1
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Marx N, Otte AM, Leitner K, Sitepu R, Berger T, Schäpertöns V, Huber CG, Zhu Q, Nema S, Higgins JJ, Borth N. Characterization of large transgene integrations in Chinese hamster ovary cells using a bioengineered mammalian transposase. Biotechnol Prog 2025:e3524. [PMID: 39846713 DOI: 10.1002/btpr.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/24/2025]
Abstract
We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure. Transfection efficiency shows around 90% GFP-positive cells, but in control cultures GFP expression disappears after 10 days. In contrast, bMLT-treated cultures maintain stable GFP expression, with a dose-dependent integration efficiency of up to 60%. The highest GFP expression per cell is observed with lower bMLT amounts. Next-generation sequencing analysis reveals multiple integration sites, with 85% correctly integrated sequences. Next, CHO-GS-/- cells are transfected with trastuzumab and bMLT DNA or mRNA. Cells are selected in glutamine-free medium with varying methionine sulfoximine (MSX) concentrations. Recovery is faster without MSX, and no difference is observed between bMLT DNA and mRNA transfections. bMLT-treated cultures show a higher percentage of trastuzumab-secreting cells (40%-55%) compared with random integration (0.3%-0.5%). The absence of insulators in the trastuzumab plasmid likely affects selection behavior, as integration in heterochromatic regions results in gene repression. Overall, bMLT-mediated integration proves efficient, generating stable cell pools with high expression profiles without selective pressure. The integration sites' genomic location significantly impacts productivity, with favorable regions supporting higher expression. This method shows promise for the rapid and efficient generation of high-producing cell lines and for rapid evaluation of long-term effects of different cell engineering approaches.
Collapse
Affiliation(s)
- Nicolas Marx
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna-Maria Otte
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Klaus Leitner
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rehmadanta Sitepu
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Berger
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Christian G Huber
- Bioanalytical Research Labs, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Quan Zhu
- SalioGen Therapeutics, Lexington, Massachusetts, USA
| | - Sandeep Nema
- SalioGen Therapeutics, Lexington, Massachusetts, USA
| | | | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Hickman AB, Lannes L, Furman CM, Hong C, Franklin L, Ghirlando R, Ghosh A, Luo W, Konstantinidou P, Lorenzi HA, Grove A, Haase AD, Wilson MH, Dyda F. Activity of the mammalian DNA transposon piggyBat from Myotis lucifugus is restricted by its own transposon ends. Nat Commun 2025; 16:458. [PMID: 39774116 PMCID: PMC11707139 DOI: 10.1038/s41467-024-55784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Members of the piggyBac superfamily of DNA transposons are widely distributed in host genomes ranging from insects to mammals. The human genome has retained five piggyBac-derived genes as domesticated elements although they are no longer mobile. Here, we have investigated the transposition properties of piggyBat from Myotis lucifugus, the only known active mammalian DNA transposon, and show that its low activity in human cells is due to subterminal inhibitory DNA sequences. Activity can be dramatically improved by their removal, suggesting the existence of a mechanism for the suppression of transposon activity. The cryo-electron microscopy structure of the piggyBat transposase pre-synaptic complex showed an unexpected mode of DNA binding and recognition using C-terminal domains that are topologically different from those of the piggyBac transposase. Here we show that structure-based rational re-engineering of the transposase through the removal of putative phosphorylation sites and a changed domain organization - in combination with truncated transposon ends - results in a transposition system that is at least 100-fold more active than wild-type piggyBat.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laurie Lannes
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, Paris, cedex 05, France
| | - Christopher M Furman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- International Flavors and Fragrances, Wilmington, DE, USA
| | - Christina Hong
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lidiya Franklin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Wentian Luo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Parthena Konstantinidou
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hernán A Lorenzi
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Astrid D Haase
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
5
|
Zhang T, Tan S, Tang N, Li Y, Zhang C, Sun J, Guo Y, Gao H, Cai Y, Sun W, Wang C, Fu L, Ma H, Wu Y, Hu X, Zhang X, Gee P, Yan W, Zhao Y, Chen Q, Guo B, Wang H, Zhang YE. Heterologous survey of 130 DNA transposons in human cells highlights their functional divergence and expands the genome engineering toolbox. Cell 2024; 187:3741-3760.e30. [PMID: 38843831 DOI: 10.1016/j.cell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 07/14/2024]
Abstract
Experimental studies on DNA transposable elements (TEs) have been limited in scale, leading to a lack of understanding of the factors influencing transposition activity, evolutionary dynamics, and application potential as genome engineering tools. We predicted 130 active DNA TEs from 102 metazoan genomes and evaluated their activity in human cells. We identified 40 active (integration-competent) TEs, surpassing the cumulative number (20) of TEs found previously. With this unified comparative data, we found that the Tc1/mariner superfamily exhibits elevated activity, potentially explaining their pervasive horizontal transfers. Further functional characterization of TEs revealed additional divergence in features such as insertion bias. Remarkably, in CAR-T therapy for hematological and solid tumors, Mariner2_AG (MAG), the most active DNA TE identified, largely outperformed two widely used vectors, the lentiviral vector and the TE-based vector SB100X. Overall, this study highlights the varied transposition features and evolutionary dynamics of DNA TEs and increases the TE toolbox diversity.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanqing Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Gao
- Rengene Biotechnology Co., Ltd., Beijing 100036, China
| | - Yujia Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liangzheng Fu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yachao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Peter Gee
- MaxCyte Inc., Rockville, MD 20850, USA
| | - Weihua Yan
