1
|
Olson O, Pelliciari S, Heron ED, Deegan TD. A common mechanism for recruiting the Rrm3 and RTEL1 accessory helicases to the eukaryotic replisome. EMBO J 2024; 43:3846-3875. [PMID: 39039288 PMCID: PMC11405395 DOI: 10.1038/s44318-024-00168-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The eukaryotic replisome is assembled around the CMG (CDC45-MCM-GINS) replicative helicase, which encircles the leading-strand DNA template at replication forks. When CMG stalls during DNA replication termination, or at barriers such as DNA-protein crosslinks on the leading strand template, a second helicase is deployed on the lagging strand template to support replisome progression. How these 'accessory' helicases are targeted to the replisome to mediate barrier bypass and replication termination remains unknown. Here, by combining AlphaFold structural modelling with experimental validation, we show that the budding yeast Rrm3 accessory helicase contains two Short Linear Interaction Motifs (SLIMs) in its disordered N-terminus, which interact with CMG and the leading-strand DNA polymerase Polε on one side of the replisome. This flexible tether positions Rrm3 adjacent to the lagging strand template on which it translocates, and is critical for replication termination in vitro and Rrm3 function in vivo. The primary accessory helicase in metazoa, RTEL1, is evolutionarily unrelated to Rrm3, but binds to CMG and Polε in an analogous manner, revealing a conserved docking mechanism for accessory helicases in the eukaryotic replisome.
Collapse
Affiliation(s)
- Ottavia Olson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Simone Pelliciari
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Emma D Heron
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Tom D Deegan
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
2
|
Cortone G, Graewert MA, Kanade M, Longo A, Hegde R, González‐Magaña A, Chaves‐Arquero B, Blanco FJ, Napolitano LMR, Onesti S. Structural and biochemical characterization of the C-terminal region of the human RTEL1 helicase. Protein Sci 2024; 33:e5093. [PMID: 39180489 PMCID: PMC11344278 DOI: 10.1002/pro.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 08/26/2024]
Abstract
RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.
Collapse
Affiliation(s)
- Giuseppe Cortone
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
- International School for Advanced Studies (SISSA)TriesteItaly
| | | | - Manil Kanade
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| | - Antonio Longo
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
- Department of ChemistryUniversità degli Studi di TriesteTriesteItaly
| | - Raghurama Hegde
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| | - Amaia González‐Magaña
- Instituto Biofisika and Departamento de Bioquímica y Biología Molecular (CSIC, UPV/EHU)University of the Basque CountryLeioaSpain
| | | | | | | | - Silvia Onesti
- Structural Biology LaboratoryElettra‐Sincrotrone TriesteTriesteItaly
| |
Collapse
|
3
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
Smoom R, May CL, Lichtental D, Skordalakes E, Kaestner KH, Tzfati Y. Separation of telomere protection from length regulation by two different point mutations at amino acid 492 of RTEL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582005. [PMID: 38464183 PMCID: PMC10925190 DOI: 10.1101/2024.02.26.582005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
RTEL1 is an essential DNA helicase that plays multiple roles in genome stability and telomere length regulation. A variant of RTEL1 with a lysine at position 492 is associated with short telomeres in Mus spretus , while a conserved methionine at this position is found in M. musculus , which has ultra-long telomeres. In humans, a missense mutation at this position ( Rtel1 M492I ) causes a fatal telomere biology disease termed Hoyeraal-Hreidarsson syndrome (HHS). Introducing the Rtel1 M492K mutation into M. musculus shortened the telomeres of the resulting strain, termed 'Telomouse', to the length of human telomeres. Here, we report on a mouse strain carrying the Rtel1 M492I mutation, termed 'HHS mouse'. The HHS mouse telomeres are not as short as those of Telomice but nevertheless they display higher levels of telomeric DNA damage, fragility and recombination, associated with anaphase bridges and micronuclei. These observations indicate that the two mutations separate critical functions of RTEL1: M492K mainly reduces the telomere length setpoint, while M492I predominantly disrupts telomere protection. The two mouse models enable dissecting the mechanistic roles of RTEL1 and the different contributions of short telomeres and DNA damage to telomere biology diseases, genomic instability, cancer, and aging.
