1
|
Pizzey A, Sutcliffe C, Love JC, Akabuogu E, Rattray M, Ashe MP, Ashe HL. Exploiting the SunTag system to study the developmental regulation of mRNA translation. J Cell Sci 2025; 138:jcs263457. [PMID: 39989130 DOI: 10.1242/jcs.263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantify translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky, as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different untranslated regions (UTRs). We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantify translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.
Collapse
Affiliation(s)
- Alastair Pizzey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer C Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emmanuel Akabuogu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Pimmett VL, McGehee J, Trullo A, Douaihy M, Radulescu O, Stathopoulos A, Lagha M. Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription. Development 2025; 152:dev204706. [PMID: 40018801 PMCID: PMC11993255 DOI: 10.1242/dev.204706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
Collapse
Affiliation(s)
- Virginia L. Pimmett
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier 34293, Cedex 5, France
| | - James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Antonio Trullo
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier 34293, Cedex 5, France
| | - Maria Douaihy
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier 34293, Cedex 5, France
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Ovidiu Radulescu
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS-UMR 5535, 1919 Route de Mende, Montpellier 34293, Cedex 5, France
| |
Collapse
|
3
|
Pimmett VL, McGehee J, Trullo A, Douaihy M, Radulescu O, Stathopoulos A, Lagha M. Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.623729. [PMID: 39651203 PMCID: PMC11623667 DOI: 10.1101/2024.11.28.623729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Morphogen gradients convey essential spatial information during tissue patterning. While both concentration and timing of morphogen exposure are crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homologue of NF-κB, which orchestrates dorso-ventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning, and characterized the resulting effect on spatio-temporal transcription of target genes in terms of timing, coordination, and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation ( sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL is detectable at the level of single cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally-resolved and reversible modulation of a morphogen in vivo , combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.
Collapse
|
4
|
McGehee J, Stathopoulos A. Target gene responses differ when transcription factor levels are acutely decreased by nuclear export versus degradation. Development 2024; 151:dev202775. [PMID: 39397716 PMCID: PMC11574349 DOI: 10.1242/dev.202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Defining the time of action for morphogens requires tools capable of temporally controlled perturbations. To study how the transcription factor Dorsal affects patterning of the Drosophila embryonic dorsal-ventral axis, we used two light-inducible tags that trigger either nuclear export or degradation of Dorsal under blue light. Nuclear export of Dorsal leads to loss of the high-threshold, ventrally expressed target gene snail (sna), while the low-threshold, laterally expressed target gene short-gastrulation (sog) is retained. In contrast, degradation of Dorsal results in retention of sna, loss of sog, and lower nuclear levels compared to when Dorsal is exported from the nucleus. To understand why nuclear export causes loss of sna but degradation does not, we investigated Dorsal kinetics using photobleaching and found that it rapidly re-enters the nucleus even under blue-light conditions favoring export. The associated kinetics of Dorsal being rapidly imported and exported continuously are likely responsible for loss of sna but, alternatively, can support sog. Collectively, our results indicate that this dynamic patterning process is influenced by both Dorsal concentration and nuclear retention.
Collapse
Affiliation(s)
- James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Al Asafen H, Beseli A, Chen HY, Hiremath S, Williams CM, Reeves GT. Dynamics of BMP signaling and stable gene expression in the early Drosophila embryo. Biol Open 2024; 13:bio061646. [PMID: 39207258 PMCID: PMC11381920 DOI: 10.1242/bio.061646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
In developing tissues, morphogen gradients are thought to initialize gene expression patterns. However, the relationship between the dynamics of morphogen-encoded signals and gene expression decisions is largely unknown. Here we examine the dynamics of the Bone Morphogenetic Protein (BMP) pathway in Drosophila blastoderm-stage embryos. In this tissue, the BMP pathway is highly dynamic: it begins as a broad and weak signal on the dorsal half of the embryo, then 20-30 min later refines into a narrow, intense peak centered on the dorsal midline. This dynamical progression of the BMP signal raises questions of how it stably activates target genes. Therefore, we performed live imaging of the BMP signal and found that dorsal-lateral cells experience only a short transient in BMP signaling, after which the signal is lost completely. Moreover, we measured the transcriptional response of the BMP target gene pannier in live embryos and found it to remain activated in dorsal-lateral cells, even after the BMP signal is lost. Our findings may suggest that the BMP pathway activates a memory, or 'ratchet' mechanism that may sustain gene expression.
