted by the noncatalytic functions. We conclude that OGT integrates both catalytic and noncatalytic functions to control cell physiology.
Collapse
|
8
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Pravata VM, Gundogdu M, Bartual SG, Ferenbach AT, Stavridis M, Õunap K, Pajusalu S, Žordania R, Wojcik MH, van Aalten DMF. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability. FEBS Lett 2020; 594:717-727. [PMID: 31627256 PMCID: PMC7042088 DOI: 10.1002/1873-3468.13640] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/25/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
X-linked intellectual disabilities (XLID) are common developmental disorders. The enzyme O-GlcNAc transferase encoded by OGT, a recently discovered XLID gene, attaches O-GlcNAc to nuclear and cytoplasmic proteins. As few missense mutations have been described, it is unclear what the aetiology of the patient phenotypes is. Here, we report the discovery of a missense mutation in the catalytic domain of OGT in an XLID patient. X-ray crystallography reveals that this variant leads to structural rearrangements in the catalytic domain. The mutation reduces in vitro OGT activity on substrate peptides/protein. Mouse embryonic stem cells carrying the mutation reveal reduced O-GlcNAcase (OGA) and global O-GlcNAc levels. These data suggest a direct link between changes in the O-GlcNAcome and intellectual disability observed in patients carrying OGT mutations.
Collapse
Affiliation(s)
- Veronica M. Pravata
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Mehmet Gundogdu
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Sergio G. Bartual
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Andrew T. Ferenbach
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| | - Marios Stavridis
- Division of Cell and Developmental BiologySchool of Life SciencesUniversity of DundeeUK
| | - Katrin Õunap
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
- Department of Clinical GeneticsInstitute of Clinical MedicineUniversity of TartuEstonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
- Department of Clinical GeneticsInstitute of Clinical MedicineUniversity of TartuEstonia
| | - Riina Žordania
- Department of Clinical Genetics, United LaboratoriesTartu University HospitalEstonia
| | - Monica H. Wojcik
- Divisions of Newborn Medicine and Genetics and GenomicsDepartment of MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Daan M. F. van Aalten
- Division of Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
10
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
11
|
O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis. Proc Natl Acad Sci U S A 2019; 116:7857-7866. [PMID: 30940748 DOI: 10.1073/pnas.1813026116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked β-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.
Collapse
|
12
|
Kapuria V, Röhrig UF, Waridel P, Lammers F, Borodkin VS, van Aalten DMF, Zoete V, Herr W. The conserved threonine-rich region of the HCF-1 PRO repeat activates promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. J Biol Chem 2018; 293:17754-17768. [PMID: 30224358 PMCID: PMC6240873 DOI: 10.1074/jbc.ra118.004185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
O-Linked GlcNAc transferase (OGT) possesses dual glycosyltransferase–protease activities. OGT thereby stably glycosylates serines and threonines of numerous proteins and, via a transient glutamate glycosylation, cleaves a single known substrate—the so-called HCF-1PRO repeat of the transcriptional co-regulator host-cell factor 1 (HCF-1). Here, we probed the relationship between these distinct glycosylation and proteolytic activities. For proteolysis, the HCF-1PRO repeat possesses an important extended threonine-rich region that is tightly bound by the OGT tetratricopeptide-repeat (TPR) region. We report that linkage of this HCF-1PRO-repeat, threonine-rich region to heterologous substrate sequences also potentiates robust serine glycosylation with the otherwise poor Rp-αS-UDP-GlcNAc diastereomer phosphorothioate and UDP-5S-GlcNAc OGT co-substrates. Furthermore, it potentiated proteolysis of a non-HCF-1PRO-repeat cleavage sequence, provided it contained an appropriately positioned glutamate residue. Using serine- or glutamate-containing HCF-1PRO-repeat sequences, we show that proposed OGT-based or UDP-GlcNAc–based serine-acceptor residue activation mechanisms can be circumvented independently, but not when disrupted together. In contrast, disruption of both proposed activation mechanisms even in combination did not inhibit OGT-mediated proteolysis. These results reveal a multiplicity of OGT glycosylation strategies, some leading to proteolysis, which could be targets of alternative molecular regulatory strategies.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vladimir S Borodkin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Vincent Zoete
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Fundamental Oncology, Ludwig Lausanne Branch, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Winship Herr
- From the Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Zhao L, Shah JA, Cai Y, Jin J. ' O-GlcNAc Code' Mediated Biological Functions of Downstream Proteins. Molecules 2018; 23:molecules23081967. [PMID: 30082668 PMCID: PMC6222556 DOI: 10.3390/molecules23081967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022] Open
Abstract
As one of the post-translational modifications, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) often occurs on serine (Ser) and threonine (Thr) residues of specific substrate cellular proteins via the addition of O-GlcNAc group by O-GlcNAc transferase (OGT). Maintenance of normal intracellular levels of O-GlcNAcylation is controlled by OGT and glycoside hydrolase O-GlcNAcase (OGA). Unbalanced O-GlcNAcylation levels have been involved in many diseases, including diabetes, cancer, and neurodegenerative disease. Recent research data reveal that O-GlcNAcylation at histones or non-histone proteins may provide recognition platforms for subsequent protein recruitment and further initiate intracellular biological processes. Here, we review the current understanding of the 'O-GlcNAc code' mediated intracellular biological functions of downstream proteins.