- Cold Spring Biotech Corp., Beijing 100031, China
| | - Yahui Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baocheng Guo
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Luqman-Fatah A, Nishimori K, Amano S, Fumoto Y, Miyoshi T. Retrotransposon life cycle and its impacts on cellular responses. RNA Biol 2024; 21:11-27. [PMID: 39396200 PMCID: PMC11485995 DOI: 10.1080/15476286.2024.2409607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs), also known as mobile genetic elements. However, their biological function remains largely unknown. Among them, retrotransposons are particularly abundant, and some of the copies are still capable of mobilization within the genome through RNA intermediates. This review focuses on the life cycle of human retrotransposons and summarizes their regulatory mechanisms and impacts on cellular processes. Retrotransposons are generally epigenetically silenced in somatic cells, but are transcriptionally reactivated under certain conditions, such as tumorigenesis, development, stress, and ageing, potentially leading to genetic instability. We explored the dual nature of retrotransposons as genomic parasites and regulatory elements, focusing on their roles in genetic diversity and innate immunity. Furthermore, we discuss how host factors regulate retrotransposon RNA and cDNA intermediates through their binding, modification, and degradation. The interplay between retrotransposons and the host machinery provides insight into the complex regulation of retrotransposons and the potential for retrotransposon dysregulation to cause aberrant responses leading to inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kei Nishimori
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shota Amano
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yukiko Fumoto
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
8
|
Paulat NS, Storer JM, Moreno-Santillán DD, Osmanski AB, Sullivan KAM, Grimshaw JR, Korstian J, Halsey M, Garcia CJ, Crookshanks C, Roberts J, Smit AFA, Hubley R, Rosen J, Teeling EC, Vernes SC, Myers E, Pippel M, Brown T, Hiller M, Rojas D, Dávalos LM, Lindblad-Toh K, Karlsson EK, Ray DA. Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia. Mol Biol Evol 2023; 40:msad092. [PMID: 37071810 PMCID: PMC10162687 DOI: 10.1093/molbev/msad092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Abstract
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
Collapse
Affiliation(s)
- Nicole S Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Austin B Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jenna R Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Jennifer Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Carlos J Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Jaquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- School of Biology, The University of St Andrews, Fife, United Kingdom
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Danny Rojas
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Valle del Cauca, Colombia
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University Stony Brook, NY
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
9
|
Li X, Guan Z, Wang F, Wang Y, Asare E, Shi S, Lin Z, Ji T, Gao B, Song C. Evolution of piggyBac Transposons in Apoidea. INSECTS 2023; 14:402. [PMID: 37103217 PMCID: PMC10140906 DOI: 10.3390/insects14040402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
In this study, we investigated the presence of piggyBac (PB) transposons in 44 bee genomes from the Apoidea order, which is a superfamily within the Hymenoptera, which includes a large number of bee species crucial for pollination. We annotated the PB transposons in these 44 bee genomes and examined their evolution profiles, including structural characteristics, distribution, diversity, activity, and abundance. The mined PB transposons were divided into three clades, with uneven distribution in each genus of PB transposons in Apoidea. The complete PB transposons we discovered are around 2.23-3.52 kb in length and encode transposases of approximately 580 aa, with terminal inverted repeats (TIRs) of about 14 bp and 4 bp (TTAA) target-site duplications. Long TIRs (200 bp, 201 bp, and 493 bp) were also detected in some species of bees. The DDD domains of the three transposon types were more conserved, while the other protein domains were less conserved. Generally, most PB transposons showed low abundance in the genomes of Apoidea. Divergent evolution dynamics of PB were observed in the genomes of Apoidea. PB transposons in some identified species were relatively young, whiles others were older and with some either active or inactive. In addition, multiple invasions of PB were also detected in some genomes of Apoidea. Our findings highlight the contribution of PB transposons to genomic variation in these species and suggest their potential as candidates for future gene transfer tools.
Collapse
|
10
|
Pasquesi GIM, Kelly CJ, Ordonez AD, Chuong EB. Transcriptional dynamics of transposable elements in the type I IFN response in Myotis lucifugus cells. Mob DNA 2022; 13:22. [PMID: 36068622 PMCID: PMC9446614 DOI: 10.1186/s13100-022-00277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Background Bats are a major reservoir of zoonotic viruses, and there has been growing interest in characterizing bat-specific features of innate immunity and inflammation. Recent studies have revealed bat-specific adaptations affecting interferon (IFN) signaling and IFN-stimulated genes (ISGs), but we still have a limited understanding of the genetic mechanisms that have shaped the evolution of bat immunity. Here we investigated the transcriptional and epigenetic dynamics of transposable elements (TEs) during the type I IFN response in little brown bat (Myotis lucifugus) primary embryonic fibroblast cells, using RNA-seq and CUT&RUN. Results We found multiple bat-specific TEs that undergo both locus-specific and family-level transcriptional induction in response to IFN. Our transcriptome reassembly identified multiple ISGs that have acquired novel exons from bat-specific TEs, including NLRC5, SLNF5 and a previously unannotated isoform of the IFITM2 gene. We also identified examples of TE-derived regulatory elements, but did not find strong evidence supporting genome-wide epigenetic activation of TEs in response to IFN. Conclusion Collectively, our study uncovers numerous TE-derived transcripts, proteins, and alternative isoforms that are induced by IFN in Myotis lucifugus cells, highlighting candidate loci that may contribute to bat-specific immune function. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00277-z.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Conor J Kelly
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Andrea D Ordonez
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA.
