1
|
Curt JR, Martín P, Foronda D, Hudry B, Kannan R, Shetty S, Merabet S, Saurin AJ, Graba Y, Sánchez- Herrero E. Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax. PLoS Genet 2025; 21:e1011355. [PMID: 39804927 PMCID: PMC11759358 DOI: 10.1371/journal.pgen.1011355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/24/2025] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action. Posterior Hox class proteins, Abdominal-B (Abd-B) in Drosophila and Hox9-13 in vertebrates, have been comparatively less studied. They strongly diverge from anterior and central class Hox proteins, with a low degree of HD sequence conservation and the absence of a core canonical Pbc interaction motif. Here we explore how Abd-B function interface with that of Exd/Hth using several developmental contexts, studying mutual expression control, functional dependency and intrinsic protein requirements. Results identify cross-regulatory interactions setting relative expression and activity levels required for proper development. They also reveal organ-specific requirement and a binary functional interplay with Exd and Hth, either antagonistic, as previously reported, or synergistic. This highlights context specific use of Exd/Hth, and a similar context specific use of Abd-B intrinsic protein requirements.
Collapse
Affiliation(s)
- Jesús R. Curt
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Bruno Hudry
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences Parc Valrose, Nice, France
| | - Ramakrishnan Kannan
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Srividya Shetty
- Molecular Genetics lab, Neurobiology Research Center (NRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Samir Merabet
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
- Institut de Génétique Fonctionnelle, UMR 5242 CNRS/ENS Lyon, Lyon, France
| | - Andrew J. Saurin
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Yacine Graba
- Aix-Marseille Univ., CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Parc Scientifique de Luminy, Marseille, France
| | - Ernesto Sánchez- Herrero
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
2
|
Luo X, Xu YQ, Jin DC, Guo JJ, Yi TC. Role of the Hox Genes, Sex combs reduced, Fushi tarazu and Antennapedia, in Leg Development of the Spider Mite Tetranychus urticae. Int J Mol Sci 2023; 24:10391. [PMID: 37373537 DOI: 10.3390/ijms241210391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Mites, the second largest arthropod group, exhibit rich phenotypic diversity in the development of appendages (legs). For example, the fourth pair of legs (L4) does not form until the second postembryonic developmental stage, namely the protonymph stage. These leg developmental diversities drive body plan diversity in mites. However, little is known about the mechanisms of leg development in mites. Hox genes, homeotic genes, can regulate the development of appendages in arthropods. Three Hox genes, Sex combs reduced (Scr), Fushi tarazu (Ftz) and Antennapedia (Antp), have previously been shown to be expressed in the leg segments of mites. Here, the quantitative real-time reverse transcription PCR shows that three Hox genes are significantly increased in the first molt stage. RNA interference results in a set of abnormalities, including L3 curl and L4 loss. These results suggest that these Hox genes are required for normal leg development. Furthermore, the loss of single Hox genes results in downregulating the expression of the appendage marker Distal-less (Dll), suggesting that the three Hox genes can work together with Dll to maintain leg development in Tetranychus urticae. This study will be essential to understanding the diversity of leg development in mites and changes in Hox gene function.
