1
|
Pritha AN, Pasmay AA, Noor S. Recent Advances in the Role of Non-coding RNAs in Fetal Alcohol Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:129-155. [PMID: 40128478 DOI: 10.1007/978-3-031-81908-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Despite numerous preclinical studies modeling fetal alcohol spectrum disorder (FASD)-associated neurodevelopmental deficits to date, a comprehensive molecular landscape dictating these deficits remains poorly understood. Non-coding RNAs constitute a substantial layer of epigenetic regulation of gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Yet, little is known about the differential expression of non-coding RNAs in the context of prenatal alcohol exposure (PAE) that are mechanistically linked with FASD-related neurobehavior deficits. This chapter reviews our current knowledge from preclinical studies in non-coding RNA-mediated molecular mechanisms that may underlie FASD pathophysiology. This chapter also summarizes relevant clinical evidence and current efforts in utilizing these non-coding RNA molecules as biomarkers of PAE-associated deficits impacting central nervous system (CNS) function. Unraveling the diverse roles of various species of non-coding RNAs is critical to enhancing our comprehension of these intricate molecular pathways. Understanding these pathways would likely contribute to identifying critical molecular target(s) for developing efficient treatment strategies and prognostic and diagnostic markers fostering advancements in treating and managing FASD-related CNS dysfunction.
Collapse
Affiliation(s)
- Ariana N Pritha
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrea A Pasmay
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Shahani Noor
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Liu L, Wang J, Zheng X, Zhang Q. VPS28 regulates triglyceride synthesis via ubiquitination in bovine mammary epithelial cells. Sci Rep 2024; 14:31310. [PMID: 39732879 PMCID: PMC11682384 DOI: 10.1038/s41598-024-82774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis. To test this hypothesis, we modulated VPS28 expression in the bovine mammary epithelial cell line (MAC-T) and measured the effects on triglyceride (TG) synthesis using lentivirus-mediated techniques. The results showed that VPS28 knockdown significantly upregulated the levels of the fatty acid transporter CD36 molecule (CD36) and adipose differentiation-related protein (ADFP), leading to increased TG and fatty acid production, along with elevated ubiquitin (UB) levels, while reducing proteasome activity. In contrast, VPS28 overexpression increased CD36 levels while not significantly affecting ADFP or TG levels, with a trend toward reduced lipid droplets and increased UB expression and proteasome activity. In addition, inhibition of the ubiquitin-proteasome system and the endosomal-lysosomal pathway using epoxomicin and chloroquine, respectively, further increased CD36, ADFP, and TG levels, thereby enhancing cell viability. These in vitro findings were validated in vivo in a mouse model, where VPS28 knockdown increased mammary CD36, ADFP, UB expression, TG content, and lipid droplets without pathological changes in mammary tissue or blood TG alterations. These results confirm the pivotal role of VPS28 in regulating TG synthesis via the ubiquitination pathway, offering novel insights into the molecular mechanisms of milk fat production in a bovine cell model.
Collapse
Affiliation(s)
- Lily Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming, 650224, China.
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Jinhai Wang
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Østvold AC, Grundt K, Wiese C. NUCKS1 is a highly modified, chromatin-associated protein involved in a diverse set of biological and pathophysiological processes. Biochem J 2022; 479:1205-1220. [PMID: 35695515 PMCID: PMC10016235 DOI: 10.1042/bcj20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
The Nuclear Casein and Cyclin-dependent Kinase Substrate 1 (NUCKS1) protein is highly conserved in vertebrates, predominantly localized to the nucleus and one of the most heavily modified proteins in the human proteome. NUCKS1 expression is high in stem cells and the brain, developmentally regulated in mice and associated with several diverse malignancies in humans, including cancer, metabolic syndrome and Parkinson's disease. NUCKS1 function has been linked to modulating chromatin architecture and transcription, DNA repair and cell cycle regulation. In this review, we summarize and discuss the published information on NUCKS1 and highlight the questions that remain to be addressed to better understand the complex biology of this multifaceted protein.