Collapse
Affiliation(s)
- Hadel Al Asafen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aydin Beseli
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Hung-Yuan Chen
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
| | - Sharva Hiremath
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695,USA
- North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695,USA
| | - Gregory T. Reeves
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843,USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843,USA
| |
Collapse
|
6
|
McGehee J, Stathopoulos A. Target gene responses differ when transcription factor levels are acutely decreased by nuclear export versus degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595009. [PMID: 38826476 PMCID: PMC11142056 DOI: 10.1101/2024.05.20.595009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Defining the time of action for morphogens requires tools capable of temporally controlled perturbations. To study how the transcription factor Dorsal affects patterning of the Drosophila embryonic dorsal-ventral axis, we used two light-inducible tags that result in either nuclear export or degradation of Dorsal when exposed to blue light. Nuclear export of Dorsal results in loss of expression for the high threshold, ventrally-expressed target gene snail (sna) but retention of the low threshold, laterally-expressed target gene short-gastrulation (sog). In contrast, degradation of Dorsal results in retention of sna, loss of sog, and lower nuclear levels than when Dorsal is exported from the nucleus. To elucidate how nuclear export results in loss of sna but degradation does not, we investigated Dorsal kinetics using photobleaching and found it reenters the nucleus even under conditions of blue-light when export is favored. The associated kinetics of being imported and exported continuously are likely responsible for loss of sna but, alternatively, can support sog. Collectively, our results show that this dynamic patterning process is influenced by both Dorsal concentration and nuclear retention.
Collapse
Affiliation(s)
- James McGehee
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125
| |
Collapse
|
7
|
Gligorovski V, Rahi SJ. Construction and Characterization of Light-Responsive Transcriptional Systems. Methods Mol Biol 2024; 2844:261-275. [PMID: 39068346 DOI: 10.1007/978-1-0716-4063-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Optogenetic tools provide a means for controlling cellular processes that is rapid, noninvasive, and spatially and temporally precise. With the increase in available optogenetic systems, quantitative comparisons of their performances become important to guide experiments. In this chapter, we first discuss how photoreceptors can be repurposed for light-mediated control of transcription. Then, we provide a detailed protocol for characterizing light-regulated transcriptional systems in budding yeast using fluorescence time-lapse microscopy and mathematical modeling, expanding on our recent publication (Gligorovski et al., Nat Commun 14:3810, 2023).
Collapse
Affiliation(s)
- Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Abstract
Toll signaling plays a crucial role in pathogen defense throughout the animal kingdom. It was discovered, however, for its function in dorsoventral (DV) axis formation in Drosophila. In all other insects studied so far, but not outside the insects, Toll is also required for DV patterning. However, in insects more distantly related to Drosophila, Toll's patterning role is frequently reduced and substituted by an expanded influence of BMP signaling, the pathway implicated in DV axis formation in all major metazoan lineages. This suggests that Toll was integrated into an ancestral BMP-based patterning system at the base of the insects or during insect evolution. The observation that Toll signaling has an immune function in the extraembryonic serosa, an early differentiating tissue of most insect embryos, suggests a scenario of how Toll was co-opted from an ancestral immune function for its new role in axis formation.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Zoology-Developmental Biology, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
9
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
10
|
Alamos S, Reimer A, Westrum C, Turner MA, Talledo P, Zhao J, Luu E, Garcia HG. Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient. Cell Syst 2023; 14:220-236.e3. [PMID: 36696901 PMCID: PMC10125799 DOI: 10.1016/j.cels.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
| | - Clay Westrum
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Meghan A Turner
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Paul Talledo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiaxi Zhao
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Emma Luu
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA; Department of Physics, University of California at Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Fan H, Barnes C, Hwang H, Zhang K, Yang J. Precise modulation of embryonic development through optogenetics. Genesis 2022; 60:e23505. [PMID: 36478118 PMCID: PMC9847014 DOI: 10.1002/dvg.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
Collapse
Affiliation(s)
- Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Barnes
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| |
Collapse
|
12
|
Kögler AC, Kherdjemil Y, Bender K, Rabinowitz A, Marco-Ferreres R, Furlong EEM. Extremely rapid and reversible optogenetic perturbation of nuclear proteins in living embryos. Dev Cell 2021; 56:2348-2363.e8. [PMID: 34363757 PMCID: PMC8387026 DOI: 10.1016/j.devcel.2021.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/18/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
Many developmental regulators have complex and context-specific roles in different tissues and stages, making the dissection of their function extremely challenging. As regulatory processes often occur within minutes, perturbation methods that match these dynamics are needed. Here, we present the improved light-inducible nuclear export system (iLEXY), an optogenetic loss-of-function approach that triggers translocation of proteins from the nucleus to the cytoplasm. By introducing a series of mutations, we substantially increased LEXY's efficiency and generated variants with different recovery times. iLEXY enables rapid (t1/2 < 30 s), efficient, and reversible nuclear protein depletion in embryos, and is generalizable to proteins of diverse sizes and functions. Applying iLEXY to the Drosophila master regulator Twist, we phenocopy loss-of-function mutants, precisely map the Twist-sensitive embryonic stages, and investigate the effects of timed Twist depletions. Our results demonstrate the power of iLEXY to dissect the function of pleiotropic factors during embryogenesis with unprecedented temporal precision.