Collapse
Affiliation(s)
- Xiang Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Yu-Qi Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Jian-Jun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
3
|
Akinyemi MO, Finucan J, Grytsay A, Osaiyuwu OH, Adegbaju MS, Ogunade IM, Thomas BN, Peters SO, Morenikeji OB. Molecular Evolution and Inheritance Pattern of Sox Gene Family among Bovidae. Genes (Basel) 2022; 13:genes13101783. [PMID: 36292668 PMCID: PMC9602320 DOI: 10.3390/genes13101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
Sox genes are an evolutionarily conserved family of transcription factors that play important roles in cellular differentiation and numerous complex developmental processes. In vertebrates, Sox proteins are required for cell fate decisions, morphogenesis, and the control of self-renewal in embryonic and adult stem cells. The Sox gene family has been well-studied in multiple species including humans but there has been scanty or no research into Bovidae. In this study, we conducted a detailed evolutionary analysis of this gene family in Bovidae, including their physicochemical properties, biological functions, and patterns of inheritance. We performed a genome-wide cataloguing procedure to explore the Sox gene family using multiple bioinformatics tools. Our analysis revealed a significant inheritance pattern including conserved motifs that are critical to the ability of Sox proteins to interact with the regulatory regions of target genes and orchestrate multiple developmental and physiological processes. Importantly, we report an important conserved motif, EFDQYL/ELDQYL, found in the SoxE and SoxF groups but not in other Sox groups. Further analysis revealed that this motif sequence accounts for the binding and transactivation potential of Sox proteins. The degree of protein–protein interaction showed significant interactions among Sox genes and related genes implicated in embryonic development and the regulation of cell differentiation. We conclude that the Sox gene family uniquely evolved in Bovidae, with a few exhibiting important motifs that drive several developmental and physiological processes.
Collapse
Affiliation(s)
- Mabel O. Akinyemi
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Jessica Finucan
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Anastasia Grytsay
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
| | - Osamede H. Osaiyuwu
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan 200005, Nigeria
| | - Muyiwa S. Adegbaju
- Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26505, USA
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149, USA
| | - Olanrewaju B. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh, Bradford, PA 16701, USA
- Correspondence: ; Tel.: +1-(585)-490-7271
| |
Collapse
|
4
|
Zhao F, Tian H, Liu X, Guan Y, Zhu Y, Ren P, Zhang J, Dong Y, Fu L. Homeobox A1 Facilitates Immune Escape and Alleviates Oxidative Stress in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4102666. [PMID: 35633885 PMCID: PMC9136634 DOI: 10.1155/2022/4102666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Objective Recent studies have demonstrated that homeobox A1 (HOXA1) is upregulated in lung cancer due to RNA modifications (N6-methyladenosine), but the specific function of HOXA1 in lung adenocarcinoma (LUAD) remains indistinct. Herein, we investigated the role of HOXA1 in LUAD biology. Methods This study presented pancancer analysis of associations of HOXA1 with prognosis, TMB, and immune checkpoints. The expression of HOXA1 was detected in LUAD and normal tissues with immunohistochemistry and western blot. Through least absolute shrinkage and selection operator (LASSO) analysis, HOXA1-derived gene model was conducted in LUAD. Correlations of HOXA1 with immune cell infiltrations, immune checkpoints, HLAs, and chemotherapeutic sensitivity were evaluated. Colony formation, proliferation, and migration of LUAD cells with si-HOXA1 transfection were investigated, and the effects of HOXA1 on T cell exhaustion were assessed in vitro. Results HOXA1 expression was a risk factor of overall survival, disease-specific survival, and progression-free interval of LUAD. HOXA1 exhibited prominent associations with immune cell infiltration, immune checkpoints, and HLAs. HOXA1-derived gene signature reliably and independently predicted LUAD outcomes. Also, high-risk cases presented increased sensitivity to cisplatin, paclitaxel, docetaxel, vinorelbine, and etoposide. HOXA1 knockdown exhibited an inhibitory effect on proliferation and migration abilities of LUAD cells. Silencing HOXA1 weakened the expression of antioxidative stress markers Nrf2/HO-1 and T cell exhaustion marker CD155 in LUAD cells. Moreover, LUAD cells with HOXA1 knockdown enhanced the CD8+ T cell response. Conclusion Our data support the oncogenic function and prognostic significance of HOXA1 that facilitates immune escape and alleviates oxidative stress of LUAD.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117 Shandong, China
