1
|
Pinch M, Bendzus-Mendoza H, Hansen IA. Transcriptomics analysis of ethanol treatment of male Aedes aegypti reveals a small set of putative radioprotective genes. Front Physiol 2023; 14:1120408. [PMID: 36793417 PMCID: PMC9922702 DOI: 10.3389/fphys.2023.1120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
Introduction: Sterile Insect Technique (SIT) is based on releasing sterilized male insects into wild insect populations to compete for mating with wild females. Wild females mated with sterile males will produce inviable eggs, leading to a decline in population of that insect species. Sterilization with ionizing radiation (x-rays) is a commonly used mechanism for sterilization of males. Since irradiation can cause damage to both, somatic and germ cells, and can severely reduce the competitiveness of sterilized males relative to wild males, means to minimize the detrimental effects of radiation are required to produce sterile, competitive males for release. In an earlier study, we identified ethanol as a functional radioprotector in mosquitoes. Methods: Here, we used Illumina RNA-seq to profile changes in gene expression of male Aedes aegypti mosquitoes fed on 5% ethanol for 48 hours prior to receiving a sterilizing x-ray dose, compared to males fed on water prior to sterilization. Results: RNA-seq revealed a robust activation of DNA repair genes in both ethanol-fed and water-fed males after irradiation, but surprisingly few differences in gene expression between ethanol-fed and water-fed males regardless of radiation treatment. Discussion: While differences in gene expression due to ethanol exposure were minimal, we identified a small group of genes that may prime ethanol-fed mosquitoes for improved survivability in response to sterilizing radiation.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Harley Bendzus-Mendoza
- Department of Computer Science, New Mexico State University, Las Cruces, NM, United States
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
2
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Ergin V, Zheng S. Putative Coiled-Coil Domain-Dependent Autoinhibition and Alternative Splicing Determine SHTN1's Actin-Binding Activity. J Mol Biol 2020; 432:4154-4166. [PMID: 32371045 DOI: 10.1016/j.jmb.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays a pivotal role in cell development, morphogenesis, and other cellular functions. Precise control of actin dynamics requires actin-binding proteins. Here, we characterize multifarious regulation of SHTN1 (shootin1) and show that, unlike known actin-binding proteins, SHTN1's actin binding activity is intrinsically inhibited by a putative coiled-coil domain (CCD) and the autoinhibition is overcome by alternative splicing regulation. We found SHTN1 contains a noncanonical WH2 domain and an upstream proline-rich region (PRR) that by themselves are sufficient for actin interaction. Alternative splicing of Shtn1 at the C terminus and downstream of the WH2-PRR domain produces a long (SHTN1L or shootin1b) and a short (SHTN1S or shootin1a) isoform, which both contain the described PRR and WH2 domains. However, SHTN1S does not interact with actin due to inhibition mediated by an N-terminal CCD. A SHTN1L-specific C-terminal motif counters the intramolecular inhibition and allows SHNT1L to bind actin. A nuclear localization signal is embedded between PRR and WH2 and is subject to similar autoinhibition. SHTN1 would be the first WH2-containing molecule that adopts CCD-dependent autoinhibition and alternative splicing-dependent actin interaction.
Collapse
Affiliation(s)
- Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Angelini A, Gorey MA, Dumont F, Mougenot N, Chatzifrangkeskou M, Muchir A, Li Z, Mericskay M, Decaux JF. Cardioprotective effects of α-cardiac actin on oxidative stress in a dilated cardiomyopathy mouse model. FASEB J 2019; 34:2987-3005. [PMID: 31908029 DOI: 10.1096/fj.201902389r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022]
Abstract
The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.
Collapse
Affiliation(s)
- Aude Angelini
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mark-Alexander Gorey
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nathalie Mougenot
- Faculté de Médecine, Pierre et Marie Curie, INSERM UMS 28 Phénotypage du petit animal, Sorbonne Université, Paris, France
| | - Maria Chatzifrangkeskou
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Antoine Muchir
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mathias Mericskay
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Francois Decaux
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
6
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Tian X, Qi W, Chen H, Zeng X, Han L, Mi D. β-Actin regulates interleukin 6-induced p21 transcription by interacting with the Rpb5 and Rpb7 subunits of RNA polymerase II. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1224204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. J Mol Biol 2016; 428:2623-2635. [PMID: 27107644 DOI: 10.1016/j.jmb.2016.04.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
10
|
Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol 2016; 145:373-88. [PMID: 26847179 DOI: 10.1007/s00418-015-1400-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 10/25/2022]
Abstract
Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.
