1
|
Huang PC, Hong S, Alnaser HF, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. EMBO J 2025; 44:200-224. [PMID: 39613969 PMCID: PMC11695836 DOI: 10.1038/s44318-024-00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA for homologous recombination. In Saccharomyces cerevisiae meiosis, this resection involves nicking by the Mre11-Rad50-Xrs2 complex (MRX), then exonucleolytic digestion by Exo1. Chromatin remodeling at meiotic DSBs is thought necessary for resection, but the remodeling enzyme was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, nonredundant role in meiotic resection. A fun30 mutation shortened resection tracts almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in a fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, the extremely short resection in fun30 exo1-nd double mutants is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Metagenomi, Emeryville, CA, 94608, USA
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hasan F Alnaser
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Eleni P Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunai, 430 E 29th St, New York, NY, 10016, USA
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Chromosome and Cellular Dynamics Section, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Zhao M, Zhao S, Pang Z, Jia C, Tao C. Comparison of Nucleosome Landscapes Between Porcine Embryonic Fibroblasts and GV Oocytes. Animals (Basel) 2024; 14:3392. [PMID: 39682359 PMCID: PMC11840278 DOI: 10.3390/ani14233392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Nucleosomes represent the essential structural units of chromatin and serve as key regulators of cell function and gene expression. Oocytes in the germinal vesicle (GV) stage will later undergo meiosis and become haploid cells ready for fertilization, while somatic cells undergo mitosis after DNA replication. (2) Purpose: To furnish theoretical insights and data that support the process of cell reprogramming after nuclear transplantation. (3) Methods: We compared the nucleosome occupancy, distribution, and transcription of genes between two types of cells: fully grown GV oocytes from big follicles (BF) and somatic cells (porcine embryonic fibroblast, PEF). (4) Results: The nucleosome occupancy in the promoter of BF was 4.85%, which was significantly higher than that of 3.3% in PEF (p < 0.05), and the nucleosome distribution showed a noticeable increase surrounding transcriptional start sites (TSSs) in BF. Next, we reanalyzed the currently published transcriptome of fully grown GV oocytes and PEF, and a total of 51 genes in BF and 80 genes in PEF were identified as being uniquely expressed. The nucleosome distribution around gene TSSs correlated with expression levels in somatic cells, yet the results in BF differed from those in PEF. (5) Conclusion: This study uncovers the dynamic nature and significance of nucleosome positioning and chromatin organization across various cell types, providing a basis for nuclear transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (M.Z.); (S.Z.); (Z.P.); (C.J.)
| |
Collapse
|
3
|
Huang PC, Hong S, Mimitou EP, Kim KP, Murakami H, Keeney S. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589955. [PMID: 38659928 PMCID: PMC11042300 DOI: 10.1101/2024.04.17.589955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA tails for homologous recombination. In Saccharomyces cerevisiae meiosis, this 5'-to-3' resection involves initial nicking by the Mre11-Rad50-Xrs2 complex (MRX) plus Sae2, then exonucleolytic digestion by Exo1. Chromatin remodeling adjacent to meiotic DSBs is thought to be necessary for resection, but the relevant remodeling activity was unknown. Here we show that the SWI/SNF-like ATPase Fun30 plays a major, non-redundant role in resecting meiotic DSBs. A fun30 null mutation shortened resection tract lengths almost as severely as an exo1-nd (nuclease-dead) mutation, and resection was further shortened in the fun30 exo1-nd double mutant. Fun30 associates with chromatin in response to meiotic DSBs, and the constitutive positioning of nucleosomes governs resection endpoint locations in the absence of Fun30. We infer that Fun30 directly promotes both the MRX- and Exo1-dependent steps in resection, possibly by removing nucleosomes from broken chromatids. Moreover, we found that the extremely short resection in the fun30 exo1-nd double mutant is accompanied by compromised interhomolog recombination bias, leading to defects in recombination and chromosome segregation. Thus, this study also provides insight about the minimal resection lengths needed for robust recombination.