Collapse
|
5
|
Chaudhari S, Acharya LP, Jasti DB, Ware AP, Gorthi SP, Satyamoorthy K. Discovery of a Novel Shared Variant Among RTEL1 Gene and RTEL1-TNFRSF6B lncRNA at Chromosome 20q13.33 in Familial Progressive Myoclonus Epilepsy. Int J Genomics 2024; 2024:7518528. [PMID: 39156922 PMCID: PMC11330336 DOI: 10.1155/2024/7518528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Methods: Clinical assessments and molecular analyses, such as the repeat expansion test for CSTB; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. Results: A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, KCNH8 [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 (RTEL1) [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, RTEL1-TNFRSF6B [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of RTEL1 and RTEL1-TNFRSF6B revealed that RTEL1-TNFRSF6B may modulate RTEL1 via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in SLC22A17 was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Conclusions: Our study is the first to report variants in KCNH8, RTEL1, and RTEL1-TNFRSF6B among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Lavanya Prakash Acharya
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Dushyanth Babu Jasti
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
| | - Akshay Pramod Ware
- Department of BioinformaticsManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
| | - Sankar Prasad Gorthi
- Department of NeurologyKasturba Medical College 576104, Manipal, Karnataka, India
- Department of NeurologyBharati Hospital and Research CenterBharati Vidyapeeth (Deemed to Be University) Medical College and Hospital, Dhankawadi 411043, Pune, Maharashtra, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular BiologyManipal School of Life SciencesManipal Academy of Higher Education 576104, Manipal, Karnataka, India
- SDM College of Medical Sciences and HospitalShri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur 580009, Dharwad, Karnataka, India
| |
Collapse
|
6
|
Luna R, Gómez-González B, Aguilera A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: a hidden role in genome integrity. Genes Dev 2024; 38:504-527. [PMID: 38986581 PMCID: PMC11293400 DOI: 10.1101/gad.351853.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.
Collapse
Affiliation(s)
- Rosa Luna
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Gómez-González
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), 41092 Seville, Spain;
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
7
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Hourvitz N, Awad A, Tzfati Y. The many faces of the helicase RTEL1 at telomeres and beyond. Trends Cell Biol 2024; 34:109-121. [PMID: 37532653 DOI: 10.1016/j.tcb.2023.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Regulator of telomere elongation 1 (RTEL1) is known as a DNA helicase that is important for telomeres and genome integrity. However, the diverse phenotypes of RTEL1 dysfunction, the wide spectrum of symptoms caused by germline RTEL1 mutations, and the association of RTEL1 mutations with cancers suggest that RTEL1 is a complex machine that interacts with DNA, RNA, and proteins, and functions in diverse cellular pathways. We summarize the proposed functions of RTEL1 and discuss their implications for telomere maintenance. Studying RTEL1 is crucial for understanding the complex interplay between telomere maintenance and other nuclear pathways, and how compromising these pathways causes telomere biology diseases, various aging-associated pathologies, and cancer.
Collapse
Affiliation(s)
- Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
9
|
Haji-Seyed-Javadi R, Koyen AE, Rath SK, Madden MZ, Hou Y, Song BS, Kenney AM, Lan L, Yao B, Yu DS. HELZ promotes R loop resolution to facilitate DNA double-strand break repair by homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571747. [PMID: 38168208 PMCID: PMC10760136 DOI: 10.1101/2023.12.14.571747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
R loops are RNA-DNA hybrid containing structures involved in diverse cellular processes, including DNA double-strand break (DSB) repair. R loop homeostasis involving the formation and resolution of R loops is critical for DSB repair, and its dysregulation leads to genome instability. Here we show that the HELZ helicase promotes R loop resolution to facilitate DSB repair by homologous recombination (HR). HELZ depletion causes hypersensitivity to DSB-inducing agents, and HELZ localizes and binds to DSBs. HELZ depletion further leads to genomic instability in a R loop dependent manner and the accumulation of R loops globally and at DSBs. HELZ binds to R loops in response to DSBs and promotes their resolution, thereby facilitating HR to promote genome integrity. Our findings thus define a role for HELZ in promoting the resolution of R loops critical for DSB repair by HR.