Collapse
|
11
|
Björk P, Persson JO, Wieslander L. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo. J Cell Biol 2016; 211:63-75. [PMID: 26459599 PMCID: PMC4602041 DOI: 10.1083/jcb.201412017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The exon junction core complex associates with Balbiani ring (BR) premRNPs during transcription and in relation to splicing, whereas the export factor NXF1 is recruited in the interchromatin, and BR mRNPs become export competent only after passage through the interchromatin. Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-Olov Persson
- Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
12
|
Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol 2016; 94:1-11. [DOI: 10.1139/bcb-2015-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5′ splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Collapse
Affiliation(s)
- James R. Davie
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Wayne Xu
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Genevieve P. Delcuve
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
13
|
Björk P, Wieslander L. The Balbiani Ring Story: Synthesis, Assembly, Processing, and Transport of Specific Messenger RNA-Protein Complexes. Annu Rev Biochem 2015; 84:65-92. [PMID: 26034888 DOI: 10.1146/annurev-biochem-060614-034150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic gene expression is the result of the integrated action of multimolecular machineries. These machineries associate with gene transcripts, often already nascent precursor messenger RNAs (pre-mRNAs). They rebuild the transcript and convey properties allowing the processed transcript, the mRNA, to be exported to the cytoplasm, quality controlled, stored, translated, and degraded. To understand these integrated processes, one must understand the temporal and spatial aspects of the fate of the gene transcripts in relation to interacting molecular machineries. Improved methodology is necessary to study gene expression in vivo for endogenous genes. A complementary approach is to study biological systems that provide exceptional experimental possibilities. We describe such a system, the Balbiani ring (BR) genes in polytene cells in the dipteran Chironomus tentans. The BR genes, along with their pre-mRNA-protein complexes (pre-mRNPs) and mRNA-protein complexes (mRNPs), allow the visualization of intact cell nuclei and enable analyses of where and when different molecular machineries associate with and act on the BR pre-mRNAs and mRNAs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| | | |
Collapse
|
14
|
Migocka-Patrzałek M, Makowiecka A, Nowak D, Mazur AJ, Hofmann WA, Malicka-Błaszkiewicz M. β- and γ-Actins in the nucleus of human melanoma A375 cells. Histochem Cell Biol 2015; 144:417-28. [PMID: 26239425 PMCID: PMC4628621 DOI: 10.1007/s00418-015-1349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2015] [Indexed: 11/13/2022]
Abstract
Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.
Collapse
Affiliation(s)
- Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland.
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
- Department of Physiology and Biophysics, University at Buffalo State University of New York, Buffalo, NY, USA.
| | - Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, University at Buffalo State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
15
|
Falahzadeh K, Banaei-Esfahani A, Shahhoseini M. The potential roles of actin in the nucleus. CELL JOURNAL 2015; 17:7-14. [PMID: 25870830 PMCID: PMC4393673 DOI: 10.22074/cellj.2015.507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/05/2013] [Indexed: 11/16/2022]
Abstract
Over the past few decades, actin’s presence in the nucleus has been demonstrated. Actin
is a key protein necessary for different nuclear processes. Although actin is well known for
its functional role in dynamic behavior of the cytoskeleton, emerging studies are now highlighting new roles for actin. At the present time there is no doubt about the presence of actin in the nucleus. A number of studies have uncovered the functional involvement of actin
in nuclear processes. Actin as one of the nuclear components has its own structured and
functional rules, such as nuclear matrix association, chromatin remodeling, transcription
by RNA polymerases I, II, III and mRNA processing. In this historical review, we attempt to
provide an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Khadijeh Falahzadeh
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran ; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University (TMU), Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Grzanka D, Gagat M, Izdebska M. Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death. Int J Mol Med 2014; 33:1441-50. [PMID: 24676287 PMCID: PMC4055304 DOI: 10.3892/ijmm.2014.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues.
Collapse
Affiliation(s)
- Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
17
|
Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 2013; 24:238-46. [PMID: 24246764 DOI: 10.1016/j.tcb.2013.10.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
The mystery of nuclear actin has puzzled biologists for decades largely due to the lack of defined experimental systems. However, the development of actin-containing chromatin-modifying complexes as a defined genetic and biochemical system in the past decade has provided an unprecedented opportunity to dissect the mechanism of actin in the nucleus. Although the established functions of actin mostly rely on its dynamic polymerization, the novel finding of the mechanism of action of actin in the INO80 chromatin-remodeling complex suggests a conceptually distinct mode of actin that functions as a monomer. In this review we highlight the new paradigm and discuss how actin interaction with chromatin suggests a fundamental divergence between conventional cytoplasmic actin and nuclear actin. Furthermore, we provide how this framework could be applied to investigations of nuclear actin in other actin-containing chromatin-modifying complexes.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xuetong Shen
- Department of Molecular Carcinogenesis, Science Park Research Division, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
18
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
19
|
Abstract
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified.
