1
|
Perez MF, Angelov A, Übelacker M, Torres Tejerizo GA, Farias ME, Liebl W, Dib JR. Linear Plasmids in Micrococcus: Insights Into a Common Ancestor and Transfer by Conjugation. Environ Microbiol 2025; 27:e70020. [PMID: 39777960 PMCID: PMC11707576 DOI: 10.1111/1462-2920.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Actinobacteria have frequently been reported in the Andean Puna, including strains of the genus Micrococcus. These strains demonstrate resistance to high levels of UV radiation, arsenic, and multiple antibiotics, and possess large linear plasmids. A comparative analysis of the sequences and putative functions of these plasmids was conducted. The presence of large regions with high sequence identity (exceeding 30 kb in total) in all three studied Micrococcus megaplasmids indicates a clear evolutionary link among these elements. Genes related to essential plasmid functions were primarily found within these conserved regions, while genes associated with resistance to metals and antibiotics resided in accessory regions. Moreover, the abundance of open reading frames related to transposition and recombination, along with local deviations from the average GC content, provides evidence for the mosaic nature and considerable genetic plasticity of these plasmids. This study presents evidence of a common ancestor for linear plasmids in Micrococcus and suggests that horizontal gene transfer likely occurs frequently within Andean lakes, providing the native microbial community with a beneficial gene pool to withstand extreme conditions. Additionally, the successful transfer of the linear plasmid pLMA1 by a DNase-insensitive, conjugation-type mechanism and its potential use as a genetic vector is demonstrated.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales MicrobiológicosConsejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánTucumánArgentina
| | - Angel Angelov
- Chair of MicrobiologyTechnical University of MunichFreisingGermany
- Bioscience Core Lab, KAUSTThuwalSaudi Arabia
| | - Maria Übelacker
- Chair of MicrobiologyTechnical University of MunichFreisingGermany
| | - Gonzalo Arturo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT‐La Plata‐CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - María Eugenia Farias
- Planta Piloto de Procesos Industriales MicrobiológicosConsejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánTucumánArgentina
- PUNA BIO CorporationSan FranciscoCaliforniaUSA
| | - Wolfgang Liebl
- Chair of MicrobiologyTechnical University of MunichFreisingGermany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales MicrobiológicosConsejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de TucumánTucumánArgentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
| |
Collapse
|
2
|
Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K. Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis. Int J Mol Sci 2024; 25:10838. [PMID: 39409167 PMCID: PMC11476376 DOI: 10.3390/ijms251910838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Phage φ29 and related bacteriophages are currently the smallest known tailed viruses infecting various representatives of both Gram-positive and Gram-negative bacteria. They are characterised by genomic content features and distinctive properties that are unique among known tailed phages; their characteristics include protein primer-driven replication and a packaging process characteristic of this group. Searches conducted using public genomic databases revealed in excess of 2000 entries, including bacteriophages, phage plasmids and sequences identified as being archaeal that share the characteristic features of phage φ29. An analysis of predicted proteins, however, indicated that the metagenomic sequences attributed as archaeal appear to be misclassified and belong to bacteriophages. An analysis of the translated polypeptides of major capsid proteins (MCPs) of φ29-related phages indicated the dissimilarity of MCP sequences to those of almost all other known Caudoviricetes groups and a possible distant relationship to MCPs of T7-like (Autographiviridae) phages. Sequence searches conducted using HMM revealed the relatedness between the main structural proteins of φ29-like phages and an unusual lactococcal phage, KSY1 (Chopinvirus KSY1), whose genome contains two genes of RNA polymerase that are similar to the RNA polymerases of phages of the Autographiviridae and Schitoviridae (N4-like) families. An analysis of the tail tube proteins of φ29-like phages indicated their dissimilarity of the lower collar protein to tail proteins of all other viral groups, but revealed its possible distant relatedness with proteins of toxin translocation complexes. The combination of the unique features and distinctive origin of φ29-related phages suggests the categorisation of this vast group in a new order or as a new taxon of a higher rank.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
- Laboratory of Molecular Microbiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
| | - Daria Gutnik
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorsakaya Street, 3, 664033 Irkutsk, Russia
| | - Alena Evpak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Anastasia Kasimova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, 119991 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
3
|
Vélez-González F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L. Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2. PLoS One 2024; 19:e0298028. [PMID: 38507361 PMCID: PMC10954123 DOI: 10.1371/journal.pone.0298028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.
Collapse
Affiliation(s)
- Fernanda Vélez-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arely Marcos-Vilchis
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamín Vega-Baray
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Deng L, Zhao Z, Liu L, Zhong Z, Xie W, Zhou F, Xu W, Zhang Y, Deng Z, Sun Y. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc Natl Acad Sci U S A 2023; 120:e2222045120. [PMID: 36877856 PMCID: PMC10242723 DOI: 10.1073/pnas.2222045120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
The soil-dwelling filamentous bacteria, Streptomyces, is widely known for its ability to produce numerous bioactive natural products. Despite many efforts toward their overproduction and reconstitution, our limited understanding of the relationship between the host's chromosome three dimension (3D) structure and the yield of the natural products escaped notice. Here, we report the 3D chromosome organization and its dynamics of the model strain, Streptomyces coelicolor, during the different growth phases. The chromosome undergoes a dramatic global structural change from primary to secondary metabolism, while some biosynthetic gene clusters (BGCs) form special local structures when highly expressed. Strikingly, transcription levels of endogenous genes are found to be highly correlated to the local chromosomal interaction frequency as defined by the value of the frequently interacting regions (FIREs). Following the criterion, an exogenous single reporter gene and even complex BGC can achieve a higher expression after being integrated into the chosen loci, which may represent a unique strategy to activate or enhance the production of natural products based on the local chromosomal 3D organization.