Collapse
Affiliation(s)
- Pei-Ching Huang
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Eleni P. Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Keun P. Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
- Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 06974, South Korea
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10021
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
4
|
RNA-Mediated Regulation of Meiosis in Budding Yeast. Noncoding RNA 2022; 8:ncrna8060077. [PMID: 36412912 PMCID: PMC9680404 DOI: 10.3390/ncrna8060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cells change their physiological state in response to environmental cues. In the absence of nutrients, unicellular fungi such as budding yeast exit mitotic proliferation and enter the meiotic cycle, leading to the production of haploid cells that are encased within spore walls. These cell state transitions are orchestrated in a developmentally coordinated manner. Execution of the meiotic cell cycle program in budding yeast, Saccharomyces cerevisiae, is regulated by the key transcription factor, Ime1. Recent developments have uncovered the role of non-coding RNA in the regulation of Ime1 and meiosis. In this review, we summarize the role of ncRNA-mediated and RNA homeostasis-based processes in the regulation of meiosis in Saccharomyces cerevisiae.
Collapse
|
5
|
Mittal C, Lang O, Lai WKM, Pugh BF. An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 2022; 36:985-1001. [PMID: 36302553 PMCID: PMC9732905 DOI: 10.1101/gad.350026.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Genome-wide, little is understood about how proteins organize at inducible promoters before and after induction and to what extent inducible and constitutive architectures depend on cofactors. We report that sequence-specific transcription factors and their tethered cofactors (e.g., SAGA [Spt-Ada-Gcn5-acetyltransferase], Mediator, TUP, NuA4, SWI/SNF, and RPD3-L) are generally bound to promoters prior to induction ("poised"), rather than recruited upon induction, whereas induction recruits the preinitiation complex (PIC) to DNA. Through depletion and/or deletion experiments, we show that SAGA does not function at constitutive promoters, although a SAGA-independent Gcn5 acetylates +1 nucleosomes there. When inducible promoters are poised, SAGA catalyzes +1 nucleosome acetylation but not PIC assembly. When induced, SAGA catalyzes acetylation, deubiquitylation, and PIC assembly. Surprisingly, SAGA mediates induction by creating a PIC that allows TFIID (transcription factor II-D) to stably associate, rather than creating a completely TFIID-independent PIC, as generally thought. These findings suggest that inducible systems, where present, are integrated with constitutive systems.
Collapse
Affiliation(s)
- Chitvan Mittal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Olivia Lang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - William K M Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16801, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
6
|
Chigweshe L, MacQueen AJ, Holmes SG. Histone variant H2A.Z promotes meiotic chromosome axis organization in Saccharomyces cerevisiae. G3 GENES|GENOMES|GENETICS 2022; 12:6591205. [PMID: 35608312 PMCID: PMC9339299 DOI: 10.1093/g3journal/jkac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/07/2022] [Indexed: 11/14/2022]
Abstract
Progression through meiosis is associated with significant reorganization of chromosome structure, regulated in part by changes in histones and chromatin. Prior studies observed defects in meiotic progression in yeast strains lacking the linker histone H1 or variant histone H2A.Z. To further define the contributions of these chromatin factors, we have conducted genetic and cytological analysis of cells undergoing meiosis in the absence of H1 and H2A.Z. We find that a spore viability defect observed in strains lacking H2A.Z can be partially suppressed if cells also lack histone H1, while the combined loss of both H1 and H2A.Z is associated with elevated gene conversion events. Cytological analysis of Red1 and Rec8 staining patterns indicates that a subset of cells lacking H2A.Z fail to assemble a proper chromosome axis, and the staining pattern of the synaptonemal complex protein Zip1 in htz1Δ/htz1Δ cells mimics that of cells deficient for Rec8-dependent meiotic cohesion. Our results suggest a role for H2A.Z in the establishment or maintenance of the meiotic chromosome axis, possibly by promoting the efficient chromosome cohesion.
