1
|
Carnesecchi J, Boumpas P, van Nierop Y Sanchez P, Domsch K, Pinto HD, Borges Pinto P, Lohmann I. The Hox transcription factor Ultrabithorax binds RNA and regulates co-transcriptional splicing through an interplay with RNA polymerase II. Nucleic Acids Res 2021; 50:763-783. [PMID: 34931250 PMCID: PMC8789087 DOI: 10.1093/nar/gkab1250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) play a pivotal role in cell fate decision by coordinating gene expression programs. Although most TFs act at the DNA layer, few TFs bind RNA and modulate splicing. Yet, the mechanistic cues underlying TFs activity in splicing remain elusive. Focusing on the Drosophila Hox TF Ultrabithorax (Ubx), our work shed light on a novel layer of Ubx function at the RNA level. Transcriptome and genome-wide binding profiles in embryonic mesoderm and Drosophila cells indicate that Ubx regulates mRNA expression and splicing to promote distinct outcomes in defined cellular contexts. Our results demonstrate a new RNA-binding ability of Ubx. We find that the N51 amino acid of the DNA-binding Homeodomain is non-essential for RNA interaction in vitro, but is required for RNA interaction in vivo and Ubx splicing activity. Moreover, mutation of the N51 amino acid weakens the interaction between Ubx and active RNA Polymerase II (Pol II). Our results reveal that Ubx regulates elongation-coupled splicing, which could be coordinated by a dynamic interplay with active Pol II on chromatin. Overall, our work uncovered a novel role of the Hox TFs at the mRNA regulatory layer. This could be an essential function for other classes of TFs to control cell diversity.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Panagiotis Boumpas
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Patrick van Nierop Y Sanchez
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Department Biology, Division of Developmental Biology, Erlangen, Germany
| | - Hugo Daniel Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pedro Borges Pinto
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
2
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
3
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
4
|
Morozov VY, Ioshikhes IP. Optimized position weight matrices in prediction of novel putative binding sites for transcription factors in the Drosophila melanogaster genome. PLoS One 2013; 8:e68712. [PMID: 23936309 PMCID: PMC3735551 DOI: 10.1371/journal.pone.0068712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/30/2013] [Indexed: 12/01/2022] Open
Abstract
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. DNA-binding proteins often show degeneracy in their binding requirement and thus the overall binding specificity of many proteins is unknown and remains an active area of research. Although existing PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. Our previous study introduced a promising approach to PWM refinement in which known motifs are used to computationally mine putative binding sites directly from aligned promoter regions using composition of similar sites. In the present study, we extended this technique originally tested on single examples of transcription factors (TFs) and showed its capability to optimize PWM performance to predict new binding sites in the fruit fly genome. We propose refined PWMs in mono- and dinucleotide versions similarly computed for a large variety of transcription factors of Drosophila melanogaster. Along with the addition of many auxiliary sites the optimization includes variation of the PWM motif length, the binding sites location on the promoters and the PWM score threshold. To assess the predictive performance of the refined PWMs we compared them to conventional TRANSFAC and JASPAR sources. The results have been verified using performed tests and literature review. Overall, the refined PWMs containing putative sites derived from real promoter content processed using optimized parameters had better general accuracy than conventional PWMs.
Collapse
Affiliation(s)
| | - Ilya P. Ioshikhes
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
5
|
Abstract
A chimeric protein consisting of Deformed with a substituted Abdominal-B homeodomain (Dfd/Abd-B) is used to identify protein domains outside the homeodomain that are required for regulatory activity in vivo. A series of deletion proteins were generated based on regions showing amino acid composition similar to known regulatory domains. Each mutant protein can influence regulation of homeotic genes in a manner distinct from the intact protein. Activity was also tested using promoter elements from empty spiracles and Distal-less, two genes known to be directly regulated by Abdominal-B. Removal of the acidic region and the C-tail region convert the chimera from a strong activator to a repressor of the Distal-less element, but had comparatively little effect on the activation of the empty spiracles element. Constructs without a third domain, the N domain, fail to show any regulatory activity. The N domain is the only domain of the Dfd/Abd-B protein which exhibits significant activation activity when fused to a heterologous DNA binding domain. Our results suggest transcriptional activity of the N domain can be modulated by the acidic and C-tail domains.