Collapse
Affiliation(s)
- Linhong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
14
|
Selvan N, George S, Serajee FJ, Shaw M, Hobson L, Kalscheuer V, Prasad N, Levy SE, Taylor J, Aftimos S, Schwartz CE, Huq AM, Gecz J, Wells L. O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J Biol Chem 2018; 293:10810-10824. [PMID: 29769320 DOI: 10.1074/jbc.ra118.002583] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/27/2018] [Indexed: 01/17/2023] Open
Abstract
It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.
Collapse
Affiliation(s)
- Nithya Selvan
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Stephan George
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Fatema J Serajee
- the Departments of Pediatrics and of Neurology, Wayne State University, Detroit, Michigan 48201
| | - Marie Shaw
- the Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide South Australia 5006, Australia
| | - Lynne Hobson
- the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | - Vera Kalscheuer
- the Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Nripesh Prasad
- the Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Shawn E Levy
- the Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Juliet Taylor
- the Genetic Health Services New Zealand-Northern Hub, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salim Aftimos
- the Genetic Health Services New Zealand-Northern Hub, Auckland City Hospital, Auckland 1142, New Zealand
| | | | - Ahm M Huq
- the Departments of Pediatrics and of Neurology, Wayne State University, Detroit, Michigan 48201
| | - Jozef Gecz
- the Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide South Australia 5006, Australia.,the South Australian Health and Medical Research Institute, Adelaide, South Australia 5006, Australia
| | - Lance Wells
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
15
|
Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, Loza BF, Fuijkschot J, Ferenbach AT, van Gassen KLI, van Aalten DMF, Lefeber DJ. Mutations in N-acetylglucosamine ( O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem 2017; 292:12621-12631. [PMID: 28584052 PMCID: PMC5535036 DOI: 10.1074/jbc.m117.790097] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463–6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463–6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mehmet Gundogdu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| | - Marlies J E Kempers
- Department of Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Martin Elferink
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Bettina F Loza
- Department of Paediatrics, VieCuri Hospital, 5900 BX Venlo, The Netherlands
| | - Joris Fuijkschot
- Department of Paediatrics, Radboud University Medical Centre and Amalia Children's Hospital, 6500 HB Nijmegen, The Netherlands
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| | - Koen L I van Gassen
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
16
|
OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochem Soc Trans 2017; 45:365-370. [PMID: 28408476 DOI: 10.1042/bst20160404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
O-GlcNAcylation is a highly dynamic post-translational modification whose level depends on nutrient status. Only two enzymes regulate O-GlcNAcylation cycling, the glycosyltransferase OGT (O-GlcNAc transferase) and the glycoside hydrolase OGA (O-GlcNAcase), that add and remove the GlcNAc moiety to and from acceptor proteins, respectively. During the last 30 years, OGT has emerged as a master regulator of cell life with O-GlcNAcylation being found in viruses, bacteria, insects, protists and metazoans. The study of OGT in different biological systems opens new perspectives for understanding this enzyme in many kingdoms of life. In this review, we summarize recent and older findings regarding the distribution of OGT in living organisms.
Collapse
|
17
|
Janetzko J, Walker S. Aspartate Glycosylation Triggers Isomerization to Isoaspartate. J Am Chem Soc 2017; 139:3332-3335. [PMID: 28207246 DOI: 10.1021/jacs.6b12866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
O-Linked β-N-acetylglucosamine transferase (OGT) is an essential human enzyme that glycosylates numerous nuclear and cytoplasmic proteins on serine and threonine. It also cleaves Host cell factor 1 (HCF-1) by a mechanism in which the first step involves glycosylation on glutamate. Replacing glutamate with aspartate in an HCF-1 proteolytic repeat was shown to prevent peptide backbone cleavage, but whether aspartate glycosylation occurred was not examined. We report here that OGT glycosylates aspartate much faster than it glycosylates glutamate in an otherwise identical model peptide substrate; moreover, once formed, the glycosyl aspartate reacts further to form a succinimide intermediate that hydrolyzes to produce the corresponding isoaspartyl peptide. Aspartate-to-isoaspartate isomerization in proteins occurs in cells but was previously thought to be exclusively non-enzymatic. Our findings suggest it may also be enzyme-catalyzed. In addition to OGT, enzymes that may catalyze aspartate to isoaspartate isomerization include PARPs, enzymes known to ribosylate aspartate residues in the process of poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- John Janetzko
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|