Collapse
Affiliation(s)
- Lorencia Chigweshe
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| | - Scott G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University , Middletown, CT 06459, USA
| |
Collapse
|
7
|
Liu G, Sun Y, Jia L, Li R, Zuo Y. Chromatin accessibility shapes meiotic recombination in mouse primordial germ cells through assisting double-strand breaks and loop formation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194844. [PMID: 35870788 DOI: 10.1016/j.bbagrm.2022.194844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Meiotic recombination is a driver of evolution, and aberrant recombination is a major contributor to aneuploidy in mammals. Mechanism of recombination remains elusive yet. Here, we present a computational analysis to explore recombination-related dynamics of chromatin accessibility in mouse primordial germ cells (PGCs). Our data reveals that: (1) recombination hotspots which get accessible at meiosis-specific DNase I-hypersensitive sites (DHSs) only when PGCs enter meiosis are located preferentially in intronic and distal intergenic regions; (2) stable DHSs maintained stably across PGC differentiation are enriched by CTCF motifs and CTCF binding and mediate chromatin loop formation; (3) compared with the specific DHSs aroused at meiotic stage, stable DHSs are largely encoded in DNA sequence and also enriched by epigenetic marks; (4) PRDM9 is likely to target nucleosome-occupied hotspot regions and remodels local chromatin structure to make them accessible for recombination machinery; and (5) cells undergoing meiotic recombination are deficient in TAD structure and chromatin loop arrays are organized regularly along the axis formed between homologous chromosomes. Taken together, by analyzing DHS-related DNA features, epigenetic marks and 3D genome structure, we revealed some specific roles of chromatin accessibility in recombination, which would expand our understanding of recombination mechanism.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China; Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China; School of Life Sciences, Peking University, Beijing, China.
| | - Yu Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lumeng Jia
- School of Life Sciences, Peking University, Beijing, China
| | - Ruifeng Li
- School of Life Sciences, Peking University, Beijing, China
| | - Yongchun Zuo
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
8
|
Liu G, Song S, Zhang Q, Dong B, Sun Y, Liu G, Zhao X. Epigenetic Marks and Variation of Sequence-Based Information Along Genomic Regions Are Predictive of Recombination Hot/Cold Spots in Saccharomyces cerevisiae. Front Genet 2021; 12:705038. [PMID: 34267784 PMCID: PMC8276760 DOI: 10.3389/fgene.2021.705038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization and identification of recombination hotspots provide important insights into the mechanism of recombination and genome evolution. In contrast with existing sequence-based models for predicting recombination hotspots which were defined in a ORF-based manner, here, we first defined recombination hot/cold spots based on public high-resolution Spo11-oligo-seq data, then characterized them in terms of DNA sequence and epigenetic marks, and finally presented classifiers to identify hotspots. We found that, in addition to some previously discovered DNA-based features like GC-skew, recombination hotspots in yeast can also be characterized by some remarkable features associated with DNA physical properties and shape. More importantly, by using DNA-based features and several epigenetic marks, we built several classifiers to discriminate hotspots from coldspots, and found that SVM classifier performs the best with an accuracy of ∼92%, which is also the highest among the models in comparison. Feature importance analysis combined with prediction results show that epigenetic marks and variation of sequence-based features along the hotspots contribute dominantly to hotspot identification. By using incremental feature selection method, an optimal feature subset that consists of much less features was obtained without sacrificing prediction accuracy.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Shuangjian Song
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qiguo Zhang
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Biyu Dong
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yu Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guojun Liu
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiujuan Zhao
- School of Life Sciences and Technology, Inner Mongolia University of Science and Technology, Baotou, China.,Inner Mongolia Key Laboratory of Functional Genomics and Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
9
|