Collapse
Affiliation(s)
- Liang Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing100071, China
| | - Lin Liu
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Zhiyu Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Wenxinyu Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Fan Zhou
- Epigenetic Division, Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan430075, China
| | - Wei Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan430071, China
| |
Collapse
|
5
|
Extremophile Metal Resistance: Plasmid-Encoded Functions in Streptomyces mirabilis. Appl Environ Microbiol 2022; 88:e0008522. [PMID: 35604229 PMCID: PMC9195940 DOI: 10.1128/aem.00085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The extreme metal tolerance of up to 130 mM NiSO4 in Streptomyces mirabilis P16B-1 was investigated. Genome sequencing revealed the presence of a large linear plasmid, pI. To identify plasmid-encoded determinants of metal resistance, a newly established transformation system was used to characterize the predicted plasmid-encoded loci nreB, hoxN, and copYZ. Reintroduction into the plasmid-cured S. mirabilis ΔpI confirmed that the predicted metal transporter gene nreB constitutes a nickel resistance factor, which was further supported by its heterologous expression in Escherichia coli. In contrast, the predicted nickel exporter gene hoxN decreased nickel tolerance, while copper tolerance was enhanced. The predicted copper-dependent transcriptional regulator gene copY did not induce tolerance toward either metal. Since genes for transfer were identified on the plasmid, its conjugational transfer to the metal-sensitive Streptomyces lividans TK24 was checked. This resulted in acquired tolerance toward 30 mM nickel and additionally increased the tolerance toward copper and cobalt, while oxidative stress tolerance remained unchanged. Intracellular nickel concentrations decreased in the transconjugant strain. The high extracellular nickel concentrations allowed for biomineralization. Plasmid transfer could also be confirmed into the co-occurring actinomycete Kribbella spp. in soil microcosms. IMPORTANCE Living in extremely metal-rich environments requires specific adaptations, and often, specific metal tolerance genes are encoded on a transferable plasmid. Here, Streptomyces mirabilis P16B-1, isolated from a former mining area and able to grow with up to 130 mM NiSO4, was investigated. The bacterial chromosome, as well as a giant plasmid, was sequenced. The plasmid-borne gene nreB was confirmed to confer metal resistance. A newly established transformation system allowed us to construct a plasmid-cured S. mirabilis as well as an nreB-rescued strain in addition to confirming nreB encoding nickel resistance if heterologously expressed in E. coli. The potential of intra- and interspecific plasmid transfer, together with the presence of metal resistance factors on that plasmid, underlines the importance of plasmids for transfer of resistance factors within a bacterial soil community.
Collapse
|
6
|
Li P, Zhang J, Deng Z, Gao F, Ou HY. Identification and characterization of a central replication origin of the mega-plasmid pSCATT of Streptomyces cattleya. Microbiol Res 2022; 257:126975. [DOI: 10.1016/j.micres.2022.126975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
|
7
|
Novakova R, Rückert C, Knirschova R, Feckova L, Busche T, Csolleiova D, Homerova D, Rezuchova B, Javorova R, Sevcikova B, Kalinowski J, Kormanec J. The linear plasmid pSA3239 is essential for the replication of the Streptomyces lavendulae subsp. lavendulae CCM 3239 chromosome. Res Microbiol 2021; 172:103870. [PMID: 34487842 DOI: 10.1016/j.resmic.2021.103870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
We previously reported the complete genome of Streptomyces lavendulae subsp. lavendulae CCM 3239, containing the linear chromosome and the large linear plasmid pSA3239. Although the chromosome exhibited replication features characteristic for the archetypal end-patching replication, it lacked the tap/tpg gene pair for two proteins essential for this process. However, this archetypal tpgSa-tapSa operon is present in pSA3239. Complete genomic sequence of the S. lavendulae Del-LP strain lacking this plasmid revealed the circularization of its chromosome with a large deletion of both arms. These results suggest an essential role of pSA3239-encoded TapSa/TpgSa in the end-patching replication of the chromosome.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Renata Knirschova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Dominika Csolleiova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Dagmar Homerova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Bronislava Rezuchova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Rachel Javorova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Beatrica Sevcikova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany.
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2021; 167. [PMID: 33620307 DOI: 10.1099/mic.0.001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.
Collapse
Affiliation(s)
- Veronica Jazmín Sánchez-Ortiz
- Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
9
|
Tidjani AR, Bontemps C, Leblond P. Telomeric and sub-telomeric regions undergo rapid turnover within a Streptomyces population. Sci Rep 2020; 10:7720. [PMID: 32382084 PMCID: PMC7205883 DOI: 10.1038/s41598-020-63912-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Genome dynamics was investigated within natural populations of the soil bacterium Streptomyces. The exploration of a set of closely related strains isolated from micro-habitats of a forest soil exhibited a strong diversity of the terminal structures of the linear chromosome, i.e. terminal inverted repeats (TIRs). Large insertions, deletions and translocations could be observed along with evidence of transfer events between strains. In addition, the telomere and its cognate terminal protein complexes required for terminal replication and chromosome maintenance, were shown to be variable within the population probably reflecting telomere exchanges between the chromosome and other linear replicons (i.e., plasmids). Considering the close genetic relatedness of the strains, these data suggest that the terminal regions are prone to a high turnover due to a high recombination associated with extensive horizontal gene transfer.
Collapse
Affiliation(s)
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France.
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France.
| |
Collapse
|
10
|
Hashimoto Y, Taniguchi M, Uesaka K, Nomura T, Hirakawa H, Tanimoto K, Tamai K, Ruan G, Zheng B, Tomita H. Novel Multidrug-Resistant Enterococcal Mobile Linear Plasmid pELF1 Encoding vanA and vanM Gene Clusters From a Japanese Vancomycin-Resistant Enterococci Isolate. Front Microbiol 2019; 10:2568. [PMID: 31798546 PMCID: PMC6863802 DOI: 10.3389/fmicb.2019.02568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Vancomycin-resistant enterococci are troublesome pathogens in clinical settings because of few treatment options. A VanA/VanM-type vancomycin-resistant Enterococcus faecium clinical isolate was identified in Japan. This strain, named AA708, harbored five plasmids, one of which migrated during agarose gel electrophoresis without S1 nuclease treatment, which is indicative of a linear topology. We named this plasmid pELF1. Whole genome sequencing (WGS) analysis of the AA708 strain revealed that the complete sequence of pELF1 was 143,316 bp long and harbored both the vanA and vanM gene clusters. Furthermore, mfold analysis and WGS data show that the left end of pELF1 presumably forms a hairpin structure, unlike its right end. The pELF1 plasmid was not digested by lambda exonuclease, indicating that terminal proteins were bound to the 5′ end of the plasmid, similar to the Streptomyces linear plasmids. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results were also consistent with the exonuclease assay results. In retardation assays, DNAs containing the right end of proteinase K-untreated pELF1 did not appear to move as well as the proteinase K-treated pELF1, suggesting that terminal proteins might be attached to the right end of pELF1. Palindromic sequences formed hairpin structures at the right terminal sequence of pELF1; however, sequence similarity with the well-known linear plasmids of Streptomyces spp. was not high. pELF1 was unique as it possessed two different terminal structures. Conjugation experiments revealed that pELF1 could be transferred to E. faecalis, E. faecium, E. casseliflavus, and E. hirae. These transconjugants exhibited not only high resistance levels to vancomycin, but also resistance to streptomycin, kanamycin, and erythromycin. These results indicate that pELF1 has the ability to confer multidrug resistance to Enterococcus spp. simultaneously, which might lead to clinical hazards.