Collapse
|
20
|
Izdebska M, Grzanka D, Gagat M, Gackowska L, Grzanka A. The effect of G-CSF on F-actin reorganization in HL-60 and K562 cell lines. Oncol Rep 2012; 28:2138-48. [PMID: 23023325 DOI: 10.3892/or.2012.2061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/06/2012] [Indexed: 11/05/2022] Open
Abstract
The aim of this investigation was to show the influence of G-CSF (G-CSF) on the F-actin cytoskeleton and the morphology of G-CSFR-proficient HL-60 and G-CSFR-deficient K562 cell lines. In the present study, we show changes in F-actin distribution in HL-60 cells after treatment with 5 and 10 ng/ml concentration of G-CSF but also changes in the organization and fluorescence intensity of F-actin in the K562 cell line. After treatment of HL-60 cells with 5 ng/ml concentration of G-CSF we observed an increase in F-actin levels. Additionally, a higher labeling of nuclear F-actin under TEM was observed. Moreover, changes in the cell cycle indicate cell differentiation. On the other hand, in the K562 cell line we observed an increase in the percentage sub-G1 cells following treatment with both concentration of G-CSF. Furthermore, an increase in the percentage of late apoptotic cells after G-CSF treatment was observed. A statistically significant difference in the cytoplasmic F-actin levels was not detected, but nuclear levels were decreased. In conclusion, we suggest that the G-CSF-based reorganization of actin filaments in HL-60 cells is involved in the differentiation process. Moreover, we suggest that the G-CSF-induced changes observed in K562 cells are associated with a G-CSF receptor-independent pathway or its binding to other similar receptors.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
21
|
Hessle V, von Euler A, González de Valdivia E, Visa N. Rrp6 is recruited to transcribed genes and accompanies the spliced mRNA to the nuclear pore. RNA (NEW YORK, N.Y.) 2012; 18:1466-1474. [PMID: 22745224 PMCID: PMC3404368 DOI: 10.1261/rna.032045.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs.
Collapse
Affiliation(s)
- Viktoria Hessle
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anne von Euler
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Neus Visa
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
22
|
Söderberg E, Hessle V, von Euler A, Visa N. Profilin is associated with transcriptionally active genes. Nucleus 2012; 3:290-9. [PMID: 22572953 PMCID: PMC3414406 DOI: 10.4161/nucl.20327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have raised antibodies against the profilin of Chironomus tentans to study the location of profilin relative to chromatin and to active genes in salivary gland polytene chromosomes. We show that a fraction of profilin is located in the nucleus, where profilin is highly concentrated in the nucleoplasm and at the nuclear periphery. Moreover, profilin is associated with multiple bands in the polytene chromosomes. By staining salivary glands with propidium iodide, we show that profilin does not co-localize with dense chromatin. Profilin associates instead with protein-coding genes that are transcriptionally active, as revealed by co-localization with hnRNP and snRNP proteins. We have performed experiments of transcription inhibition with actinomycin D and we show that the association of profilin with the chromosomes requires ongoing transcription. However, the interaction of profilin with the gene loci does not depend on RNA. Our results are compatible with profilin regulating actin polymerization in the cell nucleus. However, the association of actin with the polytene chromosomes of C. tentans is sensitive to RNase, whereas the association of profilin is not, and we propose therefore that the chromosomal location of profilin is independent of actin.
Collapse
Affiliation(s)
- Emilia Söderberg
- Department of Molecular Biology & Functional Genomics, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Nuclear actin and lamins in viral infections. Viruses 2012; 4:325-47. [PMID: 22590674 PMCID: PMC3347030 DOI: 10.3390/v4030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022] Open
Abstract
Lamins are the best characterized cytoskeletal components of the cell nucleus that help to maintain the nuclear shape and participate in diverse nuclear processes including replication or transcription. Nuclear actin is now widely accepted to be another cytoskeletal protein present in the nucleus that fulfills important functions in the gene expression. Some viruses replicating in the nucleus evolved the ability to interact with and probably utilize nuclear actin for their replication, e.g., for the assembly and transport of capsids or mRNA export. On the other hand, lamins play a role in the propagation of other viruses since nuclear lamina may represent a barrier for virions entering or escaping the nucleus. This review will summarize the current knowledge about the roles of nuclear actin and lamins in viral infections.
Collapse
|
24
|
de Lanerolle P, Serebryannyy L. Nuclear actin and myosins: life without filaments. Nat Cell Biol 2011; 13:1282-8. [PMID: 22048410 DOI: 10.1038/ncb2364] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and myosin are major components of the cell cytoskeleton, with structural and regulatory functions that affect many essential cellular processes. Although they were traditionally thought to function only in the cytoplasm, it is now well accepted that actin and multiple myosins are found in the nucleus. Increasing evidence on their functional roles has highlighted the importance of these proteins in the nuclear compartment.