Usui T, Shinohara A. Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 2021; 9:635383. [PMID: 33842461 PMCID: PMC8027355 DOI: 10.3389/fcell.2021.635383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Exogenous double-strand breaks (DSBs) induce a DNA damage response during mitosis as well as meiosis. The DNA damage response is mediated by a cascade involving Mec1/Tel1 (ATR/ATM) and Rad53 (Chk2) kinases. Meiotic cells are programmed to form DSBs for the initiation of meiotic recombination. In budding yeast, Spo11-mediated meiotic DSBs activate Mec1/Tel1, but not Rad53; however, the mechanism underlying the insensitivity of Rad53 to meiotic DSBs remains largely unknown. In this study, we found that meiotic cells activate Rad53 in response to exogenous DSBs and that this activation is dependent on an epigenetic marker, Dot1-dependent histone H3K79 methylation, which becomes a scaffold of an Rad53 mediator, Rad9, an ortholog of 53BP1. In contrast, Rad9 is insensitive to meiotic programmed DSBs. This insensitiveness of Rad9 derives from its inability to bind to the DSBs. Indeed, artificial tethering of Rad9 to the meiotic DSBs activated Rad53. The artificial activation of Rad53 kinase in meiosis decreases the repair of meiotic DSBs. These results suggest that the suppression of Rad53 activation is a key event in initiating a meiotic program that repairs programmed DSBs.
Collapse
Affiliation(s)
- Takehiko Usui
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Badjatia N, Rossi MJ, Bataille AR, Mittal C, Lai WKM, Pugh BF. Acute stress drives global repression through two independent RNA polymerase II stalling events in Saccharomyces. Cell Rep 2021; 34:108640. [PMID: 33472084 PMCID: PMC7879390 DOI: 10.1016/j.celrep.2020.108640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022] Open
Abstract
In multicellular eukaryotes, RNA polymerase (Pol) II pauses transcription ~30-50 bp after initiation. While the budding yeast Saccharomyces has its transcription mechanisms mostly conserved with other eukaryotes, it appears to lack this fundamental promoter-proximal pausing. However, we now report that nearly all yeast genes, including constitutive and inducible genes, manifest two distinct transcriptional stall sites that are brought on by acute environmental signaling (e.g., peroxide stress). Pol II first stalls at the pre-initiation stage before promoter clearance, but after DNA melting and factor acquisition, and may involve inhibited dephosphorylation. The second stall occurs at the +2 nucleosome. It acquires most, but not all, elongation factor interactions. Its regulation may include Bur1/Spt4/5. Our results suggest that a double Pol II stall is a mechanism to downregulate essentially all genes in concert.
Collapse
Affiliation(s)
- Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|
12
|
Klein-Brill A, Joseph-Strauss D, Appleboim A, Friedman N. Dynamics of Chromatin and Transcription during Transient Depletion of the RSC Chromatin Remodeling Complex. Cell Rep 2020; 26:279-292.e5. [PMID: 30605682 PMCID: PMC6315372 DOI: 10.1016/j.celrep.2018.12.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/03/2022] Open
Abstract
Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rapid clearance of the remodeler affects nucleosome locations. Specifically, depletion of Sth1, the catalytic subunit of the RSC (remodel the structure of chromatin) complex, leads to rapid fill-in of nucleosome-free regions at gene promoters. These changes are reversible upon reintroduction of Sth1 and do not depend on DNA replication. RSC-dependent nucleosome positioning is pivotal in maintaining promoters of lowly expressed genes free from nucleosomes. In contrast, we observe that upon acute stress, the RSC is not necessary for the transcriptional response. Moreover, RSC-dependent nucleosome positions are tightly related to usage of specific transcription start sites. Our results suggest organizational principles that determine nucleosome positions with and without RSC and how these interact with the transcriptional process. Screen of all yeast ATP-dependent remodelers with a conditional degradation system RSC depletion leads to rapid replication-independent NFR fill-in Recovery of RSC fully reverses NFR fill-in and transcriptional changes RSC-dependent nucleosome positioning directly affect transcription start site choice
Collapse
Affiliation(s)
- Avital Klein-Brill
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daphna Joseph-Strauss
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Appleboim
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Friedman
- School of Engineering and Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
13
|
Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018; 9:mBio.01292-18. [PMID: 30108170 PMCID: PMC6094484 DOI: 10.1128/mbio.01292-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.