Collapse
Affiliation(s)
- Yusuke Hashimoto
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Taniguchi
- Oral Microbiome Center, Taniguchi Dental Clinic, Takamatsu, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Nomura
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Genjie Ruan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Haruyoshi Tomita
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Laboratory of Bacterial Drug Resistance, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
11
|
Yang CC, Tseng SM, Pan HY, Huang CH, Chen CW. Telomere associated primase Tap repairs truncated telomeres of Streptomyces. Nucleic Acids Res 2017; 45:5838-5849. [PMID: 28369604 PMCID: PMC5449611 DOI: 10.1093/nar/gkx189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023] Open
Abstract
Replication of the linear chromosomes of soil bacteria Streptomyces proceeds from an internal origin towards the telomeres, followed by patching of the resulting terminal single-strand overhangs by DNA synthesis using terminal proteins as the primer, which remains covalently bound to the 5΄ ends of the DNA. In most Streptomyces chromosomes, the end patching requires the single-strand overhangs, terminal protein Tpg, and terminal associated protein Tap. The telomere overhangs contain several palindromic sequences capable of forming stable hairpins. Previous in vitro deoxynucleotidylation studies indicated that Tap adds the Palindrome I sequence to Tpg, which is extended by a polymerase to fill the gap. In this study, the stringency of Palindrome I sequence was examined by an in vitro deoxynucleotidylation system and in vivo replication. Several nt in Palindrome I were identified to be critical for priming. While the first 3 G on the template were required for deoxynucleotidylation in vitro, deletions of them could be suppressed by the presence of dGTP. In vivo, deletions of these G were also tolerated, and the telomere sequence was restored in the linear plasmid DNA. Our results indicated that the truncated telomeres were repaired by extension synthesis by Tap on the foldback Palindrome I sequence.
Collapse
Affiliation(s)
- Chien-Chin Yang
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
- To whom correspondence should be addressed. Tel: +886 3 2653303; Fax: +886 3 2653399;
| | - Shu-Min Tseng
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - Hung-Yin Pan
- Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Carton W. Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication. Front Mol Biosci 2016; 3:37. [PMID: 27547754 PMCID: PMC4974454 DOI: 10.3389/fmolb.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the TP at the bacterial nucleoid, where viral DNA replication takes place. The biochemical properties of the Φ29 DBP and SSB and their function in the initiation and elongation of Φ29 DNA replication, respectively, will be described.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Isabel Holguera
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas), Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
13
|
Yang CC, Tseng SM, Chen CW. Telomere-associated proteins add deoxynucleotides to terminal proteins during replication of the telomeres of linear chromosomes and plasmids in Streptomyces. Nucleic Acids Res 2015; 43:6373-83. [PMID: 25883134 PMCID: PMC4513846 DOI: 10.1093/nar/gkv302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Typical telomeres of linear chromosomes and plasmids of soil bacteria Streptomyces consist of tightly packed palindromic sequences with a terminal protein ('TP') covalently attached to the 5' end of the DNA. Replication of these linear replicons is initiated internally and proceeds bidirectionally toward the telomeres, which leaves single-strand overhangs at the 3' ends. These overhangs are filled by DNA synthesis using the TPs as the primers ('end patching'). The gene encoding for typical TP, tpg, forms an operon with tap, encoding an essential telomere-associated protein, which binds TP and the secondary structures formed by the 3' overhangs. Previously one of the two translesion synthesis DNA polymerases, DinB1 or DinB2, was proposed to catalyze the protein-primed synthesis. However, using an in vitro end-patching system, we discovered that Tpg and Tap alone could carry out the protein-primed synthesis to a length of 13 nt. Similarly, an 'atypical' terminal protein, Tpc, and its cognate telomere-associated protein, Tac, of SCP1 plasmid, were sufficient to achieve protein-primed synthesis in the absence of additional polymerase. These results indicate that these two telomere-associated proteins possess polymerase activities alone or in complex with the cognate TPs.
Collapse
Affiliation(s)
- Chien-Chin Yang
- Department of Chemistry, Chung-Yuan Christian University, Chung-li 32023, Taiwan
| | - Shu-Min Tseng
- Department of Chemistry, Chung-Yuan Christian University, Chung-li 32023, Taiwan
| | - Carton W Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan
| |
Collapse
|
14
|
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242. [PMID: 25873913 PMCID: PMC4379921 DOI: 10.3389/fmicb.2015.00242] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plasmids are important "vehicles" for the communication of genetic information between bacteria. The exchange of plasmids transmits pathogenically and environmentally relevant traits to the host bacteria, promoting their rapid evolution and adaptation to various environments. Over the past six decades, a large number of plasmids have been identified and isolated from different microbes. With the revolution of sequencing technology, more than 4600 complete sequences of plasmids found in bacteria, archaea, and eukaryotes have been determined. The classification of a wide variety of plasmids is not only important to understand their features, host ranges, and microbial evolution but is also necessary to effectively use them as genetic tools for microbial engineering. This review summarizes the current situation of the classification of fully sequenced plasmids based on their host taxonomy and their features of replication and conjugative transfer. The majority of the fully sequenced plasmids are found in bacteria in the Proteobacteria, Firmicutes, Spirochaetes, Actinobacteria, Cyanobacteria and Euryarcheota phyla, and key features of each phylum are included. Recent advances in the identification of novel types of plasmids and plasmid transfer by culture-independent methods using samples from natural environments are also discussed.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan ; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Zoe K Sanchez
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| |
Collapse
|
15
|
Nindita Y, Cao Z, Yang Y, Arakawa K, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Kinashi H. The tap-tpg gene pair on the linear plasmid functions to maintain a linear topology of the chromosome in Streptomyces rochei. Mol Microbiol 2015; 95:846-58. [PMID: 25495952 DOI: 10.1111/mmi.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
Abstract
Streptomyces rochei 7434AN4 carries three linear plasmids, pSLA2-L (211 kb), pSLA2-M (113 kb) and pSLA2-S (18 kb), their complete nucleotide sequences having been determined. Restriction and sequencing analysis revealed that the telomere sequences at both ends of the linear chromosome are identical to each other, are 98.5% identical to the right end sequences of pSLA2-L and pSLA2-M up to 3.1 kb from the ends and have homology to those of typical Streptomyces species. Mutant 2-39, which lost all the three linear plasmids, was found to carry a circularized chromosome. Sequence comparison of the fusion junction and both deletion ends revealed that chromosomal circularization occurred by terminal deletions followed by nonhomologous recombination. Curing of pSLA2-L from strain 51252, which carries only pSLA2-L, also resulted in terminal deletions in newly obtained mutants. The tap-tpg gene pair, which encodes a telomere-associated protein and a terminal protein for end patching, is located on pSLA2-L and pSLA2-M but has not hitherto been found on the chromosome. These results led us to the idea that the tap-tpg of pSLA2-L or pSLA2-M functions to maintain a linear chromosome in strain 7434AN4. This hypothesis was finally confirmed by complementation and curing experiments of the tap-tpg of pSLA2-M.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heinrich K, Leslie DJ, Jonas K. Modulation of bacterial proliferation as a survival strategy. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:127-71. [PMID: 26003935 DOI: 10.1016/bs.aambs.2015.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell cycle is one of the most fundamental processes in biology, underlying the proliferation and growth of all living organisms. In bacteria, the cell cycle has been extensively studied since the 1950s. Most of this research has focused on cell cycle regulation in a few model bacteria, cultured under standard growth conditions. However in nature, bacteria are exposed to drastic environmental changes. Recent work shows that by modulating their own growth and proliferation bacteria can increase their survival under stressful conditions, including antibiotic treatment. Here, we review the mechanisms that allow bacteria to integrate environmental information into their cell cycle. In particular, we focus on mechanisms controlling DNA replication and cell division. We conclude this chapter by highlighting the importance of understanding bacterial cell cycle and growth control for future research as well as other disciplines.