Collapse
Affiliation(s)
- A Zhu
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
6
|
Abstract
Interference between different classes of RNA polymerase II alleles causes a mutant phenotype called the "Ubx effect" that resembles one seen in flies haploinsufficient for the transcription factor, Ultrabithorax (Ubx). Flies carrying the mutation in the largest subunit of Drosophila RNA polymerase II, RpII215(4), display the Ubx effect when heterozygous as in RpII215(4)/+ but not when homozygous mutant or wild type. In this report we demonstrate that the interaction between alleles in different classes of polymerase occurs even in the absence of transcription by the wild-type polymerase. We utilized the resistance to the transcriptional inhibitor alpha-amanitin conferred by RpII215(4) to show that RpII215(4)/+ flies raised on alpha-amanitin-containing food still show the Ubx effect and are indistinguishable from flies raised on normal food. We demonstrate using HPLC that the intracellular concentration of alpha-amanitin in the developing larvae is sufficient to inhibit transcription by alpha-amanitin-sensitive polymerase. Furthermore, fluorescein-labeled alpha-amanitin accumulates in imaginal discs, which are the precursor cells for the tissue showing the homeotic transformation in adults. We conclude that the interaction between different classes of RNA polymerase II alleles resulting in the Ubx effect occurs prior to the block in transcription caused by alpha-amanitin.
Collapse
Affiliation(s)
- L P Burke
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | |
Collapse
|
7
|
Burke LP, Jones T, Mortin MA. Transcriptional competition and homeosis inDrosophila. Biochem Genet 1996. [DOI: 10.1007/pl00020595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Bourbon HM, Martin-Blanco E, Rosen D, Kornberg TB. Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 1995; 270:11130-9. [PMID: 7744743 DOI: 10.1074/jbc.270.19.11130] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The engrailed gene encodes a homeodomain-containing phosphoprotein that binds DNA. Here, we show that engrailed protein is posttranslationally modified in embryos and in embryo-derived cultured cells but is essentially unmodified when expressed in Escherichia coli. Engrailed protein produced by bacteria can be phosphorylated in nuclear extracts prepared from Drosophila embryos, and phosphotryptic peptides from this modified protein partly reproduce two-dimensional maps of phosphotryptic fragments obtained from metabolically labeled engrailed protein. The primary embryonic protein kinase modifying engrailed protein is casein kinase II (CK-II). Analysis of mutant proteins revealed that the in vitro phosphoacceptors are mainly clustered in a region outside the engrailed homeodomain and identified serines 394, 397, 401, and 402 as the targets for CK-II phosphorylation. CK-II-dependent phosphorylation of an N-truncated derivative of engrailed protein purified from bacteria increased its DNA binding 2-4-fold.
Collapse
Affiliation(s)
- H M Bourbon
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
9
|
Manak JR, Mathies LD, Scott MP. Regulation of a decapentaplegic midgut enhancer by homeotic proteins. Development 1994; 120:3605-19. [PMID: 7821226 DOI: 10.1242/dev.120.12.3605] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The clustered homeotic genes encode transcription factors that regulate pattern formation in all animals, conferring cell fates by coordinating the activities of downstream ‘target’ genes. In the Drosophila midgut, the Ultrabithorax (Ubx) protein activates and the abdominalA (abd-A) protein represses transcription of the decapentaplegic (dpp) gene, which encodes a secreted signalling protein of the TGF beta class. We have identified an 813 bp dpp enhancer which is capable of driving expression of a lacZ gene in a correct pattern in the embryonic midgut. The enhancer is activated ectopically in the visceral mesoderm by ubiquitous expression of Ubx or Antennapedia but not by Sex combs reduced protein. Ectopic expression of abd-A represses the enhancer. Deletion analysis reveals regions required for repression and activation. A 419 bp subfragment of the 813 bp fragment also drives reporter gene expression in an appropriate pattern, albeit more weakly. Evolutionary sequence conservation suggests other factors work with homeotic proteins to regulate dpp. A candidate cofactor, the extradenticle protein, binds to the dpp enhancer in close proximity to homeotic protein binding sites. Mutation of either this site or another conserved motif compromises enhancer function. A 45 bp fragment of DNA from within the enhancer correctly responds to both UBX and ABD-A in a largely tissue-specific manner, thus representing the smallest in vivo homeotic response element (HOMRE) identified to date.