Collapse
Affiliation(s)
- Anne Carine Østvold
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Kirsten Grundt
- Institute of Basic Medical Science, Dept. of Biochemistry, University of Oslo, P.O box 1110 Blindern, 0317 Oslo, Norway
| | - Claudia Wiese
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
4
|
Mishra A, Prabha PK, Singla R, Kaur G, Sharma AR, Joshi R, Suroy B, Medhi B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11-q13 Segment. ACS Chem Neurosci 2022; 13:1684-1696. [PMID: 35635007 DOI: 10.1021/acschemneuro.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASDs) are multifactorial in nature and include both genetic and environmental factors. The increasing evidence advocates an important role of epigenetics in ASD etiology. One of the most common forms of epigenetic changes observed in the case of neurodevelopmental disorders is imprinting which is tightly regulated by developmental and tissue-specific mechanisms. Interestingly, many of these disorders that demonstrate autism-like phenotypes at varying degrees have found involvement of chromosome 15q11-q13 segment. Numerous studies demonstrate occurrence of ASD in the presence of chromosomal abnormalities located mainly in Chr15q11-q13 region. Several plausible candidate genes associated with ASD are in this chromosomal segment, including gamma aminobutyric acid A (GABAA) receptor genes GABRB3, GABRA5 and GABRG3, UBE3A, ATP 10A, MKRN3, ZNF, MAGEL2, Necdin (NDN), and SNRPN. The main objective of this review is to highlight the contribution of epigenetic modulations in chromosome 15q11-q13 segment toward the genetic etiology and pathophysiology of ASD. The present review reports the abnormalities in epigenetic regulation on genes and genomic regions located on chromosome 15 in relation to either syndromic (15q11-q13 maternal duplication) or nonsyndromic forms of ASD. Furthermore, studies reviewed in this article demonstrate conditions in which epigenetic dysregulation has been found to be a pathological factor for ASD development, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD. Also, on the basis of the evidence found so far, we strongly emphasize the need to develop future therapeutic strategies as well as screening procedures for ASD that target mechanisms involving genes located on the chromosomal 15q11-q13 segment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Praisy K Prabha
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rubal Singla
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Benjamin Suroy
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
5
|
Hepowit NL, Kolbe CC, Zelle SR, Latz E, MacGurn JA. Regulation of ubiquitin and ubiquitin-like modifiers by phosphorylation. FEBS J 2021; 289:4797-4810. [PMID: 34214249 PMCID: PMC9271371 DOI: 10.1111/febs.16101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
The regulatory influence of ubiquitin is vast, encompassing all cellular processes, by virtue of its central roles in protein degradation, membrane trafficking, and cell signaling. But how does ubiquitin, a 76 amino acid peptide, carry out such diverse, complex functions in eukaryotic cells? Part of the answer is rooted in the high degree of complexity associated with ubiquitin polymers, which can be 'read' and processed differently depending on topology and cellular context. However, recent evidence indicates that post-translational modifications on ubiquitin itself enhance the complexity of the ubiquitin code. Here, we review recent discoveries related to the regulation of the ubiquitin code by phosphorylation. We summarize what is currently known about phosphorylation of ubiquitin at Ser65, Ser57, and Thr12, and we discuss the potential for phosphoregulation of ubiquitin at other sites. We also discuss accumulating evidence that ubiquitin-like modifiers, such as SUMO, are likewise regulated by phosphorylation. A complete understanding of these regulatory codes and their complex lexicon will require dissection of mechanisms that govern phosphorylation of ubiquitin and ubiquitin-like proteins, particularly in the context of cellular stress and disease.