| | - Hui Tian
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Xinchao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong, China
| | - Yuanxiazi Guan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Ying Zhu
- Affiliated Hospital of Heze Medical College, Heze, 274008 Shandong, China
| | - Peng Ren
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012 Shandong, China
| | - Jianbo Zhang
- Departments of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Yinjun Dong
- Department of Thoracic surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| | - Lei Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, China
| |
Collapse
|
5
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
6
|
Transcriptional Regulation and Implications for Controlling Hox Gene Expression. J Dev Biol 2022; 10:jdb10010004. [PMID: 35076545 PMCID: PMC8788451 DOI: 10.3390/jdb10010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hox genes play key roles in axial patterning and regulating the regional identity of cells and tissues in a wide variety of animals from invertebrates to vertebrates. Nested domains of Hox expression generate a combinatorial code that provides a molecular framework for specifying the properties of tissues along the A–P axis. Hence, it is important to understand the regulatory mechanisms that coordinately control the precise patterns of the transcription of clustered Hox genes required for their roles in development. New insights are emerging about the dynamics and molecular mechanisms governing transcriptional regulation, and there is interest in understanding how these may play a role in contributing to the regulation of the expression of the clustered Hox genes. In this review, we summarize some of the recent findings, ideas and emerging mechanisms underlying the regulation of transcription in general and consider how they may be relevant to understanding the transcriptional regulation of Hox genes.
Collapse
|
7
|
Cain B, Gebelein B. Mechanisms Underlying Hox-Mediated Transcriptional Outcomes. Front Cell Dev Biol 2021; 9:787339. [PMID: 34869389 PMCID: PMC8635045 DOI: 10.3389/fcell.2021.787339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.
Collapse
Affiliation(s)
- Brittany Cain
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Parker HJ, De Kumar B, Pushel I, Bronner ME, Krumlauf R. Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Dev Biol 2021; 479:61-76. [PMID: 34310923 DOI: 10.1016/j.ydbio.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Singh NP. Gene regulation: Context is everything. Curr Biol 2021; 31:R1115-R1117. [PMID: 34637709 DOI: 10.1016/j.cub.2021.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
How transcription factors regulate a distinct set of target genes in different cell types is a fundamental question. A new study demonstrates how Ultrabithorax, a Hox transcription factor, acts as both a repressor and an activator in a cell type-specific manner to alter chromatin accessibility and gene regulation.
Collapse
Affiliation(s)
- Narendra P Singh
- Stowers Institute for Medical Research, Kansas City, MI 64110, USA.
| |
Collapse
|
10
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
11
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
12
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
13
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
14
|
Genome-Wide Binding Analyses of HOXB1 Revealed a Novel DNA Binding Motif Associated with Gene Repression. J Dev Biol 2021; 9:jdb9010006. [PMID: 33546292 PMCID: PMC7931043 DOI: 10.3390/jdb9010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Knowledge of the diverse DNA binding specificities of transcription factors is important for understanding their specific regulatory functions in animal development and evolution. We have examined the genome-wide binding properties of the mouse HOXB1 protein in embryonic stem cells differentiated into neural fates. Unexpectedly, only a small number of HOXB1 bound regions (7%) correlate with binding of the known HOX cofactors PBX and MEIS. In contrast, 22% of the HOXB1 binding peaks display co-occupancy with the transcriptional repressor REST. Analyses revealed that co-binding of HOXB1 with PBX correlates with active histone marks and high levels of expression, while co-occupancy with REST correlates with repressive histone marks and repression of the target genes. Analysis of HOXB1 bound regions uncovered enrichment of a novel 15 base pair HOXB1 binding motif HB1RE (HOXB1 response element). In vitro template binding assays showed that HOXB1, PBX1, and MEIS can bind to this motif. In vivo, this motif is sufficient for direct expression of a reporter gene and over-expression of HOXB1 selectively represses this activity. Our analyses suggest that HOXB1 has evolved an association with REST in gene regulation and the novel HB1RE motif contributes to HOXB1 function in part through a repressive role in gene expression.
Collapse
|