Collapse
|
17
|
The flagellar set Fla2 in Rhodobacter sphaeroides is controlled by the CckA pathway and is repressed by organic acids and the expression of Fla1. J Bacteriol 2014; 197:833-47. [PMID: 25512309 DOI: 10.1128/jb.02429-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rhodobacter sphaeroides has two different sets of flagellar genes. Under the growth conditions commonly used in the laboratory, the expression of the fla1 set is constitutive, whereas the fla2 genes are not expressed. Phylogenetic analyses have previously shown that the fla1 genes were acquired by horizontal transfer from a gammaproteobacterium and that the fla2 genes are endogenous genes of this alphaproteobacterium. In this work, we characterized a set of mutants that were selected for swimming using the Fla2 flagella in the absence of the Fla1 flagellum (Fla2(+) strains). We determined that these strains have a single missense mutation in the histidine kinase domain of CckA. The expression of these mutant alleles in a Fla1(-) strain allowed fla2-dependent motility without selection. Motility of the Fla2(+) strains is also dependent on ChpT and CtrA. The mutant versions of CckA showed an increased autophosphorylation activity in vitro. Interestingly, we found that cckA is transcriptionally repressed by the presence of organic acids, suggesting that the availability of carbon sources could be a part of the signal that turns on this flagellar set. Evidence is presented showing that reactivation of fla1 gene expression in the Fla2(+) background strongly reduces the number of cells with Fla2 flagella.
Collapse
|
18
|
Peng S, Zeng A, Zhong L, Zhang R, Zhou M, Cheng Q, Zhao L, Wang T, Tan H, Qin Z. Three functional replication origins of the linear and artificially circularized plasmid SCP1 of Streptomyces coelicolor. Microbiology (Reading) 2013; 159:2127-2140. [DOI: 10.1099/mic.0.067363-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shiyuan Peng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ana Zeng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Li Zhong
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ran Zhang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Min Zhou
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Qiuxiang Cheng
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Liqian Zhao
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Tao Wang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
19
|
A distant homologue of the FlgT protein interacts with MotB and FliL and is essential for flagellar rotation in Rhodobacter sphaeroides. J Bacteriol 2013; 195:5285-96. [PMID: 24056105 DOI: 10.1128/jb.00760-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work, we describe a periplasmic protein that is essential for flagellar rotation in Rhodobacter sphaeroides. This protein is encoded upstream of flgA, and its expression is dependent on the flagellar master regulator FleQ and on the class III flagellar activator FleT. Sequence comparisons suggest that this protein is a distant homologue of FlgT. We show evidence that in R. sphaeroides, FlgT interacts with the periplasmic regions of MotB and FliL and with the flagellar protein MotF, which was recently characterized as a membrane component of the flagellum in this bacterium. In addition, the localization of green fluorescent protein (GFP)-MotF is completely dependent on FlgT. The Mot(-) phenotype of flgT cells was weakly suppressed by point mutants of MotB that presumably keep the proton channel open and efficiently suppress the Mot(-) phenotype of motF and fliL cells, indicating that FlgT could play an additional role beyond the opening of the proton channel. The presence of FlgT in purified filament-hook-basal bodies of the wild-type strain was confirmed by Western blotting, and the observation of these structures under an electron microscope showed that the basal bodies from flgT cells had lost the ring that covers the LP ring in the wild-type structure. Moreover, MotF was detected by immunoblotting in the basal bodies obtained from the wild-type strain but not from flgT cells. From these results, we suggest that FlgT forms a ring around the LP ring, which anchors MotF and stabilizes the stator complex of the flagellar motor.
Collapse
|
20
|
Zhang R, Xia H, Xu Q, Dang F, Qin Z. Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 ofStreptomyces coelicolorA3(2). FEMS Microbiol Lett 2013; 345:39-48. [DOI: 10.1111/1574-6968.12183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/19/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ran Zhang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Qingyu Xu
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Fujun Dang
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
21
|
Novakova R, Knirschova R, Farkasovsky M, Feckova L, Rehakova A, Mingyar E, Kormanec J. The gene clusteraur1for the angucycline antibiotic auricin is located on a large linear plasmid pSA3239 inStreptomyces aureofaciensCCM 3239. FEMS Microbiol Lett 2013; 342:130-7. [DOI: 10.1111/1574-6968.12095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Renata Knirschova
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Marian Farkasovsky
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Alena Rehakova
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Erik Mingyar
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology; Slovak Academy of Sciences; Bratislava; Slovak Republic
| |
Collapse
|
22
|
Yang CC, Sun WC, Wang WY, Huang CH, Lu FS, Tseng SM, Chen CW. Mutational analysis of the terminal protein Tpg of Streptomyces chromosomes: identification of the deoxynucleotidylation site. PLoS One 2013; 8:e56322. [PMID: 23457549 PMCID: PMC3572947 DOI: 10.1371/journal.pone.0056322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022] Open
Abstract
The linear chromosomes and linear plasmids of Streptomyces are capped by terminal proteins (TPs) covalently bound to the 5' ends of the DNA. The TPs serve as primers for DNA synthesis that patches in the single-stranded gaps at the telomeres resulting from the bi-directional replication ('end patching'). Typical Streptomyces TPs, designated Tpgs, are conserved in sequence and size (about 185 amino acids), and contain a predicted helix-turn-helix domain and a functional nuclear localization signal. The Tpg-encoding gene (tpg) is often accompanied by an upstream gene tap that encodes an essential telomere-associating protein. Five lone tpg variants (not accompanied by tap) from various Streptomyces species were tested, and three were found to be pseudogenes. The lone tpg variant on the SLP2 plasmid, although functional, still requires the presence of tap on the chromosome for end patching. Using a combination of in vitro deoxynucleotidylation, physical localization, and genetic analysis, we identified the threonine at position 114 (T114) in Tpg of Streptomyces lividans chromosome as the deoxynucleotidylated site. Interestingly, T114 could be substituted by a serine without destroying the priming activity of Tpg in vitro and in vivo. Such T114S substitution is seen in and a number of pseudogenes as well as functional Tpgs. T114 lies in a predicted coil flanked by two short helixes in a highly hydrophilic region. The location and structural arrangement of the deoxynucleotidylated site in Tpg is similar to those in the TPs of phage ø 29 and adenoviruses. However, these TPs are distinct in their sequences and sizes, indicating that they have evolved independently during evolution. Using naturally occurring and artificially created tpg variants, we further identified several amino acid residues in the N-terminus and the helix-turn-helix domain that were important for functionality.