| |
Collapse
|
11
|
Nawae W, Sonthirod C, Yoocha T, Waiyamitra P, Soisook P, Tangphatsornruang S, Pootakham W. Genome assembly of the Pendlebury's roundleaf bat, Hipposideros pendleburyi, revealed the expansion of Tc1/Mariner DNA transposons in Rhinolophoidea. DNA Res 2022; 29:dsac026. [PMID: 36214371 PMCID: PMC9549598 DOI: 10.1093/dnares/dsac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bats (Chiroptera) constitute the second largest order of mammals and have several distinctive features, such as true self-powered flight and strong immunity. The Pendlebury's roundleaf bat, Hipposideros pendleburyi, is endemic to Thailand and listed as a vulnerable species. We employed the 10× Genomics linked-read technology to obtain a genome assembly of H. pendleburyi. The assembly size was 2.17 Gb with a scaffold N50 length of 15,398,518 bases. Our phylogenetic analysis placed H. pendleburyi within the rhinolophoid clade of the suborder Yinpterochiroptera. A synteny analysis showed that H. pendleburyi shared conserved chromosome segments (up to 105 Mb) with Rhinolophus ferrumequinum and Phyllostomus discolor albeit having different chromosome numbers and belonging different families. We found positive selection signals in genes involved in inflammation, spermatogenesis and Wnt signalling. The analyses of transposable elements suggested the contraction of short interspersed nuclear elements (SINEs) and the accumulation of young mariner DNA transposons in the analysed hipposiderids. Distinct mariners were likely horizontally transferred to hipposiderid genomes over the evolution of this family. The lineage-specific profiles of SINEs and mariners might involve in the evolution of hipposiderids and be associated with the phylogenetic separations of these bats from other bat families.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pitchaporn Waiyamitra
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
12
|
Paulat NS, McGuire E, Subramanian K, Osmanski AB, Moreno-Santillán DD, Ray DA, Xing J. Transposable Elements in Bats Show Differential Accumulation Patterns Determined by Class and Functionality. Life (Basel) 2022; 12:1190. [PMID: 36013369 PMCID: PMC9409754 DOI: 10.3390/life12081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Bat genomes are characterized by a diverse transposable element (TE) repertoire. In particular, the genomes of members of the family Vespertilionidae contain both active retrotransposons and active DNA transposons. Each TE type is characterized by a distinct pattern of accumulation over the past ~40 million years. Each also exhibits its own target site preferences (sometimes shared with other TEs) that impact where they are likely to insert when mobilizing. Therefore, bats provide a great resource for understanding the diversity of TE insertion patterns. To gain insight into how these diverse TEs impact genome structure, we performed comparative spatial analyses between different TE classes and genomic features, including genic regions and CpG islands. Our results showed a depletion of all TEs in the coding sequence and revealed patterns of species- and element-specific attraction in the transcript. Trends of attraction in the distance tests also suggested significant TE activity in regions adjacent to genes. In particular, the enrichment of small, non-autonomous TE insertions in introns and near coding regions supports the hypothesis that the genomic distribution of TEs is the product of a balance of the TE insertion preference in open chromatin regions and the purifying selection against TEs within genes.
Collapse
Affiliation(s)
- Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Erin McGuire
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Krishnamurthy Subramanian
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Austin B. Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Characterizing piggyBat-a transposase for genetic modification of T cells. Mol Ther Methods Clin Dev 2022; 25:250-263. [PMID: 35474955 PMCID: PMC9018555 DOI: 10.1016/j.omtm.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have demonstrated remarkable efficacy in the treatment of B cell malignancies. Current CAR T cell manufacturing protocols are complex and costly due to their reliance on viral vectors. Non-viral systems of genetic modification, such as with transposase and transposon systems, offer a potential streamlined alternative for CAR T cell manufacture and are currently being evaluated in clinical trials. In this study, we utilized the previously described transposase from the little brown bat, designated piggyBat, for production of CD19-specific CAR T cells. PiggyBat demonstrates efficient CAR transgene delivery, with a relatively low variability in integration copy number across a range of manufacturing conditions as well as a similar integration site profile to super-piggyBac transposon and viral vectors. PiggyBat-generated CAR T cells demonstrate CD19-specific cytotoxic efficacy in vitro and in vivo. These data demonstrate that alternative, naturally occurring DNA transposons can be efficiently re-tooled to be exploited in real-world applications.
Collapse
|
14
|
SINE-Based Phylogenomics Reveal Extensive Introgression and Incomplete Lineage Sorting in Myotis. Genes (Basel) 2022; 13:genes13030399. [PMID: 35327953 PMCID: PMC8951037 DOI: 10.3390/genes13030399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
Using presence/absence data from over 10,000 Ves SINE insertions, we reconstructed a phylogeny for 11 Myotis species. With nearly one-third of individual Ves gene trees discordant with the overall species tree, phylogenetic conflict appears to be rampant in this genus. From the observed conflict, we infer that ILS is likely a major contributor to the discordance. Much of the discordance can be attributed to the hypothesized split between the Old World and New World Myotis clades and with the first radiation of Myotis within the New World. Quartet asymmetry tests reveal signs of introgression between Old and New World taxa that may have persisted until approximately 8 MYA. Our introgression tests also revealed evidence of both historic and more recent, perhaps even contemporary, gene flow among Myotis species of the New World. Our findings suggest that hybridization likely played an important role in the evolutionary history of Myotis and may still be happening in areas of sympatry. Despite limitations arising from extreme discordance, our SINE-based phylogeny better resolved deeper relationships (particularly the positioning of M. brandtii) and was able to identify potential introgression pathways among the Myotis species sampled.