Collapse
|
10
|
Schertzer M, Jullien L, Pinto AL, Calado RT, Revy P, Londoño-Vallejo A. Human RTEL1 Interacts with KPNB1 (Importin β) and NUP153 and Connects Nuclear Import to Nuclear Envelope Stability in S-Phase. Cells 2023; 12:2798. [PMID: 38132118 PMCID: PMC10741959 DOI: 10.3390/cells12242798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Regulator of TElomere Length Helicase 1 (RTEL1) is a helicase required for telomere maintenance and genome replication and repair. RTEL1 has been previously shown to participate in the nuclear export of small nuclear RNAs. Here we show that RTEL1 deficiency leads to a nuclear envelope destabilization exclusively in cells entering S-phase and in direct connection to origin firing. We discovered that inhibiting protein import also leads to similar, albeit non-cell cycle-related, nuclear envelope disruptions. Remarkably, overexpression of wild-type RTEL1, or of its C-terminal part lacking the helicase domain, protects cells against nuclear envelope anomalies mediated by protein import inhibition. We identified distinct domains in the C-terminus of RTEL1 essential for the interaction with KPNB1 (importin β) and NUP153, respectively, and we demonstrated that, on its own, the latter domain can promote the dynamic nuclear internalization of peptides that freely diffuse through the nuclear pore. Consistent with putative functions exerted in protein import, RTEL1 can be visualized on both sides of the nuclear pore using high-resolution microscopy. In all, our work points to an unanticipated, helicase-independent, role of RTEL1 in connecting both nucleocytoplasmic trafficking and nuclear envelope integrity to genome replication initiation in S-phase.
Collapse
Affiliation(s)
- Michael Schertzer
- Institut Curie, PSL Research University, CNRS, UMR3244, F-75005 Paris, France;
- Sorbonne Universités, CNRS, UMR3244, F-75005 Paris, France
| | - Laurent Jullien
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France; (L.J.); (P.R.)
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, F-75015 Paris, France
| | - André L. Pinto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil; (A.L.P.); (R.T.C.)
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil; (A.L.P.); (R.T.C.)
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France; (L.J.); (P.R.)
- Paris Descartes–Sorbonne Paris Cité University, Imagine Institute, F-75015 Paris, France
| | - Arturo Londoño-Vallejo
- Institut Curie, PSL Research University, CNRS, UMR3244, F-75005 Paris, France;
- Sorbonne Universités, CNRS, UMR3244, F-75005 Paris, France
| |
Collapse
|
11
|
Yang S, Winstone L, Mondal S, Wu Y. Helicases in R-loop Formation and Resolution. J Biol Chem 2023; 299:105307. [PMID: 37778731 PMCID: PMC10641170 DOI: 10.1016/j.jbc.2023.105307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sohaumn Mondal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
12
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
13
|
Zhang X, Duan J, Li Y, Jin X, Wu C, Yang X, Lu W, Ge W. NKAP acts with HDAC3 to prevent R-loop associated genome instability. Cell Death Differ 2023; 30:1811-1828. [PMID: 37322264 PMCID: PMC10307950 DOI: 10.1038/s41418-023-01182-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Persistent R-loop accumulation can cause DNA damage and lead to genome instability, which contributes to various human diseases. Identification of molecules and signaling pathways in controlling R-loop homeostasis provide important clues about their physiological and pathological roles in cells. Here, we show that NKAP (NF-κB activating protein) is essential for preventing R-loop accumulation and maintaining genome integrity through forming a protein complex with HDAC3. NKAP depletion causes DNA damage and genome instability. Aberrant accumulation of R-loops is present in NKAP-deficient cells and leads to DNA damage and DNA replication fork progression defects. Moreover, NKAP depletion induced R-loops and DNA damage are dependent on transcription. Consistently, the NKAP interacting protein HDAC3 exhibits a similar role in suppressing R-loop associated DNA damage and replication stress. Further analysis uncovers that HDAC3 functions to stabilize NKAP protein, independent of its deacetylase activity. In addition, NKAP prevents R-loop formation by maintaining RNA polymerase II pausing. Importantly, R-loops induced by NKAP or HDAC3 depletion are processed into DNA double-strand breaks by XPF and XPG endonucleases. These findings indicate that both NKAP and HDAC3 are novel key regulators of R-loop homeostasis, and their dysregulation might drive tumorigenesis by causing R-loop associated genome instability.