Collapse
Affiliation(s)
- Nathaniel L Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Germany
| | - Sarah R Zelle
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA, USA.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Ding J, Kuang P. Regulation of ERα Stability and Estrogen Signaling in Breast Cancer by HOIL-1. Front Oncol 2021; 11:664689. [PMID: 34094957 PMCID: PMC8173209 DOI: 10.3389/fonc.2021.664689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Estrogen receptor α (ERα) is the major driver for breast tumor carcinogenesis and progression, while ERα positive breast cancer is the major subtype in breast malignancies, which account for 70% breast cancers in patients. The success of endocrine therapy such as tamoxifen is one of the biggest breakthroughs in breast cancer treatments. However, the endocrine therapy resistance is a headache problem in breast cancer. Further mechanisms need to be identified to the effect of ERα signaling in controlling breast cancer progression and drug resistance. HOIL-1 was firstly identified as the ERα transcriptional co-activator in modulating estrogen signaling in breast cancer. In our current study, we showed that HOIL-1, which was elevated in breast cancer, related to good prognosis in ERα positive breast cancer, but correlated with poor outcome in endocrine-treated patients. HOIL-1 was required for ERα positive breast cancer proliferation and clone formation, which effect could be rescued by further ERα overexpression. Further mechanism studies showed that HOIL-1 is required for ERα signaling activity in breast cancer cells. HOIL-1 could interact with ERα in the cytosol and modulate ERα stability via inhibiting ERα K48-linked poly-ubiquitination. Thus, our study demonstrated a novel post-translational modification in ERα signaling, which could provide novel strategy for ERα-driven breast cancer therapy.
Collapse
Affiliation(s)
- Jianing Ding
- Department of Medicine, Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Peng Kuang
- Department of Medicine, Queen Mary School, Medical College of Nanchang University, Nanchang, China.,The Oncology Center, The First Affiliated Hospital of Nanchang University, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Pescatori S, Berardinelli F, Albanesi J, Ascenzi P, Marino M, Antoccia A, di Masi A, Acconcia F. A Tale of Ice and Fire: The Dual Role for 17β-Estradiol in Balancing DNA Damage and Genome Integrity. Cancers (Basel) 2021; 13:1583. [PMID: 33808099 PMCID: PMC8036963 DOI: 10.3390/cancers13071583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
17β-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of "hormone" as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an "upgrade" to the vision of E2 as a "genotoxic hormone", which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.
Collapse
Affiliation(s)
- Sara Pescatori
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
| | - Francesco Berardinelli
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
- Neurodevelopment, Neurogenetics and Molecular Neurobiology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Jacopo Albanesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
| | - Paolo Ascenzi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Antonio Antoccia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
| | - Alessandra di Masi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146 Rome, Italy; (S.P.); (F.B.); (J.A.); (P.A.); (M.M.)
| |
Collapse
|
9
|
The FHA domain of PNKP is essential for its recruitment to DNA damage sites and maintenance of genome stability. Mutat Res 2020; 822:111727. [PMID: 33220551 DOI: 10.1016/j.mrfmmm.2020.111727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Polynucleotide kinase phosphatase (PNKP) has dual enzymatic activities as kinase and phosphatase for DNA ends, which are the prerequisite for the ligation, and thus is involved in base excision repair, single-strand break repair and non-homologous end joining for double-strand break (DSB) repair. In this study, we examined mechanisms for the recruitment of PNKP to DNA damage sites by laser micro-irradiation and live-cell imaging analysis using confocal microscope. We show that the forkhead-associated (FHA) domain of PNKP is essential for the recruitment of PNKP to DNA damage sites. Arg35 and Arg48 within the FHA domain are required for interactions with XRCC1 and XRCC4. PNKP R35A/R48A mutant failed to accumulate on the laser track and siRNA-mediated depletion of XRCC1 and/or XRCC4 reduced PNKP accumulation on the laser track, indicating that PNKP is recruited to DNA damage sites via the interactions between its FHA domain and XRCC1 or XRCC4. Furthermore, cells expressing PNKP R35A/R48A mutant exhibited increased sensitivity toward ionizing radiation in association with delayed SSB and DSB repair and genome instability, represented by micronuclei and chromosome bridges. Taken together, these findings revealed the importance of PNKP recruitment to DNA damage sites via its FHA domain for DNA repair and maintenance of genome stability.
Collapse
|