Collapse
|
15
|
Ibrahim MA, Al-Shomrani BM, Simenc M, Alharbi SN, Alqahtani FH, Al-Fageeh MB, Manee MM. Comparative analysis of transposable elements provides insights into genome evolution in the genus Camelus. BMC Genomics 2021; 22:842. [PMID: 34800971 PMCID: PMC8605555 DOI: 10.1186/s12864-021-08117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are common features in eukaryotic genomes that are known to affect genome evolution critically and to play roles in gene regulation. Vertebrate genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. To date, details regarding the presence and characteristics of TEs in camelid genomes have not been made available. RESULTS We conducted a genome-wide comparative analysis of camelid TEs, focusing on the identification of TEs and elucidation of transposition histories in four species: Camelus dromedarius, C. bactrianus, C. ferus, and Vicugna pacos. Our TE library was created using both de novo structure-based and homology-based searching strategies ( https://github.com/kacst-bioinfo-lab/TE_ideintification_pipeline ). Annotation results indicated a similar proportion of each genomes comprising TEs (35-36%). Class I LTR retrotransposons comprised 16-20% of genomes, and mostly consisted of the endogenous retroviruses (ERVs) groups ERVL, ERVL-MaLR, ERV_classI, and ERV_classII. Non-LTR elements comprised about 12% of genomes and consisted of SINEs (MIRs) and the LINE superfamilies LINE1, LINE2, L3/CR1, and RTE clades. Least represented were the Class II DNA transposons (2%), consisting of hAT-Charlie, TcMar-Tigger, and Helitron elements and comprising about 1-2% of each genome. CONCLUSIONS The findings of the present study revealed that the distribution of transposable elements across camelid genomes is approximately similar. This investigation presents a characterization of TE content in four camelid to contribute to developing a better understanding of camelid genome architecture and evolution.
Collapse
Affiliation(s)
- Mohanad A Ibrahim
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Badr M Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mathew Simenc
- Department of Biological Sciences, California State University, Fullerton, USA
| | - Sultan N Alharbi
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fahad H Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed B Al-Fageeh
- Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manee M Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
17
|
Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R. DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows. Genome Biol Evol 2021; 13:6380143. [PMID: 34599322 PMCID: PMC8557787 DOI: 10.1093/gbe/evab228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.
Collapse
Affiliation(s)
- Robert Lehmann
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Science, Brno, Czech Republic
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdansk, Poland
| | - Lech Kirtiklis
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Jesper N Tegner
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Josef Wanzenböck
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Louis Bernatchez
- Department of Biology, IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| | - Dunja K Lamatsch
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany.,Department of Biology, Faculty of Biology, University of Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Galbraith JD, Ludington AJ, Sanders KL, Suh A, Adelson DL. Horizontal transfer and subsequent explosive expansion of a DNA transposon in sea kraits ( Laticauda). Biol Lett 2021; 17:20210342. [PMID: 34464541 PMCID: PMC8437027 DOI: 10.1098/rsbl.2021.0342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are self-replicating genetic sequences and are often described as important 'drivers of evolution'. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15-25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8-12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.
Collapse
Affiliation(s)
- James D. Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Kate L. Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala SE-752 36, Sweden
| | - David L. Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
20
|
Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells 2021; 10:cells10071707. [PMID: 34359877 PMCID: PMC8303610 DOI: 10.3390/cells10071707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
The distinctive biology and unique evolutionary features of snakes make them fascinating model systems to elucidate how genomes evolve and how variation at the genomic level is interlinked with phenotypic-level evolution. Similar to other eukaryotic genomes, large proportions of snake genomes contain repetitive DNA, including transposable elements (TEs) and satellite repeats. The importance of repetitive DNA and its structural and functional role in the snake genome, remain unclear. This review highlights the major types of repeats and their proportions in snake genomes, reflecting the high diversity and composition of snake repeats. We present snakes as an emerging and important model system for the study of repetitive DNA under the impact of sex and microchromosome evolution. We assemble evidence to show that certain repetitive elements in snakes are transcriptionally active and demonstrate highly dynamic lineage-specific patterns as repeat sequences. We hypothesize that particular TEs can trigger different genomic mechanisms that might contribute to driving adaptive evolution in snakes. Finally, we review emerging approaches that may be used to study the expression of repetitive elements in complex genomes, such as snakes. The specific aspects presented here will stimulate further discussion on the role of genomic repeats in shaping snake evolution.
Collapse
|
21
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
22
|
Lin KP, Chaw SM, Lo YH, Kinjo T, Tung CY, Cheng HC, Liu Q, Satta Y, Izawa M, Chen SF, Ko WY. Genetic Differentiation and Demographic Trajectory of the Insular Formosan and Orii's Flying Foxes. J Hered 2021; 112:192-203. [PMID: 33675222 PMCID: PMC8006818 DOI: 10.1093/jhered/esab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/04/2022] Open
Abstract
Insular flying foxes are keystone species in island ecosystems due to their critical roles in plant pollination and seed dispersal. These species are vulnerable to population decline because of their small populations and low reproductive rates. The Formosan flying fox (Pteropus dasymallus formosus) is one of the 5 subspecies of the Ryukyu flying fox. Pteropus dasymallus formosus has suffered from a severe decline and is currently recognized as a critically endangered population in Taiwan. On the contrary, the Orii's flying fox (Pteropus dasymallus inopinatus) is a relatively stable population inhabiting Okinawa Island. Here, we applied a genomic approach called double digest restriction-site associated DNA sequencing to study these 2 subspecies for a total of 7 individuals. We detected significant genetic structure between the 2 populations. Despite their contrasting contemporary population sizes, both populations harbor very low degrees of genetic diversity. We further inferred their demographic history based on the joint folded site frequency spectrum and revealed that both P. d. formosus and P. d. inopinatus had maintained small population sizes for a long period of time after their divergence. Recently, these populations experienced distinct trajectories of demographic changes. While P. d. formosus suffered from a drastic ~10-fold population decline not long ago, P. d. inopinatus underwent a ~4.5-fold population expansion. Our results suggest separate conservation management for the 2 populations-population recovery is urgently needed for P. d. formosus while long-term monitoring for adverse genetic effects should be considered for P. d. inopinatus.