Collapse
Affiliation(s)
- Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
25
|
Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem 2011; 286:15171-81. [PMID: 21378166 DOI: 10.1074/jbc.m110.184374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (Pol) II-dependent transcription. Positive transcription elongation factor b (P-TEFb), a Cdk9/cyclin T1 heterodimer, has been reported to play a critical role in transcription elongation. However, the relationship between actin and P-TEFb is still not clear. In this study, actin was found to interact with Cdk9, a catalytic subunit of P-TEFb, in elongation complexes. Using immunofluorescence and immunoprecipitation assays, Cdk9 was found to bind to G-actin through the conserved Thr-186 in the T-loop. Overexpression and in vitro kinase assays showed that G-actin promotes P-TEFb-dependent phosphorylation of the Pol II C-terminal domain. An in vitro transcription experiment revealed that the interaction between G-actin and Cdk9 stimulated Pol II transcription elongation. ChIP and immobilized template assays indicated that actin recruited Cdk9 to a transcriptional template in vivo and in vitro. Using cytokine IL-6-inducible p21 gene expression system, we revealed that actin recruited Cdk9 to endogenous gene. Moreover, overexpression of actin and Cdk9 increased histone H3 acetylation and acetylized histone H3 binding to a transcriptional template through the interaction with histone acetyltransferase, p300. Taken together, our results suggested that actin participates in transcription elongation by recruiting Cdk9 for phosphorylation of the Pol II C-terminal domain, and the actin-Cdk9 interaction promotes chromatin remodeling.
Collapse
Affiliation(s)
- Tianyang Qi
- Key Laboratory of Molecular Epigenetics of MOE and the Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | | | | | | | | | | |
Collapse
|
26
|
Skarp KP, Vartiainen MK. Actin on DNA-an ancient and dynamic relationship. Cytoskeleton (Hoboken) 2010; 67:487-95. [PMID: 20593452 DOI: 10.1002/cm.20464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the cytoplasm of eukaryotic cells the coordinated assembly of actin filaments drives essential cell biological processes, such as cell migration. The discovery of prokaryotic actin homologues, as well as the appreciation of the existence of nuclear actin, have expanded the scope by which the actin family is utilized in different cell types. In bacteria, actin has been implicated in DNA movement tasks, while the connection with the RNA polymerase machinery appears to exist in both prokaryotes and eukaryotes. Within the nucleus, actin has further been shown to play a role in chromatin remodeling and RNA processing, possibly acting to link these to transcription, thereby facilitating the gene expression process. The molecular mechanism by which actin exerts these newly discovered functions is still unclear, because while polymer formation seems to be required in bacteria, these species lack conventional actin-binding proteins to regulate the process. Furthermore, although the nucleus contains a plethora of actin-regulating factors, the polymerization status of actin within this compartment still remains unclear. General theme, however, seems to be actin's ability to interact with numerous binding partners. A common feature to the novel modes of actin utilization is the connection between actin and DNA, and here we aim to review the recent literature to explore how this connection is exploited in different contexts.
Collapse
Affiliation(s)
- Kari-Pekka Skarp
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
27
|
Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes. PLoS One 2010; 5:e11540. [PMID: 20634951 PMCID: PMC2902512 DOI: 10.1371/journal.pone.0011540] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/16/2010] [Indexed: 12/18/2022] Open
Abstract
Background Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. Methodology/Principal Findings We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human β-globin gene with mutated splice sites in intron 2 (mut β-globin). The transcripts encoded by the mut β-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut β-globin transcripts are much lower than those of wild type (wt) ß-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt β-globin genes to investigate the mechanisms that down-regulate the production of defective mRNAs. Both wt and mut β-globin transcripts are processed at the 3′, but the mut β-globin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut β-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut β-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut β-globin gene shows reduced levels of H3K4me3. Conclusions/Significance Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The other response acts at the transcription level and reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications.
Collapse
|
28
|
Abstract
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components.