Collapse
Affiliation(s)
- J R Manak
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5427
| | | | | |
Collapse
|
10
|
Affiliation(s)
- P Schweizer
- Institute de Biologie Végétale, Université de Fribourg, Switzerland
| |
Collapse
|
11
|
Cooperative binding of an Ultrabithorax homeodomain protein to nearby and distant DNA sites. Mol Cell Biol 1993. [PMID: 8105373 DOI: 10.1128/mcb.13.11.6941] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cooperativity in binding of regulatory proteins to multiple DNA sites can heighten the sensitivity and specificity of the transcriptional response. We report here the cooperative DNA-binding properties of a developmentally active regulatory protein encoded by the Drosophila homeotic gene Ultrabithorax (Ubx). We show that naturally occurring binding sites for the Ubx-encoded protein contain clusters of multiple individual binding site sequences. Such sites can form complexes containing a dozen or more Ubx-encoded protein molecules, with simultaneous cooperative interactions between adjacent and distant DNA sites. The distant mode of interaction involves a DNA looping mechanism; both modes appear to enhance transcriptional activation in a simple yeast assay system. We found that cooperative binding is dependent on sequences outside the homeodomain, and we have identified regions predicted to form coiled coils carboxy terminal to the homeodomains of the Ubx-encoded protein and several other homeotic proteins. On the basis of our findings, we propose a multisite integrative model of homeotic protein action in which functional regulatory elements can be built from a few high-affinity sites, from many lower-affinity sites, or from sites of some intermediate number and affinity. An important corollary of this model is that even small differences in binding of homeotic proteins to individual sites could be summed to yield large overall differences in binding to multiple sites. This model is consistent with reports that homeodomain protein targets contain multiple individual binding site sequences distributed throughout sizable DNA regions. Also consistent is a recent report that sequences carboxy terminal to the Ubx homeodomain can contribute to segmental specificity.
Collapse
|
12
|
Beachy PA, Varkey J, Young KE, von Kessler DP, Sun BI, Ekker SC. Cooperative binding of an Ultrabithorax homeodomain protein to nearby and distant DNA sites. Mol Cell Biol 1993; 13:6941-56. [PMID: 8105373 PMCID: PMC364756 DOI: 10.1128/mcb.13.11.6941-6956.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cooperativity in binding of regulatory proteins to multiple DNA sites can heighten the sensitivity and specificity of the transcriptional response. We report here the cooperative DNA-binding properties of a developmentally active regulatory protein encoded by the Drosophila homeotic gene Ultrabithorax (Ubx). We show that naturally occurring binding sites for the Ubx-encoded protein contain clusters of multiple individual binding site sequences. Such sites can form complexes containing a dozen or more Ubx-encoded protein molecules, with simultaneous cooperative interactions between adjacent and distant DNA sites. The distant mode of interaction involves a DNA looping mechanism; both modes appear to enhance transcriptional activation in a simple yeast assay system. We found that cooperative binding is dependent on sequences outside the homeodomain, and we have identified regions predicted to form coiled coils carboxy terminal to the homeodomains of the Ubx-encoded protein and several other homeotic proteins. On the basis of our findings, we propose a multisite integrative model of homeotic protein action in which functional regulatory elements can be built from a few high-affinity sites, from many lower-affinity sites, or from sites of some intermediate number and affinity. An important corollary of this model is that even small differences in binding of homeotic proteins to individual sites could be summed to yield large overall differences in binding to multiple sites. This model is consistent with reports that homeodomain protein targets contain multiple individual binding site sequences distributed throughout sizable DNA regions. Also consistent is a recent report that sequences carboxy terminal to the Ubx homeodomain can contribute to segmental specificity.