Collapse
Affiliation(s)
- Xing Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xiaoye Jin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Cheng Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
14
|
Sun J, Wang L, Zhou X, Hu L, Yuan S, Bian Z, Chen J, Zhu Y, Farrington SM, Campbell H, Ding K, Zhang D, Dunlop MG, Theodoratou E, Li X. Cross-cancer pleiotropic analysis identifies three novel genetic risk loci for colorectal cancer. Hum Mol Genet 2023; 32:2093-2102. [PMID: 36928917 PMCID: PMC10244225 DOI: 10.1093/hmg/ddad044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND To understand the shared genetic basis between colorectal cancer (CRC) and other cancers and identify potential pleiotropic loci for compensating the missing genetic heritability of CRC. METHODS We conducted a systematic genome-wide pleiotropy scan to appraise associations between cancer-related genetic variants and CRC risk among European populations. Single nucleotide polymorphism (SNP)-set analysis was performed using data from the UK Biobank and the Study of Colorectal Cancer in Scotland (10 039 CRC cases and 30 277 controls) to evaluate the overlapped genetic regions for susceptibility of CRC and other cancers. The variant-level pleiotropic associations between CRC and other cancers were examined by CRC genome-wide association study meta-analysis and the pleiotropic analysis under composite null hypothesis (PLACO) pleiotropy test. Gene-based, co-expression and pathway enrichment analyses were performed to explore potential shared biological pathways. The interaction between novel genetic variants and common environmental factors was further examined for their effects on CRC. RESULTS Genome-wide pleiotropic analysis identified three novel SNPs (rs2230469, rs9277378 and rs143190905) and three mapped genes (PIP4K2A, HLA-DPB1 and RTEL1) to be associated with CRC. These genetic variants were significant expressions quantitative trait loci in colon tissue, influencing the expression of their mapped genes. Significant interactions of PIP4K2A and HLA-DPB1 with environmental factors, including smoking and alcohol drinking, were observed. All mapped genes and their co-expressed genes were significantly enriched in pathways involved in carcinogenesis. CONCLUSION Our findings provide an important insight into the shared genetic basis between CRC and other cancers. We revealed several novel CRC susceptibility loci to help understand the genetic architecture of CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310005, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Zilong Bian
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yingshuang Zhu
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao 266071, China
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh EH8 9AG, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Gong D, Wang L, Zhou H, Gao J, Zhang W, Zheng P. Long noncoding RNA Lnc530 localizes on R-loops and regulates R-loop formation and genomic stability in mouse embryonic stem cells. Stem Cell Reports 2023; 18:952-968. [PMID: 36931280 PMCID: PMC10147553 DOI: 10.1016/j.stemcr.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Embryonic stem cells (ESCs) are superior to differentiated cells to maintain genome stability, but the underlying mechanisms remain largely elusive. R-loops are constantly formed during transcription and are inducers of DNA damage if not resolved. Here we report that mouse ESCs (mESCs) can efficiently prevent unscheduled R-loop formation, and a long noncoding RNA Lnc530 plays regulatory role. Lnc530 is expressed in mESCs and localizes on R-loops. Depletion of Lnc530 in mESCs causes R-loop accumulation and DNA damage, whereas forced expression of Lnc530 in differentiated cells suppresses the R-loop formation. Mechanistically, Lnc530 associates with DDX5 and TDP-43 in an inter-dependent manner on R-loops. Formation of Lnc530-DDX5-TDP-43 complex substantially increases the local protein levels of DDX5 and TDP-43, both of which play critical roles in R-loop regulation. This study uncovers an efficient strategy to prevent R-loop accumulation and preserve genomic stability in mESCs and possibly other stem cell types.