Collapse
Affiliation(s)
- Kung-Ping Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yun-Hwa Lo
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Chien-Yi Tung
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Masako Izawa
- Kitakyushu Museum of Natural History and Human History, Fukuoka, Japan
| | - Shiang-Fan Chen
- Center for General Education, National Taipei University, New Taipei City, Taiwan
| | - Wen-Ya Ko
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
24
|
Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C. Recurrent evolution of vertebrate transcription factors by transposase capture. Science 2021; 371:eabc6405. [PMID: 33602827 PMCID: PMC8186458 DOI: 10.1126/science.abc6405] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured-primarily via alternative splicing-to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruiling Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Alan Zhong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Nathaniel Garry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
25
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
26
|
Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat Commun 2020; 11:3446. [PMID: 32651359 PMCID: PMC7351741 DOI: 10.1038/s41467-020-17128-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
The piggyBac DNA transposon is used widely in genome engineering applications. Unlike other transposons, its excision site can be precisely repaired without leaving footprints and it integrates specifically at TTAA tetranucleotides. We present cryo-EM structures of piggyBac transpososomes: a synaptic complex with hairpin DNA intermediates and a strand transfer complex capturing the integration step. The results show that the excised TTAA hairpin intermediate and the TTAA target adopt essentially identical conformations, providing a mechanistic link connecting the two unique properties of piggyBac. The transposase forms an asymmetric dimer in which the two central domains synapse the ends while two C-terminal domains form a separate dimer that contacts only one transposon end. In the strand transfer structure, target DNA is severely bent and the TTAA target is unpaired. In-cell data suggest that asymmetry promotes synaptic complex formation, and modifying ends with additional transposase binding sites stimulates activity.
Collapse
|
27
|
Dupeyron M, Baril T, Bass C, Hayward A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob DNA 2020; 11:21. [PMID: 32612713 PMCID: PMC7325037 DOI: 10.1186/s13100-020-00212-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Background Tc1/mariner transposons are widespread DNA transposable elements (TEs) that have made important contributions to the evolution of host genomic complexity in metazoans. However, the evolution and diversity of the Tc1/mariner superfamily remains poorly understood. Following recent developments in genome sequencing and the availability of a wealth of new genomes, Tc1/mariner TEs have been identified in many new taxa across the eukaryotic tree of life. To date, the majority of studies focussing on Tc1/mariner elements have considered only a single host lineage or just a small number of host lineages. Thus, much remains to be learnt about the evolution of Tc1/mariner TEs by performing analyses that consider elements that originate from across host diversity. Results We mined the non-redundant database of NCBI using BLASTp searches, with transposase sequences from a diverse set of reference Tc1/mariner elements as queries. A total of 5158 Tc1/mariner elements were retrieved and used to reconstruct evolutionary relationships within the superfamily. The resulting phylogeny is well resolved and includes several new groups of Tc1/mariner elements. In particular, we identify a new family of plant-genome restricted Tc1/mariner elements, which we call PlantMar. We also show that the pogo family is much larger and more diverse than previously appreciated, and we review evidence for a potential revision of its status to become a separate superfamily. Conclusions Our study provides an overview of Tc1-mariner phylogeny and summarises the impressive diversity of Tc1-mariner TEs among sequenced eukaryotes. Tc1/mariner TEs are successful in a wide range of eukaryotes, especially unikonts (the taxonomic supergroup containing Amoebozoa, Opisthokonta, Breviatea, and Apusomonadida). In particular, ecdysozoa, and especially arthropods, emerge as important hosts for Tc1/mariner elements (except the PlantMar family). Meanwhile, the pogo family, which is by far the largest Tc1/mariner family, also includes many elements from fungal and chordate genomes. Moreover, there is evidence of the repeated exaptation of pogo elements in vertebrates, including humans, in addition to the well-known example of CENP-B. Collectively, our findings provide a considerable advancement in understanding of Tc1/mariner elements, and more generally they suggest that much work remains to improve understanding of the diversity and evolution of DNA TEs.
Collapse
Affiliation(s)
- Mathilde Dupeyron
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
28
|
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species. Genes (Basel) 2020; 11:genes11020170. [PMID: 32041215 PMCID: PMC7073582 DOI: 10.3390/genes11020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs.
Collapse
|
29
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
30
|
Carducci F, Biscotti MA, Barucca M, Canapa A. Transposable elements in vertebrates: species evolution and environmental adaptation. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1695967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
31
|
Luchetti A, Lomiento M, Mantovani B. Riding the Wave: The SINE-Specific V Highly-Conserved Domain Spread into Mammalian Genomes Exploiting the Replication Burst of the MER6 DNA Transposon. Int J Mol Sci 2019; 20:ijms20225607. [PMID: 31717545 PMCID: PMC6887750 DOI: 10.3390/ijms20225607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Transposable elements are widely distributed within genomes where they may significantly impact their evolution and cell functions. Short interspersed elements (SINEs) are non-autonomous, fast-evolving elements, but some of them carry a highly conserved domain (HCD), whose sequence remained substantially unchanged throughout the metazoan evolution. SINEs carrying the HCD called V are absent in amniote genomes, but V-like sequences were found within the miniature inverted-repeat transposable element (MITE) MER6 in Homo sapiens. In the present work, the genomic distribution and evolution of MER6 are investigated, in order to reconstruct the origin of human V domain and to envisage its possible functional role. The analysis of 85 tetrapod genomes revealed that MER6 and its variant MER6A are found in primates, while only the MER6A variant was found in bats and eulipotyphlans. These MITEs appeared no longer active, in line with literature data on mammalian DNA transposons. Moreover, they appeared to have originated from a Mariner element found in turtles and from a V-SINE from bony fishes. MER6 insertions were found within genes and conserved in mRNAs: in line with previous hypothesis on functional role of HCDs, the MER6 V domain may be important for cell function also in mammals.