Collapse
Affiliation(s)
- P A Beachy
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
13
|
Rauskolb C, Peifer M, Wieschaus E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 1993; 74:1101-12. [PMID: 8104703 DOI: 10.1016/0092-8674(93)90731-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations in the Drosophila gene extradenticle (exd) cause homeotic transformations by altering the morphological consequences of homeotic selector gene activity. We have cloned and sequenced exd: it encodes a homeodomain protein with extensive identity (71%) to the human proto-oncoprotein Pbx1. exd is expressed during embryogenesis when the selector homeodomain proteins of the Antennapedia and bithorax complexes establish segmental identity. Maternally expressed exd is uniform and can suppress the segmental transformations of embryos lacking zygotic exd. While zygotic exd expression is also at first uniform, later expression is modulated by the homeotic selector genes. These studies support the view that exd acts with the selector homeodomain proteins as a DNA-binding transcription factor, thereby altering their regulation of downstream target genes.
Collapse
Affiliation(s)
- C Rauskolb
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | |
Collapse
|
14
|
Talbot WS, Swyryd EA, Hogness DS. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 1993; 73:1323-37. [PMID: 8324824 DOI: 10.1016/0092-8674(93)90359-x] [Citation(s) in RCA: 414] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In D. melanogaster a pulse of the steroid hormone ecdysone triggers the larval-to-adult metamorphosis, a complex process in which this hormone induces imaginal tissues to generate adult structures and larval tissues to degenerate. We show that the EcR gene encodes three ecdysone receptor isoforms (EcR-A, EcR-B1, and EcR-B2) that have common DNA- and hormone-binding domains but different N-terminal regions. We have used isoform-specific monoclonal antibodies to show that at the onset of metamorphosis different ecdysone target tissues express different isoform combinations in a manner consistent with the proposition that the different metamorphic responses of these tissues require different combinations of the EcR isoforms. We have also determined temporal developmental profiles of the EcR isoforms and their mRNAs in whole animals, showing that different isoforms predominate at different developmental stages that are marked by a pulse of ecdysone.
Collapse
Affiliation(s)
- W S Talbot
- Department of Biochemistry, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
15
|
Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol Cell Biol 1993. [PMID: 8097276 DOI: 10.1128/mcb.13.5.2742] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we examined how the Drosophila developmental control gene even-skipped (eve) represses transcription. Tissue culture cells were used to show that eve contains domains which inhibit transcriptional activators present at the Ultrabithorax (Ubx) proximal promoter when bound up to 1.5 kb away from these activators. Different portions of eve were fused to a heterologous DNA binding domain to show that three adjacent regions of eve contribute to silencing. There appear to be two mechanisms by which eve protein represses transcription. In this study, we used in vitro transcription and DNA binding experiments to provide evidence for one of these mechanisms. Repression in vitro correlates with binding of eve protein to two low-affinity sites in the Ubx proximal promoter. Occupancy of these low-affinity sites is dependent upon cooperative binding of other eve molecules to a separate high-affinity site. Some of these sites are separated by over 150 bp of DNA, and the data suggest that this intervening DNA is bent to form a looped structure similar to those caused by prokaryotic repressors. One of the low-affinity sites overlaps an activator element bound by the zeste transcription factor. Binding of eve protein is shown to exclude binding by zeste protein. These data suggest a mechanism for silencing whereby a repressor protein would be targeted to DNA by a high-affinity element, which itself does not overlap activator elements. Cooperative binding of further repressor molecules to distant low-affinity sites, and competition with activators bound at these sites lead to repression at a distance.