Collapse
|
29
|
Xu YZ, Thuraisingam T, Morais DADL, Rola-Pleszczynski M, Radzioch D. Nuclear translocation of beta-actin is involved in transcriptional regulation during macrophage differentiation of HL-60 cells. Mol Biol Cell 2010; 21:811-20. [PMID: 20053683 PMCID: PMC2828967 DOI: 10.1091/mbc.e09-06-0534] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional significance of nuclear translocation of β-actin remains unclear. Here, we demonstrate that PMA induces β-actin accumulation in the nucleus and binding to various target genes with different functions. We also find that accumulated nuclear β-actin is involved in recruitment of RNA polymerase II and in transcription regulation. Studies have shown that nuclear translocation of actin occurs under certain conditions of cellular stress; however, the functional significance of actin import remains unclear. Here, we demonstrate that during the phorbol 12-myristate 13-acetate (PMA)-induced differentiation of HL-60 cells toward macrophages, β-actin translocates from the cytoplasm to the nucleus and that this process is dramatically inhibited by pretreatment with p38 mitogen-activated protein kinase inhibitors. Using chromatin immunoprecipitation-on-chip assays, the genome-wide maps of β-actin binding to gene promoters in response to PMA treatment is analyzed in HL-60 cells. A gene ontology-based analysis shows that the identified genes belong to a broad spectrum of functional categories such as cell growth and differentiation, signal transduction, response to external stimulus, ion channel activity, and immune response. We also demonstrate a correlation between β-actin occupancy and the recruitment of RNA polymerase II at six selected target genes, and β-actin knockdown decreases the mRNA expression levels of these target genes induced by PMA. We further show that nuclear β-actin is required for PMA-induced transactivation of one target gene, solute carrier family 11 member 1, which is important for macrophage activation. Our data provide novel evidence that nuclear accumulation of β-actin is involved in transcriptional regulation during macrophage-like differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Department of Medicine and Human Genetics and Department of Biology, Bioinformatics Centre, McGill University, McGill University Health Centre, Montreal General Hospital Research Institute, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
30
|
Perales R, Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178-91. [PMID: 19854129 DOI: 10.1016/j.molcel.2009.09.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/07/2009] [Accepted: 08/06/2009] [Indexed: 12/27/2022]
Abstract
Much of the complex process of RNP biogenesis takes place at the gene cotranscriptionally. The target for RNA binding and processing factors is, therefore, not a solitary RNA molecule but, rather, a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized cotranscriptionally around the TEC scaffold. Additionally, DNA repair, covalent chromatin modification, "gene gating" at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a cotranscriptional component. From this perspective, TECs can be viewed as potent "community organizers" within the nucleus.
Collapse
Affiliation(s)
- Roberto Perales
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC, MS8101, P.O. Box 6511, Aurora CO, 80045, USA
| | | |
Collapse
|
31
|
Percipalle P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell Mol Life Sci 2009; 66:2151-65. [PMID: 19300907 PMCID: PMC11115535 DOI: 10.1007/s00018-009-0012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/13/2009] [Accepted: 02/24/2009] [Indexed: 12/11/2022]
Abstract
During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 171 77, Stockholm, Sweden.
| |
Collapse
|
32
|
Gieni RS, Hendzel MJ. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 2009; 87:283-306. [PMID: 19234542 DOI: 10.1139/o08-133] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin exists as a dynamic equilibrium of monomers and polymers within the nucleus of living cells. It is utilized by the cell for many aspects of gene regulation, including mRNA processing, chromatin remodelling, and global gene expression. Polymeric actin is now specifically linked to transcription by RNA polymerase I, II, and III. An active process, requiring both actin polymers and myosin, appears to drive RNA polymerase I transcription, and is also implicated in long-range chromatin movement. This type of mechanism brings activated genes from separate chromosomal territories together, and then participates in their compartmentalization near nuclear speckles. Nuclear speckle formation requires polymeric actin, and factors promoting polymerization, such as profilin and PIP2, are concentrated there. A review of the literature shows that a functional population of G-actin cycles between the cytoplasm and the nucleoplasm. Its nuclear concentration is dependent on the cytoplasmic G-actin pool, as well as on the activity of import and export mechanisms and the availability of interactions that sequester it within the nucleus. The N-WASP-Arp2/3 actin polymer-nucleating mechanism functions in the nucleus, and its mediators, including NCK, PIP2, and Rac1, can be found in the nucleoplasm, where they likely influence the kinetics of polymer formation. The actin polymer species produced are tightly regulated, and may take on conformations not easily recognized by phalloidin. Many of the factors that cleave F-actin in the cytoplasm are present at high levels in the nucleoplasm, and are also likely to affect actin dynamics there. The absolute and relative G-actin content in the nucleoplasm and the cytoplasm of a cell contains information about the homeostatic state of that cell. We propose that the cycling of G-actin between the nucleus and cytoplasm represents a signal transduction mechanism that can function through both extremes of global cellular G-actin content. MAL signalling within the serum response factor pathway, when G-actin levels are low, represents a well-studied example of actin functioning in signal transduction. The translocation of NCK into the nucleus, along with G-actin, during dissolution of the cytoskeleton in response to DNA damage represents another instance of a unique signalling mechanism operating when G-actin levels are high.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, ABT6G1Z2, Canada