Collapse
Affiliation(s)
- Daohua Gong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650203, China.
| |
Collapse
|
16
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Herrera LR, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The Cancer Testes Antigen, HORMAD1, is a Tumor-Specific Replication Fork Protection Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526348. [PMID: 36778501 PMCID: PMC9915569 DOI: 10.1101/2023.01.31.526348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.
Collapse
|
18
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Ruszel KP, Zalewski DP, Stępniewski A, Gałkowski D, Bogucki J, Feldo M, Płachno BJ, Kocki J, Bogucka-Kocka A. Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease. Int J Mol Sci 2022; 24:551. [PMID: 36614026 PMCID: PMC9820637 DOI: 10.3390/ijms24010551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair-related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases.
Collapse
Affiliation(s)
- Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903, USA
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| |
Collapse
|
20
|
Huang P, Wu L, Zhu N, Zhao H, Du J. The polymerase δ-interacting protein family and their emerging roles in diseases. Front Med (Lausanne) 2022; 9:1026931. [PMID: 36425112 PMCID: PMC9679015 DOI: 10.3389/fmed.2022.1026931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 10/08/2023] Open
Abstract
The polymerase δ-interacting protein (POLDIP) family is a new family that can interact with DNA polymerase δ (delta). The members of the POLDIP family include POLDIP1, POLDIP2, and POLDIP3. Screened by the two-hybrid method, POLDIP1, POLDIP2, and POLDIP3 were initially discovered and named for their ability to bind to the p50 subunit of DNA polymerase δ. Recent studies have confirmed that POLDIPs are involved in the regulation of signal transduction pathways in neurodevelopment, neuropsychiatric diseases, cardiovascular diseases, tumors, and other diseases. However, each protein participates in different signaling pathways. In this review, we elucidate upon the family in terms of their genes and protein structures, their biological functions, in addition to the pathways that they are involved in during the development of diverse diseases. Finally, to provide new insights to the scientific community, we used the TCGA database to analyze and summarize the gene expressions of POLDIP family members in various tumors, as well as the correlations between their expressions and the overall survival times of tumor patients. Our data summary will give researchers working on cancer new concepts.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lei Wu
- College of Continuing Education, Guilin Medical University, Guilin, China
| | - Ningxia Zhu
- Department of Pathophysiology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, China
| |
Collapse
|
21
|
Singh M, Zhang S, Perez AM, Lee EYC, Lee MYWT, Zhang D. POLDIP3: At the Crossroad of RNA and DNA Metabolism. Genes (Basel) 2022; 13:1921. [PMID: 36360158 PMCID: PMC9690394 DOI: 10.3390/genes13111921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in recent years revealed that POLDIP3 also plays critical roles in disassembling genome wide R-loop formation and activating the DNA damage checkpoint in vivo. Here, we review the functions of POLDIP3 in various RNA and DNA related cellular processes. We then propose a unified model to illustrate how POLDIP3 plays such a versatile role at the crossroad of the RNA and DNA metabolism.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Alexis M. Perez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Ernest Y. C. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y. W. T. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| |
Collapse
|
22
|