Collapse
|
16
|
TenHarmsel A, Austin RJ, Savenelli N, Biggin MD. Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol Cell Biol 1993; 13:2742-52. [PMID: 8097276 PMCID: PMC359652 DOI: 10.1128/mcb.13.5.2742-2752.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we examined how the Drosophila developmental control gene even-skipped (eve) represses transcription. Tissue culture cells were used to show that eve contains domains which inhibit transcriptional activators present at the Ultrabithorax (Ubx) proximal promoter when bound up to 1.5 kb away from these activators. Different portions of eve were fused to a heterologous DNA binding domain to show that three adjacent regions of eve contribute to silencing. There appear to be two mechanisms by which eve protein represses transcription. In this study, we used in vitro transcription and DNA binding experiments to provide evidence for one of these mechanisms. Repression in vitro correlates with binding of eve protein to two low-affinity sites in the Ubx proximal promoter. Occupancy of these low-affinity sites is dependent upon cooperative binding of other eve molecules to a separate high-affinity site. Some of these sites are separated by over 150 bp of DNA, and the data suggest that this intervening DNA is bent to form a looped structure similar to those caused by prokaryotic repressors. One of the low-affinity sites overlaps an activator element bound by the zeste transcription factor. Binding of eve protein is shown to exclude binding by zeste protein. These data suggest a mechanism for silencing whereby a repressor protein would be targeted to DNA by a high-affinity element, which itself does not overlap activator elements. Cooperative binding of further repressor molecules to distant low-affinity sites, and competition with activators bound at these sites lead to repression at a distance.
Collapse
Affiliation(s)
- A TenHarmsel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
17
|
Mahaffey JW, Jones DF, Hickel JA, Griswold CM. Identification and characterization of a gene activated by the deformed homeoprotein. Development 1993; 118:203-14. [PMID: 8104141 DOI: 10.1242/dev.118.1.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the homeotic genes encode transcription factors which control segment identity during embryogenesis by specifying the appropriate set of ‘target’ genes necessary to produce the individual segmental characteristics. Though we know much about the homeotic genes and the proteins they encode, we know little of their targets. Here we identify and characterize one such target gene, a gene activated by the product of the homeotic gene Deformed. DNA binding assays and expression of reporter gene constructs indicate that activation of this gene requires a direct interaction between the Deformed protein and an upstream enhancer element at this target gene. However, although Deformed is required to activate this gene in cells of the maxillary segment, ectopically expressed Deformed does not activate the gene in other regions of the embryo. We conclude from this and other observations that additional factors may be required to activate the target gene, and, therefore, Deformed may participate in either a combinatorial or hierarchical activation signal in the maxillary cells. This newly identified gene encodes a novel protein of unknown function, though proteins with similar amino acid composition have been found. The pattern of transcript accumulation during embryogenesis indicates that this gene may be regulated by other homeoproteins in addition to Deformed.
Collapse
Affiliation(s)
- J W Mahaffey
- Department of Genetics, North Carolina State University, Raleigh 27695
| | | | | | | |
Collapse
|
18
|
Han K, Manley JL. Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev 1993; 7:491-503. [PMID: 8095483 DOI: 10.1101/gad.7.3.491] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have used a transient expression assay employing Drosophila tissue culture cells to study the transcriptional repression activity of the homeo domain protein Even-skipped (Eve). Eve was found to repress all promoters that contained Eve-binding sites, including both TATA-containing and TATA-lacking minimal promoters, as well as promoters activated by several different classes of activator proteins. These findings suggest that the general transcription machinery can be a target of Eve. By analyzing properties of a variety of Eve mutants and chimeric fusion proteins, we have identified several features important for efficient repression. In addition to the DNA-binding domain, a potent repressor requires a repression domain, which can be as small as 27 residues. The minimal 57-residue Eve repression domain, as well as several others studied here, were all found to be proline rich and to contain a high percentage of hydrophobic residues. An intriguing feature of the strong repressors was that their DNA-binding activities, measured by gel retention assays with nuclear extracts, were significantly less than those of derivatives inactive in repression.