| | | |
Collapse
|
33
|
Zheng B, Han M, Bernier M, Wen JK. Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J 2009; 276:2669-85. [PMID: 19459931 PMCID: PMC2978034 DOI: 10.1111/j.1742-4658.2009.06986.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear actin is involved in the transcription of all three RNA polymerases, in chromatin remodeling and in the formation of heterogeneous nuclear ribonucleoprotein complexes, as well as in recruitment of the histone modifier to the active gene. In addition, actin-binding proteins (ABPs) control actin nucleation, bundling, filament capping, fragmentation and monomer availability in the cytoplasm. In recent years, more and more attention has focused on the role of actin and ABPs in the modulation of the subcellular localization of transcriptional regulators. This review focuses on recent developments in the study of transcription and transcriptional regulation by nuclear actin, and the regulation of muscle-specific gene expression, nuclear receptor and transcription complexes by ABPs. Among the ABPs, striated muscle activator of Rho signaling and actin-binding LIM protein regulate actin dynamics and serum response factor-dependent muscle-specific gene expression. Functionally and structurally unrelated cytoplasmic ABPs interact cooperatively with nuclear receptor and regulate its transactivation. Furthermore, ABPs also participate in the formation of transcription complexes.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Michel Bernier
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
34
|
Hofmann WA. Cell and molecular biology of nuclear actin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:219-63. [PMID: 19215906 DOI: 10.1016/s1937-6448(08)01806-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Actin is a highly conserved protein and one of the major components of the cytoplasm and the nucleus in eukaryotic cells. In the nucleus, actin is involved in a variety of nuclear processes that include transcription and transcription regulation, RNA processing and export, intranuclear movement, and structure maintenance. Recent advances in the field of nuclear actin have established that functions of actin in the nucleus are versatile, complex, and interconnected. It also has become increasingly evident that the cytoplasmic and nuclear pools of actin are functionally linked. However, while the biological significance of nuclear actin has become clear, we are only beginning to understand the mechanisms that lie behind the regulation of nuclear actin. This review provides an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY, USA
| |
Collapse
|
35
|
Botelho SC, Tyagi A, Hessle V, Farrants AKO, Visa N. The association of Brahma with the Balbiani ring 1 gene of Chironomus tentans studied by immunoelectron microscopy and chromatin immunoprecipitation. INSECT MOLECULAR BIOLOGY 2008; 17:505-513. [PMID: 18754808 DOI: 10.1111/j.1365-2583.2008.00825.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many steps of gene expression take place during transcription, and important functional information can thus be obtained by determining the distribution of specific factors along a transcribed gene. The Balbiani ring (BR) genes of the dipteran Chironomus tentans constitute a unique system for mapping the association of specific factors along a eukaryotic gene using immuno-electron microscopy (immuno-EM). The chromatin immunoprecipitation (ChIP) technique has provided an alternative, more general method for studying the association of proteins with specific genomic sequences. The immuno-EM and the ChIP methods suffer from different limitations, and thus a combination of both is advantageous. We have established optimal conditions for ChIP on chromatin extracted from the salivary glands of C. tentans , and we have analyzed the association of the SWI/SNF chromatin remodelling factor Brahma (Brm) with the BR1 gene by combined immuno-EM and ChIP. We show that Brm is not restricted to the promoter of the BR1 gene but is also associated with sequences in the middle and distal portions of the gene, which suggests that Brm has additional roles apart from regulating transcription initiation.
Collapse
Affiliation(s)
- S Calado Botelho
- Department of Molecular Biology & Functional Genomics, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol 2008; 28:6342-57. [PMID: 18710935 DOI: 10.1128/mcb.00766-08] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Actin is a key regulator of RNA polymerase (pol) II transcription. In complex with specific hnRNPs, it has been proposed that actin functions to recruit pol II coactivators during the elongation of nascent transcripts. Here, we show by affinity chromatography, protein-protein interaction assays, and biochemical fractionation of nuclear extracts that the histone acetyltransferase (HAT) PCAF associates with actin and hnRNP U. PCAF and the nuclear actin-associated HAT activity detected in the DNase I-bound protein fraction could be released by disruption of the actin-hnRNP U complex. In addition, actin, hnRNP U, and PCAF were found to be associated with the Ser2/5- and Ser2-phosphorylated pol II carboxy-terminal domain construct. Chromatin and RNA immunoprecipitation assays demonstrated that actin, hnRNP U, and PCAF are present at the promoters and coding regions of constitutively expressed pol II genes and that they are associated with ribonucleoprotein complexes. Finally, disruption of the actin-hnRNP U interaction repressed bromouridine triphosphate incorporation in living cells, suggesting that actin and hnRNP U cooperate with PCAF in the regulation of pol II transcription elongation.