Collapse
Affiliation(s)
- Chien-Chin Yang
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - We-Chi Sun
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - Wan-Yu Wang
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - Chi-Hung Huang
- Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Fang-Shy Lu
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - Shu-Min Tseng
- Department of Chemistry, Chung-Yuan Christian University, Chung-li, Taiwan
| | - Carton W. Chen
- Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| |
Collapse
|
23
|
A novel component of the Rhodobacter sphaeroides Fla1 flagellum is essential for motor rotation. J Bacteriol 2012; 194:6174-83. [PMID: 22961858 DOI: 10.1128/jb.00850-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Here we describe a novel component essential for flagellar rotation in Rhodobacter sphaeroides. This protein is encoded by motF (RSP_0067), the first gene of a predicted transcriptional unit which contains two hypothetical genes. Sequence analysis indicated that MotF is a bitopic membrane-spanning protein. Protease sensitivity assays and green fluorescent protein (GFP) fusions confirmed this prediction and allowed us to conclude that the C terminus of MotF is located in the periplasmic space. Wild-type cells expressing a functional GFP-MotF fusion show a single fluorescent focus per cell. The localization of this protein in different genetic backgrounds allowed us to determine that normal localization of MotF depends on the presence of FliL and MotB. Characterization of a ΔmotF pseudorevertant strain revealed that a single nucleotide change in motB suppresses the Mot(-) phenotype of the motF mutant. Additionally, we show that MotF also becomes dispensable when other mutant alleles of motB previously isolated as second-site suppressors of ΔfliL were expressed in the motF mutant strain. These results show that MotF is a new component of the Fla1 flagellum, which together with FliL is required to promote flagellar rotation, possibly through MotB.
Collapse
|
24
|
Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z. Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS Microbiol Lett 2012; 333:169-79. [DOI: 10.1111/j.1574-6968.2012.02609.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/20/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Min Zhou
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Pengfei Xie
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Weihua Chen
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Tao Wang
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Haiyang Xia
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology; Shanghai Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; the Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
25
|
A self-ligation method for PCR-sequencing the telomeres of Streptomyces and Mycobacterium linear replicons. J Microbiol Methods 2012; 90:105-7. [PMID: 22561093 DOI: 10.1016/j.mimet.2012.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/23/2022]
Abstract
Actinomycete species from many genera often harbor linear plasmids and some contain linear chromosomes. A self-ligation and PCR-sequencing method was developed for identifying three novel telomere sequences of linear plasmids of Streptomyces and Mycobacterium. This and four previously described methods for actinomycetes telomere cloning and sequencing are discussed.
Collapse
|
26
|
Tsai HH, Shu HW, Yang CC, Chen CW. Translesion-synthesis DNA polymerases participate in replication of the telomeres in Streptomyces. Nucleic Acids Res 2011; 40:1118-30. [PMID: 22006845 PMCID: PMC3273824 DOI: 10.1093/nar/gkr856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear chromosomes and linear plasmids of Streptomyces are capped by terminal proteins that are covalently bound to the 5′-ends of DNA. Replication is initiated from an internal origin, which leaves single-stranded gaps at the 3′-ends. These gaps are patched by terminal protein-primed DNA synthesis. Streptomyces contain five DNA polymerases: one DNA polymerase I (Pol I), two DNA polymerases III (Pol III) and two DNA polymerases IV (Pol IV). Of these, one Pol III, DnaE1, is essential for replication, and Pol I is not required for end patching. In this study, we found the two Pol IVs (DinB1 and DinB2) to be involved in end patching. dinB1 and dinB2 could not be co-deleted from wild-type strains containing a linear chromosome, but could be co-deleted from mutant strains containing a circular chromosome. The resulting ΔdinB1 ΔdinB2 mutants supported replication of circular but not linear plasmids, and exhibited increased ultraviolet sensitivity and ultraviolet-induced mutagenesis. In contrast, the second Pol III, DnaE2, was not required for replication, end patching, or ultraviolet resistance and mutagenesis. All five polymerase genes are relatively syntenous in the Streptomyces chromosomes, including a 4-bp overlap between dnaE2 and dinB2. Phylogenetic analysis showed that the dinB1-dinB2 duplication occurred in a common actinobacterial ancestor.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, Institute of Biotechnology in Medicine, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan
| | | | | | | |
Collapse
|
27
|
Lee HH, Hsu CC, Lin YL, Chen CW. Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the ‘end first’ model of conjugal transfer. Microbiology (Reading) 2011; 157:2556-2568. [DOI: 10.1099/mic.0.051441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gram-positive bacteria of the genus Streptomyces possess linear chromosomes and linear plasmids capped by terminal proteins covalently bound to the 5′ ends of the DNA. The linearity of Streptomyces chromosomes raises the question of how they are transferred during conjugation, particularly when the mobilizing plasmids are also linear. The classical rolling circle replication model for transfer of circular plasmids and chromosomes from an internal origin cannot be applied to this situation. Instead it has been proposed that linear Streptomyces plasmids mobilize themselves and the linear chromosomes from their telomeres using terminal-protein-primed DNA synthesis. In support of this ‘end first’ model, we found that artificially circularized Streptomyces chromosomes could not be mobilized by linear plasmids (SLP2 and SCP1), while linear chromosomes could. In comparison, a circular plasmid (pIJ303) could mobilize both circular and linear chromosomes at the same efficiencies. Interestingly, artificially circularized SLP2 exhibited partial self-transfer capability, indicating that, being a composite replicon, it may have acquired the additional internal origin of transfer from an ancestral circular plasmid during evolution.