Collapse
|
14
|
Abstract
The precise positioning of nucleosomes along the underlying DNA is critical for a variety of biological processes, especially in regulating transcription. The interplay between nucleosomes and transcription factors for accessing the underlying DNA sequences is one of the key determinants that affect transcriptional regulation. Moreover, nucleosomes with various packing statuses confer distinct functions in regulating gene expressions in response to various internal or external signals. Therefore, global mapping of nucleosome positions is one informative way to elucidate the relationship between patterns of nucleosome positioning/occupancy and transcriptional regulations. MNase digestion coupled with high-throughput sequencing (MNase-seq) has been utilized widely for global mapping of nucleosome positioning in eukaryotes that have a sequenced genome. We have developed a robust MNase-seq procedure in plants. It mainly includes plant nuclei isolation, treatment of purified nuclei with MNase, gel recovery of MNase-trimmed mononucleosomal DNA with an approximate size of 150 bp, MNase-seq library preparation followed by Illumina sequencing, and data analysis. MNase-seq has already been successfully applied to identify genome-wide nucleosome positioning in model plants, rice, and Arabidopsis thaliana.
Collapse
|
15
|
Rawal Y, Chereji RV, Qiu H, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev 2018; 32:695-710. [PMID: 29785963 PMCID: PMC6004078 DOI: 10.1101/gad.312850.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
Abstract
The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation. SWI/SNF also functions on a par with RSC at the most highly transcribed constitutively expressed genes, suggesting general cooperation by these remodelers for maximal transcription. SWI/SNF and RSC occupancies are greatest at the most highly expressed genes, consistent with their cooperative functions in nucleosome remodeling and transcriptional activation. Thus, SWI/SNF acts comparably with RSC in forming wide nucleosome-free NDRs to achieve high-level transcription but only at the most highly expressed genes exhibiting the greatest SWI/SNF occupancies.
Collapse
Affiliation(s)
- Yashpal Rawal
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongfang Qiu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudha Ananthakrishnan
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - Chhabi K Govind
- Department of Biological Science, Oakland University, Rochester, Michigan 48309, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Le Gros MA, Clowney EJ, Magklara A, Yen A, Markenscoff-Papadimitriou E, Colquitt B, Myllys M, Kellis M, Lomvardas S, Larabell CA. Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo. Cell Rep 2017; 17:2125-2136. [PMID: 27851973 DOI: 10.1016/j.celrep.2016.10.060] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/28/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatin toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.
Collapse
Affiliation(s)
- Mark A Le Gros
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; National Center for X-Ray Tomography, University of California San Francisco, San Francisco, CA 94158, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - E Josephine Clowney
- Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Angeliki Magklara
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | | | - Bradley Colquitt
- Program in Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Markko Myllys
- Department of Physics, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Stavros Lomvardas
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA; Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Program in Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Carolyn A Larabell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; National Center for X-Ray Tomography, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Chia M, Tresenrider A, Chen J, Spedale G, Jorgensen V, Ünal E, van Werven FJ. Transcription of a 5' extended mRNA isoform directs dynamic chromatin changes and interference of a downstream promoter. eLife 2017; 6:e27420. [PMID: 28906248 PMCID: PMC5655139 DOI: 10.7554/elife.27420] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
Cell differentiation programs require dynamic regulation of gene expression. During meiotic prophase in Saccharomyces cerevisiae, expression of the kinetochore complex subunit Ndc80 is downregulated by a 5' extended long undecoded NDC80 transcript isoform. Here we demonstrate a transcriptional interference mechanism that is responsible for inhibiting expression of the coding NDC80 mRNA isoform. Transcription from a distal NDC80 promoter directs Set1-dependent histone H3K4 dimethylation and Set2-dependent H3K36 trimethylation to establish a repressive chromatin state in the downstream canonical NDC80 promoter. As a consequence, NDC80 expression is repressed during meiotic prophase. The transcriptional mechanism described here is rapidly reversible, adaptable to fine-tune gene expression, and relies on Set2 and the Set3 histone deacetylase complex. Thus, expression of a 5' extended mRNA isoform causes transcriptional interference at the downstream promoter. We demonstrate that this is an effective mechanism to promote dynamic changes in gene expression during cell differentiation.