Collapse
|
37
|
Medvedeva AV, Molotkov DA, Nikitina EA, Popov AV, Karagodin DA, Baricheva EM, Savvateeva-Popova EV. Systemic regulation of genetic and cytogenetic processes by a signal cascade of actin remodeling: Locus agnostic in Drosophila. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408060069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Chromatin remodelling and actin organisation. FEBS Lett 2008; 582:2041-50. [PMID: 18442483 DOI: 10.1016/j.febslet.2008.04.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 11/22/2022]
Abstract
Chromatin remodelling is a prerequisite for nuclear processes, and cells have several different ways of remodelling the chromatin structure. The ATP-dependent chromatin remodelling complexes are large multiprotein complexes that use ATP to change DNA-histone contacts. These complexes are classified into 4 sub-families depending on the central ATPase. The switch mating type/sucrose non-fermenting (SWI/SNF) complexes are mainly involved in transcriptional regulation, and this means that they are involved in many processes, such as the formation of actin filaments in the cytoplasm. SWI/SNF complexes are involved in the regulation of genes expressing cell adhesion proteins and extracellular matrix proteins. Actin is also present in the nucleus, affecting transcription, RNA processing and export. In addition, actin and actin-related proteins are subunits of SWI/SNF complexes and the INO80-containing complexes, another subfamily of ATP-dependent chromatin remodelling complexes. Not all functions of the actin and actin-related proteins in the complexes are yet clear: it is known that they play important roles in maintaining the stability of the proteins, possibly by bridging subunits and recruiting the complexes to chromatin.
Collapse
|
39
|
Pederson T. As functional nuclear actin comes into view, is it globular, filamentous, or both? ACTA ACUST UNITED AC 2008; 180:1061-4. [PMID: 18347069 PMCID: PMC2290836 DOI: 10.1083/jcb.200709082] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The idea that actin may have an important function in the nucleus has undergone a rapid transition from one greeted with skepticism to a now rapidly advancing research field. Actin has now been implicated in transcription by all three RNA polymerases, but the structural form it adopts in these processes remains unclear. Recently, a claim was made that monomeric nuclear actin plays a role in signal transduction, while a just-published study of RNA polymerase I transcription has implicated polymeric actin, consorting with an isoform of its classical partner myosin. Both studies are critically discussed here, and although there are several issues to be resolved, it now seems reasonable to start thinking about functions for both monomeric and assembled actin in the nucleus.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Solovei I, Pasero P, Visa N. A journey into the nucleus. Conference on Nuclear Structure and Dynamics. EMBO Rep 2008; 9:228-33. [PMID: 18274551 DOI: 10.1038/embor.2008.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/24/2008] [Indexed: 12/17/2022] Open
Affiliation(s)
- Irina Solovei
- Department of Biology II, Institute of Human Genetics, Biocenter, Ludwig-Maximilians University of Munich, Grosshadernerstrasse 2, Planegg-Martinsried 82152, Germany
| | | | | |
Collapse
|
41
|
Louvet E, Percipalle P. Transcriptional control of gene expression by actin and myosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:107-47. [PMID: 19121817 DOI: 10.1016/s1937-6448(08)01603-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent years have witnessed a new turn in the field of gene expression regulation. Actin and an ever-growing family of actin-associated proteins have been accepted as members of the nuclear crew, regulating eukaryotic gene transcription. In complex with heterogeneous nuclear ribonucleoproteins and certain myosin species, actin has been shown to be an important regulator in RNA polymerase II transcription. Furthermore, actin-based molecular motors are believed to facilitate RNA polymerase I transcription and possibly downstream events during rRNA biogenesis. Probably these findings represent the tip of the iceberg of a rapidly expanding area within the functional architecture of the cell nucleus. Further studies will contribute to clarify how actin mediates nuclear functions with a glance to cytoplasmic signalling. These discoveries have the potential to define novel regulatory networks required to control gene expression at multiple levels.
Collapse
Affiliation(s)
- Emilie Louvet
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
42
|
Abstract
Gene expression in eukaryotic cells is a multi-step process. Many of the steps are both co-ordinated and quality controlled. For example, transcription is closely coupled to pre-messenger RNA (mRNA)-protein assembly, pre-mRNA processing, surveillance of the correct synthesis of messenger ribonucleoprotein (mRNP), and export. The coordination appears to be exerted through dynamic interactions between components of the transcription, processing, surveillance, and export machineries. Our knowledge is so far incomplete about these molecular interactions and where in the nucleus they take place. It is therefore essential to analyze the intranuclear steps of gene expression in vivo. Polytene nuclei are exceptionally large and contain chromosomes and individual genes that can be structurally analyzed in situ during ongoing transcription. Furthermore, they contain gene-specific pre-mRNPs/mRNPs that can be visualised and analyzed as they are synthesised on the gene and then followed on their path to the cytoplasm. We describe methods for investigating the structure and composition of active chromatin and gene-specific pre-mRNPs/mRNPs in the context of analyses of gene expression processes in the nuclei of polytene cells.