Collapse
Affiliation(s)
- Hsuan-Hsuan Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Chen Hsu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yen-Ling Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Carton W. Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
28
|
Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z. Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin (Shanghai) 2011; 43:630-9. [PMID: 21705768 DOI: 10.1093/abbs/gmr052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete nucleotide sequence including the novel telomere sequence of Streptomyces linear plasmid pSHK1 consists of 187,263-bp, 158 genes, in which 51 genes resemble those of the linear plasmid SCP1 of Streptomyces coelicolor A3(2), and 20 genes encode transposases. Strikingly, the repetitive CRISPRs (clustered regularly interspaced short palindromic repeats) and cas (CRISPR-associated) genes were found, including a cluster of eight cas genes, in the order cas2B-cas1B-cas3B-cas5-cas4-cas2A-cas1A-cas3A, bracketed by a pair of divergent CRISPRs, and five other dispersed CRISPRs. The cas2B-cas1B-cas3B-cas5 or cas4-cas2A-cas1A genes were co-transcribed. Protein-protein interactions between Cas5 and Cas1A, 2A, 2B, 3B were detected by yeast two-hybrids, indicating a critical role of Cas5 for the formation of protein complexes. By polymerase chain reaction and Southern hybridization, 12 cas4 genes including three on linear plasmids were found among 75 newly isolated Streptomyces strains. The paired-CRISPRs and bracketed cas were also conserved in several other Streptomyces or actinomycete species. However, unlike other bacteria, the CRISPRs-cas in pSHK1 could not provide immunity against introduction of phage ΦC31 and plasmid containing the particular spacers in Streptomyces.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
29
|
pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L. Biosci Biotechnol Biochem 2011; 75:1147-53. [PMID: 21670526 DOI: 10.1271/bbb.110054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.
Collapse
|
30
|
Abstract
Many chromosomes from Actinomycetales, an order within the Actinobacteria, have been sequenced over the last 10 years and the pace is increasing. This group of Gram-positive and high G+C% bacteria is economically and medically important. However, this group of organisms also is just about the only order in the kingdom Bacteria to have a relatively high proportion of linear chromosomes. Chromosome topology varies within the order according to the genera. Streptomyces, Kitasatospora and Rhodococcus, at least as chromosome sequencing stands at present, have a very high proportion of linear chromosomes, whereas most other genera seem to have circular chromosomes. This review examines chromosome topology across the Actinomycetales and how this affects our concepts of chromosome evolution.
Collapse
Affiliation(s)
- Ralph Kirby
- Department of Life Sciences, Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
31
|
Wagenknecht M, Meinhardt F. Copy number determination, expression analysis of genes potentially involved in replication, and stability assays of pAL1 – the linear megaplasmid of Arthrobacter nitroguajacolicus Rü61a. Microbiol Res 2011; 166:14-26. [DOI: 10.1016/j.micres.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/17/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
|
32
|
Wagenknecht M, Meinhardt F. Replication-involved genes of pAL1, the linear plasmid of Arthrobacter nitroguajacolicus Rü61a--phylogenetic and transcriptional analysis. Plasmid 2010; 65:176-84. [PMID: 21185858 DOI: 10.1016/j.plasmid.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
Abstract
The 113-kb pAL1 is the only Arthrobacter linear plasmid known; it has terminal inverted repeats and 5' covalently attached terminal proteins (TPs). The latter and a telomere-associated protein (Tap) are encoded by plasmid ORFs 102 and 101, respectively. As for Streptomyces linear replicons, in which both above proteins are instrumental in telomere patching, they are involved in pAL1 replication as well. However, the alignment of actinobacterial Taps and TPs revealed that pAL1 and the linear elements from Rhodococci comprise a discrete phylogenetic group, clearly delineated from the streptomycetes linear plasmids. In line with such findings is the same genetic arrangement of ORF 101 and 102 counterparts in the rhodococcal elements. Furthermore, the adjacent gene (ORF100) has matches in the rhodococcal plasmids as well. In linear elements of Streptomyces there is no ORF100 homolog. Two alternative annotations are possible for ORF100 gene products. As RT-PCR revealed cotranscription of ORFs 100-102, the ORF100 gene product is presumably involved in replicative processes. Taken also into consideration the likely absence of an internal replication origin (other than in Streptomyces linear elements), we assume a distinct replication/telomere patching mechanism for pAL1 type replicons.
Collapse
Affiliation(s)
- Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | | |
Collapse
|
33
|
Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot (Tokyo) 2010; 64:19-25. [DOI: 10.1038/ja.2010.146] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Tsai HH, Huang CH, Tessmer I, Erie DA, Chen CW. Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins. Nucleic Acids Res 2010; 39:2165-74. [PMID: 21109537 PMCID: PMC3064793 DOI: 10.1093/nar/gkq1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
35
|
The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides. J Bacteriol 2010; 192:6230-9. [PMID: 20889747 DOI: 10.1128/jb.00655-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work we characterize the function of the flagellar protein FliL in Rhodobacter sphaeroides. Our results show that FliL is essential for motility in this bacterium and that in its absence flagellar rotation is highly impaired. A green fluorescent protein (GFP)-FliL fusion forms polar and lateral fluorescent foci that show different spatial dynamics. The presence of these foci is dependent on the expression of the flagellar genes controlled by the master regulator FleQ, suggesting that additional components of the flagellar regulon are required for the proper localization of GFP-FliL. Eight independent pseudorevertants were isolated from the fliL mutant strain. In each of these strains a single nucleotide change in motB was identified. The eight mutations affected only three residues located on the periplasmic side of MotB. Swimming of the suppressor mutants was not affected by the presence of the wild-type fliL allele. Pulldown and yeast two-hybrid assays showed that that the periplasmic domain of FliL is able to interact with itself but not with the periplasmic domain of MotB. From these results we propose that FliL could participate in the coupling of MotB with the flagellar rotor in an indirect fashion.
Collapse
|
36
|
A novel replicative enzyme encoded by the linear Arthrobacter plasmid pAL1. J Bacteriol 2010; 192:4935-43. [PMID: 20675469 DOI: 10.1128/jb.00614-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Arthrobacter nitroguajacolicus Rü61a contains the linear plasmid pAL1, which codes for the degradation of 2-methylquinoline. Like other linear replicons of actinomycetes, pAL1 is characterized by short terminal inverted-repeat sequences and terminal proteins (TPpAL1) covalently attached to its 5' ends. TPpAL1, encoded by the pAL1.102 gene, interacts in vivo with the protein encoded by pAL1.101. Bioinformatic analysis of the pAL1.101 protein, which comprises 1,707 amino acids, suggested putative zinc finger and topoisomerase-primase domains and part of a superfamily 2 helicase domain in its N-terminal and central regions, respectively. Sequence motifs characteristic of the polymerization domain of family B DNA polymerases are partially conserved in a C-terminal segment. The purified recombinant protein catalyzed the deoxycytidylation of TPpAL1 in the presence of single-stranded DNA templates comprising the 3'-terminal sequence (5'-GCAGG-3'), which in pAL1 forms the terminal inverted repeat, but also at templates with 5'-(G/T)CA(GG/GC/CG)-3' ends. Enzyme assays suggested that the protein exhibits DNA topoisomerase, DNA helicase, and DNA- and protein-primed DNA polymerase activities. The pAL1.101 protein, therefore, may act as a replicase of pAL1.