Collapse
Affiliation(s)
- Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-4165
| | - Mariana Lomiento
- Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna Italy;
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
32
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
33
|
Khalkhali-Evrigh R, Hedayat-Evrigh N, Hafezian SH, Farhadi A, Bakhtiarizadeh MR. Genome-Wide Identification of Microsatellites and Transposable Elements in the Dromedary Camel Genome Using Whole-Genome Sequencing Data. Front Genet 2019; 10:692. [PMID: 31404266 PMCID: PMC6675863 DOI: 10.3389/fgene.2019.00692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) along with simple sequence repeats (SSRs) are prevalent in eukaryotic genome, especially in mammals. Repetitive sequences form approximately one-third of the camelid genomes, so study on this part of genome can be helpful in providing deeper information from the genome and its evolutionary path. Here, in order to improve our understanding regarding the camel genome architecture, the whole genome of the two dromedaries (Yazdi and Trodi camels) was sequenced. Totally, 92- and 84.3-Gb sequence data were obtained and assembled to 137,772 and 149,997 contigs with a N50 length of 54,626 and 54,031 bp in Yazdi and Trodi camels, respectively. Results showed that 30.58% of Yazdi camel genome and 30.50% of Trodi camel genome were covered by TEs. Contrary to the observed results in the genomes of cattle, sheep, horse, and pig, no endogenous retrovirus-K (ERVK) elements were found in the camel genome. Distribution pattern of DNA transposons in the genomes of dromedary, Bactrian, and cattle was similar in contrast with LINE, SINE, and long terminal repeat (LTR) families. Elements like RTE-BovB belonging to LINEs family in cattle and sheep genomes are dramatically higher than genome of dromedary. However, LINE1 (L1) and LINE2 (L2) elements cover higher percentage of LINE family in dromedary genome compared to genome of cattle. Also, 540,133 and 539,409 microsatellites were identified from the assembled contigs of Yazdi and Trodi dromedary camels, respectively. In both samples, di-(393,196) and tri-(65,313) nucleotide repeats contributed to about 42.5% of the microsatellites. The findings of the present study revealed that non-repetitive content of mammalian genomes is approximately similar. Results showed that 9.1 Mb (0.47% of whole assembled genome) of Iranian dromedary's genome length is made up of SSRs. Annotation of repetitive content of Iranian dromedary camel genome revealed that 9,068 and 11,544 genes contain different types of TEs and SSRs, respectively. SSR markers identified in the present study can be used as a valuable resource for genetic diversity investigations and marker-assisted selection (MAS) in camel-breeding programs.
Collapse
Affiliation(s)
- Reza Khalkhali-Evrigh
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | | - Seyed Hasan Hafezian
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ayoub Farhadi
- Department of Animal Breeding and Genetics, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | | |
Collapse
|
34
|
Skirmuntt EC, Katzourakis A. The evolution of endogenous retroviral envelope genes in bats and their potential contribution to host biology. Virus Res 2019; 270:197645. [PMID: 31271763 DOI: 10.1016/j.virusres.2019.197645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Bats are the primary reservoirs and carriers of a wide range of viruses of unknown infectivity and pathogenic potential. Some of those if transmitted to other species can cause enormous economic losses in agriculture, and mortality in humans. Bats can be persistently infected with viruses while not showing any symptoms of disease, despite having high virus titre levels in their tissues and shedding virions for months or years after primary infection. It has been suggested that the lack of symptoms of viral infections and low mortality rate in bats might be due to immune adaptations that result from their long-term co-evolution with viruses. In this study, we screened all publicly available bat genomes from six bat families within which we have identified several envelope sequences of retroviral origin (gammaretroviruses). We analysed the identified sequences with Bayesian methods and maximum-likelihood inference to generate a phylogenetic tree with additional reference sequences of known endogenous and exogenous viral envelope genes. We also identified groups of orthologous viral envelopes and analysed them to determine if any of them might be an EVE (endogenous virus element) with an EDI (EVE- derived immunity) function or a candidate for a bat syncytin gene, which is an endogenized viral envelope, mostly known from its function in placentation in animals. Our study shows that bat genomes contain a substantial number of large, intact envelopes with open reading frames, which were found clustering closely on a phylogenetic tree reconstruction with syncytin sequences of other species. That might indicate that such sequences are good candidates for further bat-syncytin/EDI search.
Collapse
Affiliation(s)
- Emilia Cecylia Skirmuntt
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| |
Collapse
|
35
|
Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, Bruhn Pedersen L, Naesborg-Nielsen C, Sinding MHS, Fredensborg Rath M, Li Z, Petersen B, Gilbert MTP, Bunce M, Mourier T, Hansen AJ. MobiSeq: De novo SNP discovery in model and non-model species through sequencing the flanking region of transposable elements. Mol Ecol Resour 2019; 19:512-525. [PMID: 30575257 DOI: 10.1111/1755-0998.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
Collapse
Affiliation(s)
- Alba Rey-Iglesia
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishan
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David E Alquezar-Planas
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Anne Ahlmann Nielsen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Timo Röder
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bruhn Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel-Holger S Sinding
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Zhipeng Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Faculty of Applied Sciences, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
36
|
Manthey JD, Moyle RG, Boissinot S. Multiple and Independent Phases of Transposable Element Amplification in the Genomes of Piciformes (Woodpeckers and Allies). Genome Biol Evol 2018; 10:1445-1456. [PMID: 29850797 PMCID: PMC6007501 DOI: 10.1093/gbe/evy105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
The small and conserved genomes of birds are likely a result of flight-related metabolic constraints. Recombination-driven deletions and minimal transposable element (TE) expansions have led to continually shrinking genomes during evolution of many lineages of volant birds. Despite constraints of genome size in birds, we identified multiple waves of amplification of TEs in Piciformes (woodpeckers, honeyguides, toucans, and barbets). Relative to other bird species’ genomic TE abundance (< 10% of genome), we found ∼17–30% TE content in multiple clades within Piciformes. Several families of the retrotransposon superfamily chicken repeat 1 (CR1) expanded in at least three different waves of activity. The most recent CR1 expansions (∼4–7% of genome) preceded bursts of diversification in the woodpecker clade and in the American barbets + toucans clade. Additionally, we identified several thousand polymorphic CR1 insertions (hundreds per individual) in three closely related woodpecker species. Woodpecker CR1 insertion polymorphisms are maintained at lower frequencies than single nucleotide polymorphisms indicating that purifying selection is acting against additional CR1 copies and that these elements impose a fitness cost on their host. These findings provide evidence of large scale and ongoing TE activity in avian genomes despite continual constraint on genome size.