Collapse
Affiliation(s)
| | - Amy Tresenrider
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jingxun Chen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Victoria Jorgensen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Elçin Ünal
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
18
|
Mimitou EP, Yamada S, Keeney S. A global view of meiotic double-strand break end resection. Science 2017; 355:40-45. [PMID: 28059759 DOI: 10.1126/science.aak9704] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5'→3' resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution in Saccharomyces cerevisiae Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Histone Acetylation, Not Stoichiometry, Regulates Linker Histone Binding in Saccharomyces cerevisiae. Genetics 2017; 207:347-355. [PMID: 28739661 DOI: 10.1534/genetics.117.1132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Linker histones play a fundamental role in shaping chromatin structure, but how their interaction with chromatin is regulated is not well understood. In this study, we used a combination of genetic and genomic approaches to explore the regulation of linker histone binding in the yeast, Saccharomyces cerevisiae We found that increased expression of Hho1, the yeast linker histone, resulted in a severe growth defect, despite only subtle changes in chromatin structure. Further, this growth defect was rescued by mutations that increase histone acetylation. Consistent with this, genome-wide analysis of linker histone occupancy revealed an inverse correlation with histone tail acetylation in both yeast and mouse embryonic stem cells. Collectively, these results suggest that histone acetylation negatively regulates linker histone binding in S. cerevisiae and other organisms and provide important insight into how chromatin structure is regulated and maintained to both facilitate and repress transcription.
Collapse
|
20
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
21
|
Abstract
Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.
Collapse
|
22
|
González S, García A, Vázquez E, Serrano R, Sánchez M, Quintales L, Antequera F. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome. Genome Res 2016; 26:1532-1543. [PMID: 27662899 PMCID: PMC5088595 DOI: 10.1101/gr.207241.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
In the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae. This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open the possibility of designing coding and noncoding DNA molecules capable of directing their own nucleosomal organization.
Collapse
Affiliation(s)
- Sara González
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rebeca Serrano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Informática y Automática, Universidad de Salamanca/Facultad de Ciencias, 37007 Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
23
|
Nocetti N, Whitehouse I. Nucleosome repositioning underlies dynamic gene expression. Genes Dev 2016; 30:660-72. [PMID: 26966245 PMCID: PMC4803052 DOI: 10.1101/gad.274910.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
Nocetti and Whitehouse report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.
Collapse
Affiliation(s)
- Nicolas Nocetti
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
24
|
Quintales L, Soriano I, Vázquez E, Segurado M, Antequera F. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins. Open Biol 2016; 5:140218. [PMID: 25854683 PMCID: PMC4422121 DOI: 10.1098/rsob.140218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.
Collapse
Affiliation(s)
- Luis Quintales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Enrique Vázquez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Abstract
The 137 ribosomal protein genes (RPG) of Saccharomyces provide a model for gene coregulation. Reja et al. examine the positional and functional organization of their regulators (Rap1, Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo. The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.