Collapse
Affiliation(s)
- K Han
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | |
Collapse
|
19
|
Irvine KD, Botas J, Jha S, Mann RS, Hogness DS. Negative autoregulation by Ultrabithorax controls the level and pattern of its expression. Development 1993; 117:387-99. [PMID: 7900988 DOI: 10.1242/dev.117.1.387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila homeotic gene Ultrabithorax (Ubx) encodes transcriptional regulatory proteins (UBX) that specify thoracic and abdominal segmental identities. Ubx autoregulation was examined by manipulating UBX levels, both genetically and with an inducible transgene, and monitoring the effect of these manipulations on the expression of Ubx and Ubx-lacZ reporter genes. Positive autoregulation by Ubx is restricted to the visceral mesoderm, while in other tissues Ubx negatively autoregulates. In some cases, negative autoregulation stabilizes UBX levels, while in others it modulates the spatial and temporal patterns of UBX expression. This modulation of UBX expression may enable Ubx to specify distinct identities in different segments. The upstream control region of Ubx contains multiple autoregulatory elements for both positive and negative autoregulation.
Collapse
Affiliation(s)
- K D Irvine
- Department of Biochemistry, Beckman Center, Stanford University School of Medicine, CA 94305
| | | | | | | | | |
Collapse
|
20
|
Read D, Manley JL. Transcriptional regulators of Drosophila embryogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1114:79-93. [PMID: 1457465 DOI: 10.1016/0304-419x(92)90008-m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D Read
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | |
Collapse
|
21
|
Johnson FB, Krasnow MA. Differential regulation of transcription preinitiation complex assembly by activator and repressor homeo domain proteins. Genes Dev 1992; 6:2177-89. [PMID: 1358759 DOI: 10.1101/gad.6.11.2177] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Different eukaryotic transcription factors can act through the same upstream binding site to differentially regulate target gene expression, but little is known of the underlying mechanisms. Here, we show that Ultrabithorax and even-skipped homeo domain proteins (UBX and EVE) of Drosophila melanogaster exert active and opposite effects on in vitro transcription when bound to a common site upstream of a core promoter. Both the activator UBX and the repressor EVE affect the extent but not the rate constant of preinitiation complex (preIC) formation. Both regulators act early in preIC assembly and are dispensable later. Assembling complexes become resistant to regulation by the bound proteins, but activation by UBX is restored upon ATP or dATP addition, and regulation by both proteins is restored after the addition of all four nucleoside triphosphates and transcription initiation. The results establish that upstream activators and repressors can function by fundamentally similar mechanisms, by differentially regulating an early step in preIC assembly, leading to formation of functionally distinct transcription complexes. A subsequent step renders mature complexes transiently refractory to activation and repression. Implications for the mechanism of transcription complex assembly and turnover and its regulation are discussed, including a new role for ATP in turnover.
Collapse
Affiliation(s)
- F B Johnson
- Department of Biochemistry, Stanford University, California 94305
| | | |
Collapse
|
22
|
Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM. Homeotic genes of the bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell 1992; 71:437-50. [PMID: 1358457 DOI: 10.1016/0092-8674(92)90513-c] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Homeotic genes encode transcription factors that are thought to specify segmental identity by regulating expression of subordinate genes. Limb development is repressed in the abdominal segments of the Drosophila embryo by the hometic genes of the Bithorax complex (BX-C). Localized expression of the homeobox gene Distal-less (DII) is required for leg development in thoracic segments. We have identified a minimal cis-regulatory enhancer element that directs DII expression in the larval leg primordia. We present evidence that the BX-C proteins repress DII expression in abdominal segments by binding to a small number of specific sites in this element. Mutating these sites eliminates BX-C protein binding and renders the element insensitive to BX-C-mediated repression in vivo. Repression of limb development in the abdomen appears to be controlled at the DII enhancer. Thus DII may serve as a downstream target gene through which the homeotic genes control abdominal segment identity in the Drosophila embryo.