Collapse
Affiliation(s)
- Anna C Kögler
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Yacine Kherdjemil
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Katharina Bender
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany.
| |
Collapse
|
13
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
14
|
Lim WK, Kaur P, Huang H, Jo RS, Ramamoorthy A, Ng LF, Suresh J, Maisha FI, Mathuru AS, Tolwinski NS. Optogenetic approaches for understanding homeostatic and degenerative processes in Drosophila. Cell Mol Life Sci 2021; 78:5865-5880. [PMID: 34232330 PMCID: PMC8260576 DOI: 10.1007/s00018-021-03836-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022]
Abstract
Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organisms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such as Drosophila melanogaster, where other common tools are less effective or unavailable.
Collapse
Affiliation(s)
- Wen Kin Lim
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Prameet Kaur
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Huanyan Huang
- Science Division, Yale-NUS College, Singapore, Singapore
| | | | | | - Li Fang Ng
- Science Division, Yale-NUS College, Singapore, Singapore
| | - Jahnavi Suresh
- Science Division, Yale-NUS College, Singapore, Singapore
| | | | - Ajay S Mathuru
- Science Division, Yale-NUS College, Singapore, Singapore
| | | |
Collapse
|
15
|
Abstract
Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells' ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila, a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo-which normally only receives a mesoderm-inducing cue-reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein (hkb) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.
Collapse
|
16
|
Stevens LM, Kim G, Koromila T, Steele JW, McGehee J, Stathopoulos A, Stein DS. Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster. PLoS Genet 2021; 17:e1009544. [PMID: 33999957 PMCID: PMC8158876 DOI: 10.1371/journal.pgen.1009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/27/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo. Much of what we know about biological processes has come from the analysis of mutants whose loss-of-function phenotypes provide insight into their normal functions. However, for genes that are required for viability and which have multiple functions in the life of a cell or organism one can only observe mutant phenotypes produced up to the time of death. Normal functions performed in wild-type individuals later than the time of death of mutants cannot be observed. In one approach to overcoming this limitation, a class of peptide degradation signals (degrons) have been developed, which when fused to proteins-of-interest, can target those proteins for degradation in response to various stimuli (temperature, chemical agents, co-expressed proteins, or light). Here we describe a new inducible degron (the photo-N-degron or PND), which when fused to the N-terminus of a protein, can induce N-end rule-mediated degradation in response to blue-light illumination and have validated its use in both yeast and Drosophila embryos. Moreover, using the Drosophila embryonic patterning protein Cactus, we show that like the PND, the previously-described B-LID domain, but not the previously-described photosensitive degron (psd), can produce detectable light-inducible phenotypes in Drosophila embryos that are consistent with the role of Cactus in dorsal-ventral patterning.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Goheun Kim
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Theodora Koromila
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - John W. Steele
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AS); (DSS)
| | - David S. Stein
- Department of Molecular Biosciences and Institute for Molecular and Cellular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AS); (DSS)
| |
Collapse
|
17
|
Irizarry J, Stathopoulos A. Dynamic patterning by morphogens illuminated by cis-regulatory studies. Development 2021; 148:148/2/dev196113. [PMID: 33472851 DOI: 10.1242/dev.196113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Collapse
Affiliation(s)
- Jihyun Irizarry
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|