Collapse
Affiliation(s)
- Joseph D Manthey
- New York University Abu Dhabi, UAE.,Department of Biological Sciences, Texas Tech University
| | - Robert G Moyle
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas
| | | |
Collapse
|
37
|
Simão MC, Haudry A, Granzotto A, de Setta N, Carareto CMA. Helena and BS: Two Travellers between the Genera Drosophila and Zaprionus. Genome Biol Evol 2018; 10:2671-2685. [PMID: 30165545 PMCID: PMC6179348 DOI: 10.1093/gbe/evy184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
The frequency of horizontal transfers of transposable elements (HTTs) varies among the types of elements according to the transposition mode and the geographical and temporal overlap of the species involved in the transfer. The drosophilid species of the genus Zaprionus and those of the melanogaster, obscura, repleta, and virilis groups of the genus Drosophila investigated in this study shared space and time at some point in their evolutionary history. This is particularly true of the subgenus Zaprionus and the melanogaster subgroup, which overlapped both geographically and temporally in Tropical Africa during their period of origin and diversification. Here, we tested the hypothesis that this overlap may have facilitated the transfer of retrotransposons without long terminal repeats (non-LTRs) between these species. We estimated the HTT frequency of the non-LTRs BS and Helena at the genome-wide scale by using a phylogenetic framework and a vertical and horizontal inheritance consistence analysis (VHICA). An excessively low synonymous divergence among distantly related species and incongruities between the transposable element and species phylogenies allowed us to propose at least four relatively recent HTT events of Helena and BS involving ancestors of the subgroup melanogaster and ancestors of the subgenus Zaprionus during their concomitant diversification in Tropical Africa, along with older possible events between species of the subgenera Drosophila and Sophophora. This study provides the first evidence for HTT of non-LTRs retrotransposons between Drosophila and Zaprionus, including an in-depth reconstruction of the time frame and geography of these events.
Collapse
Affiliation(s)
- Maryanna C Simão
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| | - Annabelle Haudry
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Adriana Granzotto
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas (CCNH), São Bernardo do Campo, SP, Brazil
| | - Claudia M A Carareto
- Universidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas (Ibilce), Câmpus São José do Rio Preto, SP, Brazil
| |
Collapse
|
38
|
Nimble and Ready to Mingle: Transposon Outbursts of Early Development. Trends Genet 2018; 34:806-820. [DOI: 10.1016/j.tig.2018.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
39
|
Song MJ, Schaack S. Evolutionary Conflict between Mobile DNA and Host Genomes. Am Nat 2018; 192:263-273. [DOI: 10.1086/698482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Euphyllophyte Paleoviruses Illuminate Hidden Diversity and Macroevolutionary Mode of Caulimoviridae. J Virol 2018; 92:JVI.02043-17. [PMID: 29491164 DOI: 10.1128/jvi.02043-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022] Open
Abstract
Endogenous viral elements (paleoviruses) provide "molecular fossils" for studying the deep history and macroevolution of viruses. Endogenous plant pararetroviruses (EPRVs) are widespread in angiosperms, but little is known about EPRVs in earlier-branching plants. Here we use a large-scale phylogenomic approach to investigate the diversity and macroevolution of plant pararetroviruses (formally known as Caulimoviridae). We uncover an unprecedented and unappreciated diversity of EPRVs within the genomes of gymnosperms and ferns. The known angiosperm viruses constitute only a minor part of the Caulimoviridae diversity. By characterizing the distribution of EPRVs, we show that no major euphyllophyte lineages escape the activity of Caulimoviridae, raising the possibility that many exogenous Caulimoviridae remain to be discovered in euphyllophytes. We find that the copy numbers of EPRVs are generally high, suggesting that EPRVs might define a unique group of repetitive elements and represent important components of euphyllophyte genomes. Evolutionary analyses suggest an ancient origin of Caulimoviridae and at least three independent origins of Caulimoviridae in angiosperms. Our findings reveal the remarkable diversity of Caulimoviridae and have important implications for understanding the origin and macroevolution of plant pararetroviruses.IMPORTANCE Few viruses have been documented in plants outside angiosperms. Viruses can occasionally integrate into host genomes, forming endogenous viral elements (EVEs). Endogenous plant pararetroviruses (EPRVs) are widespread in angiosperms. In this study, we performed comprehensive comparative and phylogenetic analyses of EPRVs and found that EPRVs are present in the genomes of gymnosperms and ferns. We identified numerous EPRVs in gymnosperm and fern genomes, revealing an unprecedented depth in the diversity of plant pararetroviruses. Plant pararetroviruses mainly underwent cross-species transmission, and angiosperm pararetroviruses arose at least three times. Our study provides novel insights into the diversity and macroevolution of plant pararetroviruses.
Collapse
|
41
|
Sookdeo A, Hepp CM, Boissinot S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob DNA 2018; 9:12. [PMID: 29610583 PMCID: PMC5872511 DOI: 10.1186/s13100-018-0117-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. Results We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. Conclusions The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akash Sookdeo
- 1Department of Biology, New York University, New York, NY USA
| | - Crystal M Hepp
- 2School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Stéphane Boissinot
- 3New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
42
|
Morellet N, Li X, Wieninger SA, Taylor JL, Bischerour J, Moriau S, Lescop E, Bardiaux B, Mathy N, Assrir N, Bétermier M, Nilges M, Hickman AB, Dyda F, Craig NL, Guittet E. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. Nucleic Acids Res 2018; 46:2660-2677. [PMID: 29385532 PMCID: PMC5861402 DOI: 10.1093/nar/gky044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure-function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5'-TGCGT-3'/3'-ACGCA-5' motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity.