Collapse
Affiliation(s)
- G Vachon
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
23
|
Westerfield M, Wegner J, Jegalian BG, DeRobertis EM, Püschel AW. Specific activation of mammalian Hox promoters in mosaic transgenic zebrafish. Genes Dev 1992; 6:591-8. [PMID: 1348485 DOI: 10.1101/gad.6.4.591] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homeo box-containing genes (Hox) are expressed in restricted regions of vertebrate embryos and may specify positional information. The organization and expression patterns of these genes are highly conserved among different species, suggesting that their regulation may also have been conserved. We developed a transient expression system, using mosaically transgenic zebrafish, which allows rapid analysis of transgene expression, and examined the activities of two mammalian Hox genes, mouse Hox-1.1 and human HOX-3.3. We found that these Hox promoters are activated in specific regions and tissues of developing zebrafish embryos and that this specificity depends upon the same regulatory elements within the promoters that specify the spatial expression of these genes in mice. Our results suggest that the promoter activities have been remarkably conserved from fish to mammals. To study the regulation of Hox expression in the developing nervous system, we analyzed the promoter activities in spt-1 mutants that have a mesodermal deficiency. Our results suggest that interactions, probably with the paraxial mesoderm, differentially regulate the activities of Hox promoters in the developing nervous system.
Collapse
Affiliation(s)
- M Westerfield
- Institute of Neuroscience, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|
24
|
Flanagan WM, Crabtree GR. In vitro transcription faithfully reflecting T-cell activation requirements. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48508-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Lopez AJ, Hogness DS. Immunochemical dissection of the Ultrabithorax homeoprotein family in Drosophila melanogaster. Proc Natl Acad Sci U S A 1991; 88:9924-8. [PMID: 1719557 PMCID: PMC52839 DOI: 10.1073/pnas.88.22.9924] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The homeotic gene Ultrabithorax (Ubx) specifies metameric identities in multiple tissues of the thorax and abdomen in Drosophila melanogaster. Alternatively spliced Ultrabithorax mRNAs encode five protein isoforms that differ in internal sequences immediately adjacent to a homeodomain DNA-binding motif. Each of these proteins is phosphorylated in vivo at multiple serine and threonine residues. An extensive panel of monoclonal antibodies was raised against the Ultrabithorax proteins, including antibodies specific for individual isoforms and antibodies that discriminated between different phosphorylation states. Characterization of these antibodies provided insights into shared and isoform-specific features of Ultrabithorax protein structure that may be functionally important. Immunohistochemical staining experiments demonstrated that each isoform is expressed in a different stage- and tissue-specific pattern and suggested that Ultrabithorax protein phosphorylation is also developmentally regulated. These results support the hypothesis that alternative splicing and phosphorylation modulate developmentally specific functions of the Ubx gene.
Collapse
Affiliation(s)
- A J Lopez
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307
| | | |
Collapse
|
26
|
Hayashi S, Scott MP. What determines the specificity of action of Drosophila homeodomain proteins? Cell 1990; 63:883-94. [PMID: 1979524 DOI: 10.1016/0092-8674(90)90492-w] [Citation(s) in RCA: 292] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S Hayashi
- National Institute of Genetics, Shizuoka-ken, Japan
| | | |
Collapse
|
27
|
Abstract
The homeotic gene Ultrabithorax (Ubx) encodes homeodomain-containing transcription factors that determine segmental identity in Drosophila. Here, an immunopurification procedure is described that enriches for embryonic chromatin fragments containing binding sites for Ubx protein. In two cases these binding sites are located near embryonic transcription units regulated by the Ubx locus in vivo. Thus, these transcripts may correspond to Ubx target genes involved in elaborating segment-specific developmental pathways.
Collapse
|