Collapse
|
43
|
Posern G, Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006; 16:588-96. [DOI: 10.1016/j.tcb.2006.09.008] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/29/2006] [Accepted: 09/25/2006] [Indexed: 11/30/2022]
|
44
|
Miralles F, Visa N. Actin in transcription and transcription regulation. Curr Opin Cell Biol 2006; 18:261-6. [PMID: 16687246 DOI: 10.1016/j.ceb.2006.04.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
Recent research has provided convincing evidence that actin plays several important roles in gene transcription. First, actin can bind transcription factors and determine their subcellular localization. Second, actin is a component of chromatin remodeling complexes involved in transcriptional activation. Third, actin binds directly to the RNA polymerases I, II and III, and is required for their full transcriptional activity. Fourth, actin associates with nascent mRNPs and participates in the recruitment of histone modifiers to transcribed genes. We do not know yet whether these functions are general, or restricted to certain subsets of genes.
Collapse
Affiliation(s)
- Francesc Miralles
- Transcription Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
45
|
Kozlova N, Braga J, Lundgren J, Rino J, Young P, Carmo-Fonseca M, Visa N. Studies on the role of NonA in mRNA biogenesis. Exp Cell Res 2006; 312:2619-30. [PMID: 16750525 DOI: 10.1016/j.yexcr.2006.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
The NonA protein of Drosophila melanogaster is an abundant nuclear protein that belongs to the DBHS (Drosophila behavior, human splicing) protein family. The DBHS proteins bind both DNA and RNA in vitro and have been involved in different aspects of gene expression, including pre-mRNA splicing, transcription regulation and nuclear retention of mRNA. We have used double-stranded RNA interference in Drosophila S2 cells to silence the expression of NonA and to investigate its role in mRNA biogenesis. We show that knockdown of NonA does not affect transcription nor splicing. We demonstrate that NonA forms a complex with the essential nuclear export factor NXF1 in an RNA-dependent manner. We have constructed stable S2 cell lines that express full-length and truncated NXF1 fused to GFP in order to perform fluorescence recovery after photobleaching experiments. We show that knockdown of NonA reduces the intranuclear mobility of NXF1-GFP associated with poly(A)(+) RNA in vivo, while the mobility of the truncated NXF1-GFP that does not bind RNA is not affected. Our data suggest that NonA facilitates the intranuclear mobility of mRNP particles.
Collapse
Affiliation(s)
- Natalia Kozlova
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Actin is not only a major cytoskeletal component in all eukaryotic cells but also a nuclear protein that plays a role in gene transcription. We put together data from in vitro and in vivo experiments that begin to provide insights into the molecular mechanisms by which actin functions in transcription. Recent studies performed in vitro have suggested that actin, in direct contact with the transcription apparatus, is required in an early step of transcription that is common to all three eukaryotic RNA polymerases. In addition, there is evidence from in vivo studies that actin is involved in the transcription elongation of class II genes. In this case, actin is bound to a specific subset of premessenger RNA binding proteins, and the actin–messenger RNP complex may constitute a molecular platform for recruitment of histone-modifying enzymes. We discuss a general model for actin in RNA polymerase II transcription whereby actin works as a conformational switch in conjunction with specific adaptors to facilitate the remodeling of large macromolecular assemblies at the promoter and along the active gene.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-117 77 Stockholm, Sweden.
| | | |
Collapse
|
47
|
Grummt I. Actin and myosin as transcription factors. Curr Opin Genet Dev 2006; 16:191-6. [PMID: 16495046 DOI: 10.1016/j.gde.2006.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 02/10/2006] [Indexed: 12/26/2022]
Abstract
The proteins actin and myosin have a firm place in the muscles, where they are responsible for contraction. Although recent investigations have shown that they are found in the nucleus, it has been unclear as to what they are doing there. The discovery of actin as a component of the transcription apparatus, chromatin-remodeling complexes, as well as RNA processing machines, implies important roles for actin in the readout of genetic information. Actin is associated with all three nuclear RNA polymerases and acts in concert with nuclear myosin 1 (NM1) to drive transcription. Actin-NMI interactions are involved in the transition of the initiation complex into the elongation complex, presumably by triggering a structural change of the transcription apparatus or by generating force that supports RNA polymerase movement.
Collapse
Affiliation(s)
- Ingrid Grummt
- German Cancer Research Center, Division of Molecular Biology of the Cell II, D-69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|