Hassani MA, Murid J, Yan J. Regulator of telomere elongation helicase 1 gene and its association with malignancy. Cancer Rep (Hoboken) 2022; 6:e1735. [PMID: 36253342 PMCID: PMC9875622 DOI: 10.1002/cnr2.1735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With the progression of next-generation sequencing technologies, researchers have identified numerous variants of the regulator of telomere elongation helicase 1 (RTEL1) gene that are associated with a broad spectrum of phenotypic manifestations, including malignancies. At the molecular level, RTEL1 is involved in the regulation of the repair, replication, and transcription of deoxyribonucleic acid (DNA) and the maintenance of telomere length. RTEL1 can act both as a promotor and inhibitor of tumorigenesis. Here, we review the potential mechanisms implicated in the malignant transformation of tissues under conditions of RTEL1 deficiency or its aberrant overexpression. RECENT FINDINGS A major hemostatic challenge during RTEL1 dysfunction could arise from its unbalanced activity for unwinding guanine-rich quadruplex DNA (G4-DNA) structures. In contrast, RTEL1 deficiency leads to alterations in telomeric and genome-wide DNA maintenance mechanisms, ribonucleoprotein metabolism, and the creation of an inflammatory and immune-deficient microenvironment, all promoting malignancy. Additionally, we hypothesize that functionally similar molecules could act to compensate for the deteriorated functions of RTEL1, thereby facilitating the survival of malignant cells. On the contrary, RTEL1 over-expression was directed toward G4-unwinding, by promoting replication fork progression and maintaining intact telomeres, may facilitate malignant transformation and proliferation of various pre-malignant cellular compartments. CONCLUSIONS Therefore, restoring the equilibrium of RTEL1 functions could serve as a therapeutic approach for preventing and treating malignancies.
Collapse
Affiliation(s)
- Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jamshid Murid
- Department of Hematology, Endocrinology and Rheumatology, Ali Abad Teaching HospitalKabul University of Medical SciencesJamal menaKabulAfghanistan
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of HematologySecond Hospital of Dalian Medical UniversityDalianChina,Diamond Bay Institute of HematologySecond Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
23
|
Kieffer F, Hilal F, Gay AS, Debayle D, Pronot M, Poupon G, Lacagne I, Bardoni B, Martin S, Gwizdek C. Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP. Front Mol Biosci 2022; 9:954087. [PMID: 36237573 PMCID: PMC9553004 DOI: 10.3389/fmolb.2022.954087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.
Collapse
Affiliation(s)
- Félicie Kieffer
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fahd Hilal
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Iliona Lacagne
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Carole Gwizdek,
| |
Collapse
|
24
|
Zhang S, Lee EYC, Lee MYWT, Zhang D. DNA polymerase delta interacting protein 3 facilitates the activation and maintenance of DNA damage checkpoint in response to replication stress. Animal Model Exp Med 2022; 5:461-469. [PMID: 36168146 PMCID: PMC9610138 DOI: 10.1002/ame2.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. Methods We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. Results We showed that although the POLDIP3‐KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. Conclusion Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| |
Collapse
|
25
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Šušnjar U, Škrabar N, Brown AL, Abbassi Y, Phatnani H, Cortese A, Cereda C, Bugiardini E, Cardani R, Meola G, Ripolone M, Moggio M, Romano M, Secrier M, Fratta P, Buratti E. Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Commun Biol 2022; 5:314. [PMID: 35383280 PMCID: PMC8983780 DOI: 10.1038/s42003-022-03253-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43's performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.
Collapse
Affiliation(s)
- Urša Šušnjar
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Neva Škrabar
- Tumour Virology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Generatio GmbH, Center for Animal, Genetics, Tübingen, Germany
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Yasmine Abbassi
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Rosanna Cardani
- BioCor Biobank, UOC SMEL-1 of Clinical Pathology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
27
|
Jurga M, Abugable AA, Goldman ASH, El-Khamisy SF. USP11 controls R-loops by regulating senataxin proteostasis. Nat Commun 2021; 12:5156. [PMID: 34526504 PMCID: PMC8443744 DOI: 10.1038/s41467-021-25459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.