Collapse
|
37
|
Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC, Bovenberg RAL, Breitling R, Takano E. The sequence of a 1.8-mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2010; 2:212-24. [PMID: 20624727 PMCID: PMC2997539 DOI: 10.1093/gbe/evq013] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasmids are mobile genetic elements that play a key role in the evolution of bacteria by mediating genome plasticity and lateral transfer of useful genetic information. Although originally considered to be exclusively circular, linear plasmids have also been identified in certain bacterial phyla, notably the actinomycetes. In some cases, linear plasmids engage with chromosomes in an intricate evolutionary interplay, facilitating the emergence of new genome configurations by transfer and recombination or plasmid integration. Genome sequencing of Streptomyces clavuligerus ATCC 27064, a Gram-positive soil bacterium known for its production of a diverse array of biotechnologically important secondary metabolites, revealed a giant linear plasmid of 1.8 Mb in length. This megaplasmid (pSCL4) is one of the largest plasmids ever identified and the largest linear plasmid to be sequenced. It contains more than 20% of the putative protein-coding genes of the species, but none of these is predicted to be essential for primary metabolism. Instead, the plasmid is densely packed with an exceptionally large number of gene clusters for the potential production of secondary metabolites, including a large number of putative antibiotics, such as staurosporine, moenomycin, β-lactams, and enediynes. Interestingly, cross-regulation occurs between chromosomal and plasmid-encoded genes. Several factors suggest that the megaplasmid came into existence through recombination of a smaller plasmid with the arms of the main chromosome. Phylogenetic analysis indicates that heavy traffic of genetic information between Streptomyces plasmids and chromosomes may facilitate the rapid evolution of secondary metabolite repertoires in these bacteria.
Collapse
Affiliation(s)
- Marnix H Medema
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Two internal origins of replication in Streptomyces linear plasmid pFRL1. Appl Environ Microbiol 2010; 76:5676-83. [PMID: 20601502 DOI: 10.1128/aem.02905-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports showed that Streptomyces linear plasmids usually contain one internal replication locus. Here, we identified two new replication loci on pFRL1, one (rep1A-ncs1) next to a telomere and another (rep2A-ncs2) approximately 10 kb from it. The rep1A-ncs1 locus was able to direct replication independently in both linear and circular modes, whereas rep2A-ncs2 required an additional locus, rlrA-rorA, in order to direct propagation in linear mode. Rep1A protein bound to ncs1 in vitro. By quantitative reverse transcription-PCR and Northern hybridization, we showed that transcription of rep1A and rep2A varied during development and that each dominated at different time points. pFRL1-derived linear plasmids were inherited through spores more stably than circular plasmids and were more stable with pSLA2 telomeres than with pFRL1 telomeres in Streptomyces lividans.
Collapse
|
39
|
Kolkenbrock S, Fetzner S. Identification and in vitro deoxynucleotidylation of the terminal protein of the linear plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a. FEMS Microbiol Lett 2010; 304:169-76. [PMID: 20141532 DOI: 10.1111/j.1574-6968.2010.01900.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a is a linear replicon, characterized by inverted terminal repeats and terminal proteins (TPs) covalently bound to its 5'-ends. Previous sequence analysis and predictions of possible secondary structures formed by telomeric 3'-overhangs indicated significant differences of the 'left' and 'right' telomere of pAL1, raising the question of whether each terminus is recognized by a specific protein. The genes pAL1.102 and pAL1.103, located close to a terminus, code for possible DNA-binding proteins; however, only the pORF102 protein encoded by pAL1.102 shows a weak similarity to known TPs of Streptomyces linear replicons. pORF102, purified from recombinant A. nitroguajacolicus Rü61a as a fusion with maltose-binding protein (MBP), was specifically associated with terminal pAL1 DNA, whereas MBP-pORF103 was devoid of DNA, suggesting that pORF102 represents the protein attached to both ends of the linear plasmid. In electrophoretic mobility shift assays, the MBP-pORF102 protein was not capable of specifically recognizing telomeric DNA sequences. Consistent with its proposed role as a protein primer in DNA synthesis, pORF102 was deoxynucleotidylated in vitro with dCMP, complementary to the 3'-ends (... GCAGG) of pAL1.
Collapse
Affiliation(s)
- Stephan Kolkenbrock
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | | |
Collapse
|
40
|
Dib JR, Wagenknecht M, Hill RT, Farías ME, Meinhardt F. First report of linear megaplasmids in the genus Micrococcus. Plasmid 2010; 63:40-5. [DOI: 10.1016/j.plasmid.2009.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/05/2009] [Accepted: 10/12/2009] [Indexed: 11/26/2022]
|
41
|
Nett M, Ikeda H, Moore BS. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 2009; 26:1362-84. [PMID: 19844637 PMCID: PMC3063060 DOI: 10.1039/b817069j] [Citation(s) in RCA: 560] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora . These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references.
Collapse
Affiliation(s)
- Markus Nett
- Leibniz Institute for Natural Product Research and Infection Biology – Hans-Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany.
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 228-8555, Japan.
| | - Bradley S. Moore
- Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
42
|
Tian Y, Jiang W, Zhao G, Qin Z. In vivo conjugation-coupled recombinational cloning of a Streptomyces lividans chromosomal telomeric DNA using a linear plasmid. Biotechnol Lett 2009; 31:1253-8. [PMID: 19404745 DOI: 10.1007/s10529-009-0005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
Abstract
The high efficiency of homologous recombination in yeast and bacteria makes it useful for recombinational cloning of large genomic segments in vivo. The low efficiency of homologous recombination in Streptomyces has hindered the development of this cloning method. Unlike the inefficient mobilization of chromosomal markers, conjugative plasmid transfer is very efficient in Streptomyces. Here we report that the conjugation-coupled recombination procedure can be used to transfer a 10 kb chromosomal telomeric segment of Streptomyces lividans into a linear plasmid. The plasmid predominated in the population of cells after transfer into recipients. These results may promote the development of the recombinational cloning of large chromosomal segments in Streptomyces in vivo.
Collapse
Affiliation(s)
- Yongqiang Tian
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, The Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | |
Collapse
|
43
|
Lin YR, Hahn MY, Roe JH, Huang TW, Tsai HH, Lin YF, Su TS, Chan YJ, Chen CW. Streptomyces telomeres contain a promoter. J Bacteriol 2009; 191:773-81. [PMID: 19060156 PMCID: PMC2632112 DOI: 10.1128/jb.01299-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 11/19/2008] [Indexed: 11/20/2022] Open
Abstract
Bidirectional replication of the linear chromosomes and plasmids of Streptomyces spp. results in single-strand overhangs at their 3' ends, which contain extensive complex palindromic sequences. The overhangs are believed to be patched by DNA synthesis primed by a terminal protein that remains covalently bound to the 5' ends of the telomeres. We discovered that in vitro a conserved 167-bp telomere DNA binds strongly to RNA polymerase holoenzyme and exhibits promoter activities stronger than those of an rRNA operon. In vivo, the telomere DNA exhibited promoter activity in both orientations on a circular plasmid in Streptomyces. The telomere promoter is also active on a linear plasmid during exponential growth. Such promoter activity in a telomere has not hitherto been observed in eukaryotic or prokaryotic replicons. Streptomyces telomere promoters may be involved in priming the terminal Okazaki fragment (during replication) replicative transfer (during conjugation), or expression of downstream genes (including a conserved ttrA helicase-like gene involved in conjugal transfer). Interestingly, the Streptomyces telomeres also function as a promoter in Escherichia coli and as a transcription enhancer in yeast.