Collapse
Affiliation(s)
- Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Silke A Wieninger
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Jennifer L Taylor
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julien Bischerour
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Séverine Moriau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Nathalie Mathy
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Mireille Bétermier
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Guittet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif sur Yvette cedex, France
| |
Collapse
|
43
|
Laptev IA, Raevskaya NM, Filimonova NA, Sineoky SP. The piggyBac Transposon as a Tool in Genetic Engineering. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s000368381709006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Platt RN, Faircloth BC, Sullivan KAM, Kieran TJ, Glenn TC, Vandewege MW, Lee TE, Baker RJ, Stevens RD, Ray DA. Conflicting Evolutionary Histories of the Mitochondrial and Nuclear Genomes in New World Myotis Bats. Syst Biol 2018; 67:236-249. [PMID: 28945862 PMCID: PMC5837689 DOI: 10.1093/sysbio/syx070] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, 202 Life Science Building, Baton Rouge, LA, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - Troy J Kieran
- Department of Environmental Health Science, University of Georgia, 206 Environmental Health Sciences Building, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, 206 Environmental Health Sciences Building, Athens, GA, USA
| | - Michael W Vandewege
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, 1600 Campus Ct. Abilene, TX, USA
| | - Robert J Baker
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - Richard D Stevens
- Natural Resource Management, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, USA
| |
Collapse
|
45
|
Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 2018; 26:25-43. [PMID: 29392473 PMCID: PMC5857283 DOI: 10.1007/s10577-017-9570-z] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Transposable elements (TEs) are genetic elements with the ability to mobilize and replicate themselves in a genome. Mammalian genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. As a result, TEs have had significant impacts on mammalian evolution. Here we summarize the current understanding of TE content in mammal genomes and find that, with a few exceptions, most fall within a predictable range of observations. First, one third to one half of the genome is derived from TEs. Second, most mammalian genomes are dominated by LINE and SINE retrotransposons, more limited LTR retrotransposons, and minimal DNA transposon accumulation. Third, most mammal genome contains at least one family of actively accumulating retrotransposon. Finally, horizontal transfer of TEs among lineages is rare. TE exaptation events are being recognized with increasing frequency. Despite these beneficial aspects of TE content and activity, the majority of TE insertions are neutral or deleterious. To limit the deleterious effects of TE proliferation, the genome has evolved several defense mechanisms that act at the epigenetic, transcriptional, and post-transcriptional levels. The interaction between TEs and these defense mechanisms has led to an evolutionary arms race where TEs are suppressed, evolve to escape suppression, then are suppressed again as the defense mechanisms undergo compensatory change. The result is complex and constantly evolving interactions between TEs and host genomes.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | | | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
46
|
Wallau GL, Vieira C, Loreto ÉLS. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob DNA 2018; 9:6. [PMID: 29422954 PMCID: PMC5791352 DOI: 10.1186/s13100-018-0112-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. Main body For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Conclusion Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- 1Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE Brazil
| | - Cristina Vieira
- 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Élgion Lúcio Silva Loreto
- 3Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS Brazil
| |
Collapse
|
47
|
Teeling EC, Vernes SC, Dávalos LM, Ray DA, Gilbert MTP, Myers E. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annu Rev Anim Biosci 2017; 6:23-46. [PMID: 29166127 DOI: 10.1146/annurev-animal-022516-022811] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.
Collapse
Affiliation(s)
- Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Eugene Myers
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | -
- *Full list of Bat1K Consortium members in Supplemental Appendix
| |
Collapse
|
48
|
Luchetti A, Plazzi F, Mantovani B. Evolution of Two Short Interspersed Elements in Callorhinchus milii (Chondrichthyes, Holocephali) and Related Elements in Sharks and the Coelacanth. Genome Biol Evol 2017; 9:3824762. [PMID: 28505260 PMCID: PMC5499810 DOI: 10.1093/gbe/evx094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed elements (SINEs) are non-autonomous retrotransposons. Although they usually show fast evolutionary rates, in some instances highly conserved domains (HCDs) have been observed in elements with otherwise divergent sequences and from distantly related species. Here, we document the life history of two HCD-SINE families in the elephant shark Callorhinchus milii, one specific to the holocephalan lineage (CmiSINEs) and another one (SacSINE1-CM) with homologous elements in sharks and the coelacanth (SacSINE1s, LmeSINE1s). The analyses of their relationships indicated that these elements share the same 3′-tail, which would have allowed both elements to rise to high copy number by exploiting the C. milii L2-2_CM long interspersed element (LINE) enzymes. Molecular clock analysis on SINE activity in C. milii genome evidenced two replication bursts occurring right after two major events in the holocephalan evolution: the end-Permian mass extinction and the radiation of modern Holocephali. Accordingly, the same analysis on the coelacanth homologous elements, LmeSINE1, identified a replication wave close to the split age of the two extant Latimeria species. The genomic distribution of the studied SINEs pointed out contrasting results: some elements were preferentially sorted out from gene regions, but accumulated in flanking regions, while others appear more conserved within genes. Moreover, data from the C. milii transcriptome suggest that these SINEs could be involved in miRNA biogenesis and may be targets for miRNA-based regulation.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, Italy
| | - Federico Plazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Università di Bologna, Italy
| |
Collapse
|
49
|
Chromosomal Evolution in Chiroptera. Genes (Basel) 2017; 8:genes8100272. [PMID: 29027987 PMCID: PMC5664122 DOI: 10.3390/genes8100272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023] Open
Abstract
Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.
Collapse
|
50
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|