Collapse
Affiliation(s)
- Mateusz Jurga
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Arwa A Abugable
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Sherif F El-Khamisy
- School of Bioscience, Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute and the Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK.
| |
Collapse
|
28
|
Kanellis DC, Espinoza JA, Zisi A, Sakkas E, Bartkova J, Katsori AM, Boström J, Dyrskjøt L, Broholm H, Altun M, Elsässer SJ, Lindström MS, Bartek J. The exon-junction complex helicase eIF4A3 controls cell fate via coordinated regulation of ribosome biogenesis and translational output. SCIENCE ADVANCES 2021; 7:eabf7561. [PMID: 34348895 PMCID: PMC8336962 DOI: 10.1126/sciadv.abf7561] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
Eukaryotic initiation factor 4A-III (eIF4A3), a core helicase component of the exon junction complex, is essential for splicing, mRNA trafficking, and nonsense-mediated decay processes emerging as targets in cancer therapy. Here, we unravel eIF4A3's tumor-promoting function by demonstrating its role in ribosome biogenesis (RiBi) and p53 (de)regulation. Mechanistically, eIF4A3 resides in nucleoli within the small subunit processome and regulates rRNA processing via R-loop clearance. EIF4A3 depletion induces cell cycle arrest through impaired RiBi checkpoint-mediated p53 induction and reprogrammed translation of cell cycle regulators. Multilevel omics analysis following eIF4A3 depletion pinpoints pathways of cell death regulation and translation of alternative mouse double minute homolog 2 (MDM2) transcript isoforms that control p53. EIF4A3 expression and subnuclear localization among clinical cancer specimens correlate with the RiBi status rendering eIF4A3 an exploitable vulnerability in high-RiBi tumors. We propose a concept of eIF4A3's unexpected role in RiBi, with implications for cancer pathogenesis and treatment.
Collapse
Affiliation(s)
- Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Asimina Zisi
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Elpidoforos Sakkas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jirina Bartkova
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Anna-Maria Katsori
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm 17165, Sweden
| | - Johan Boström
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 52 Huddinge, Sweden
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikael Altun
- Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-141 52 Huddinge, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm 17165, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden.
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden.
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Abstract
In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.
Collapse
Affiliation(s)
- Phil Ruis
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | |
Collapse
|
30
|
Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P, Hewitt G, Bellelli R, Patel H, Goldstone R, Poetsch AR, Boulton SJ. RTEL1 Regulates G4/R-Loops to Avert Replication-Transcription Collisions. Cell Rep 2020; 33:108546. [PMID: 33357438 PMCID: PMC7773548 DOI: 10.1016/j.celrep.2020.108546] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022] Open
Abstract
Regulator of telomere length 1 (RTEL1) is an essential helicase that maintains telomere integrity and facilitates DNA replication. The source of replication stress in Rtel1-deficient cells remains unclear. Here, we report that loss of RTEL1 confers extensive transcriptional changes independent of its roles at telomeres. The majority of affected genes in Rtel1-/- cells possess G-quadruplex (G4)-DNA-forming sequences in their promoters and are similarly altered at a transcriptional level in wild-type cells treated with the G4-DNA stabilizer TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine). Failure to resolve G4-DNAs formed in the displaced strand of RNA-DNA hybrids in Rtel1-/- cells is suggested by increased R-loops and elevated transcription-replication collisions (TRCs). Moreover, removal of R-loops by RNaseH1 overexpression suppresses TRCs and alleviates the global replication defects observed in Rtel1-/- and Rtel1PIP_box knockin cells and in wild-type cells treated with TMPyP4. We propose that RTEL1 unwinds G4-DNA/R-loops to avert TRCs, which is important to prevent global deregulation in both transcription and DNA replication.
Collapse
Affiliation(s)
| | | | - Pol Margalef
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paulina Marzec
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Phil Ruis
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Harshil Patel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Anna R Poetsch
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
31
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|