Collapse
Affiliation(s)
- Yuh-ru Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang R, Xia H, Guo P, Qin Z. Variation in the replication loci of Streptomyces linear plasmids. FEMS Microbiol Lett 2008; 290:209-16. [PMID: 19054078 DOI: 10.1111/j.1574-6968.2008.01432.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Streptomyces linear plasmids start replication at centrally located loci, usually consisting of iterons and adjacent rep genes. Here, we identified four new replication loci from Streptomyces linear plasmids. A discontinuous locus, consisting of two genes and iterons separated by two nonessential genes, was required for replication of pRL2 in both linear and circular modes. A temperature-sensitive plasmid, pRL4, contained a replication locus, a noncoding sequence and a SAP1.35-like gene. A telomere-adjacent locus, another noncoding sequence and SAP1.1-like gene, was identified for replication of the large plasmid pFRL2. The replication locus of pSHK1 consisted of SCP1-rep-like genes and iterons. These results indicate an unexpected variety of components, positions and combinations of replication loci among Streptomyces linear plasmids.
Collapse
Affiliation(s)
- Ran Zhang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
45
|
Tsai HH, Huang CH, Lin AM, Chen CW. Terminal proteins of Streptomyces chromosome can target DNA into eukaryotic nuclei. Nucleic Acids Res 2008; 36:e62. [PMID: 18480119 PMCID: PMC2425503 DOI: 10.1093/nar/gkm1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptomyces species are highly abundant soil bacteria that possess linear chromosomes (and linear plasmids). The 5′ ends of these molecules are covalently bound by terminal proteins (TPs), that are important for integrity and replication of the telomeres. There are at least two types of TPs, both of which contain a DNA-binding domain and a classical eukaryotic nuclear localization signal (NLS). Here we show that the NLS motifs on these TPs are highly efficient in targeting the proteins along with covalently bound plasmid DNA into the nuclei of human cells. The TP-mediated nuclear targeting resembles the inter-kingdom gene transfer mediated by Ti plasmids of Agrobacterium tumefaciens, in which a piece of the Ti plasmid DNA is targeted to the plant nuclei by a covalently bound NLS-containing protein. The discovery of the nuclear localization functions of the Streptomyces TPs not only suggests possible inter-kingdom gene exchanges between Streptomyces and eukaryotes in soil but also provides a novel strategy for gene delivery in humans and other eukaryotes.
Collapse
Affiliation(s)
- Hsiu-Hui Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
46
|
Characterization of replication and conjugation of Streptomyces circular plasmids pFP1 and pFP11 and their ability to propagate in linear mode with artificially attached telomeres. Appl Environ Microbiol 2008; 74:3368-76. [PMID: 18390681 DOI: 10.1128/aem.00402-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Streptomyces species harbor circular plasmids (8 to 31 kb) as well as linear plasmids (12 to 1,700 kb). We report the characterization of two newly detected circular plasmids, pFP11 (35,139 bp) and pFP1 (39,360 bp). As on linear plasmids, their replication loci comprise repA genes and adjacent iterons, to which RepA proteins bind specifically in vitro. Plasmids containing the minimal iterons plus the repA locus of pFP11 were inherited extremely unstably; par and additional loci were required for stable inheritance. Surprisingly, plasmids containing replication loci from pFP11 or Streptomyces circular plasmid SCP2 but not from pFP1, SLP1, or pIJ101 propagated in a stable linear mode when the telomeres of a linear plasmid were attached. These results indicate bidirectional replication for pFP11 and SCP2. Both pFP11 and pFP1 contain, for plasmid transfer, a major functional traB gene (encoding a DNA translocase typical for Streptomyces plasmids) as well as, surprisingly, a putative traA gene (encoding a DNA nickase, characteristic of single-stranded DNA transfer of gram-negative plasmids), but this did not appear to be functional, at least in isolation.
Collapse
|
47
|
Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 2008; 190:4050-60. [PMID: 18375553 DOI: 10.1128/jb.00204-08] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the complete genome sequence of Streptomyces griseus IFO 13350, a soil bacterium producing an antituberculosis agent, streptomycin, which is the first aminoglycoside antibiotic, discovered more than 60 years ago. The linear chromosome consists of 8,545,929 base pairs (bp), with an average G+C content of 72.2%, predicting 7,138 open reading frames, six rRNA operons (16S-23S-5S), and 66 tRNA genes. It contains extremely long terminal inverted repeats (TIRs) of 132,910 bp each. The telomere's nucleotide sequence and secondary structure, consisting of several palindromes with a loop sequence of 5'-GGA-3', are different from those of typical telomeres conserved among other Streptomyces species. In accordance with the difference, the chromosome has pseudogenes for a conserved terminal protein (Tpg) and a telomere-associated protein (Tap), and a novel pair of Tpg and Tap proteins is instead encoded by the TIRs. Comparisons with the genomes of two related species, Streptomyces coelicolor A3(2) and Streptomyces avermitilis, clarified not only the characteristics of the S. griseus genome but also the existence of 24 Streptomyces-specific proteins. The S. griseus genome contains 34 gene clusters or genes for the biosynthesis of known or unknown secondary metabolites. Transcriptome analysis using a DNA microarray showed that at least four of these clusters, in addition to the streptomycin biosynthesis gene cluster, were activated directly or indirectly by AdpA, which is a central transcriptional activator for secondary metabolism and morphogenesis in the A-factor (a gamma-butyrolactone signaling molecule) regulatory cascade in S. griseus.
Collapse
|
48
|
Kirby R, Gan TK, Hunter I, Herron P, Tilley E. The genome of Streptomyces rimosus subsp. rimosus shows a novel structure compared to other Streptomyces using DNA/DNA microarray analysis. Antonie van Leeuwenhoek 2008; 94:173-86. [DOI: 10.1007/s10482-008-9223-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
49
|
|
50
|
DNA polymerase I is not required for replication of linear chromosomes in streptomyces. J Bacteriol 2007; 190:755-8. [PMID: 17993519 DOI: 10.1128/jb.01335-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both polA (encoding DNA polymerase I; Pol I) and a paralog were deleted from Streptomyces strains. Despite the UV sensitivity and slow growth caused by the DeltapolA mutation, the double mutant was viable. Thus, in contrast to a previous postulate, Pol I and its paralog are not essential for replication of Streptomyces chromosomes.
Collapse
|