Collapse
Affiliation(s)
- Rohit Reja
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sujana Ghosh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
26
|
Hillmer M, Wagner D, Summerer A, Daiber M, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet 2015; 25:484-96. [PMID: 26614388 DOI: 10.1093/hmg/ddv487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - David Wagner
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Michaela Daiber
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35242, USA and
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
27
|
Hu J, Donahue G, Dorsey J, Govin J, Yuan Z, Garcia BA, Shah PP, Berger SL. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis. Cell Rep 2015; 13:1772-80. [PMID: 26628362 DOI: 10.1016/j.celrep.2015.10.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 08/10/2015] [Accepted: 10/24/2015] [Indexed: 01/02/2023] Open
Abstract
Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.
Collapse
Affiliation(s)
- Jialei Hu
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Dorsey
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Laboratoire Biologie à Grande Echelle, INSERM, U1038 Grenoble, France
| | - Zuofei Yuan
- Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parisha P Shah
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Beh LY, Müller MM, Muir TW, Kaplan N, Landweber LF. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome. Genome Res 2015; 25:1727-38. [PMID: 26330564 PMCID: PMC4617968 DOI: 10.1101/gr.188516.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these “seed” nucleosomes—together with trans-acting factors—may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.
Collapse
Affiliation(s)
- Leslie Y Beh
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Manuel M Müller
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Noam Kaplan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
29
|
High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in Saccharomyces cerevisiae. Genetics 2015; 201:525-42. [PMID: 26245832 DOI: 10.1534/genetics.115.178293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/02/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination initiates with DNA double-strand breaks (DSBs) made by Spo11. In Saccharomyces cerevisiae, many DSBs occur in "hotspots" coinciding with nucleosome-depleted gene promoters. Transcription factors (TFs) stimulate DSB formation in some hotspots, but TF roles are complex and variable between locations. Until now, available data for TF effects on global DSB patterns were of low spatial resolution and confined to a single TF. Here, we examine at high resolution the contributions of two TFs to genome-wide DSB distributions: Bas1, which was known to regulate DSB activity at some loci, and Ino4, for which some binding sites were known to be within strong DSB hotspots. We examined fine-scale DSB distributions in TF mutant strains by deep sequencing oligonucleotides that remain covalently bound to Spo11 as a byproduct of DSB formation, mapped Bas1 and Ino4 binding sites in meiotic cells, evaluated chromatin structure around DSB hotspots, and measured changes in global messenger RNA levels. Our findings show that binding of these TFs has essentially no predictive power for DSB hotspot activity and definitively support the hypothesis that TF control of DSB numbers is context dependent and frequently indirect. TFs often affected the fine-scale distributions of DSBs within hotspots, and when seen, these effects paralleled effects on local chromatin structure. In contrast, changes in DSB frequencies in hotspots did not correlate with quantitative measures of chromatin accessibility, histone H3 lysine 4 trimethylation, or transcript levels. We also ruled out hotspot competition as a major source of indirect TF effects on DSB distributions. Thus, counter to prevailing models, roles of these TFs on DSB hotspot strength cannot be simply explained via chromatin "openness," histone modification, or compensatory interactions between adjacent hotspots.
Collapse
|
30
|
Székvölgyi L, Ohta K, Nicolas A. Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb Perspect Biol 2015; 7:7/5/a016527. [PMID: 25934010 DOI: 10.1101/cshperspect.a016527] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs) catalyzed by the evolutionary conserved Spo11 protein and accessory factors. DSBs are nonrandomly distributed along the chromosomes displaying a significant (~400-fold) variation of frequencies, which ultimately establishes local and long-range "hot" and "cold" domains for recombination initiation. This remarkable patterning is set up within the chromatin context, involving multiple layers of biochemical activity. Predisposed chromatin accessibility, but also a range of transcription factors, chromatin remodelers, and histone modifiers likely promote local recruitment of DSB proteins, as well as mobilization, sliding, and eviction of nucleosomes before and after the occurrence of meiotic DSBs. Here, we assess our understanding of meiotic DSB formation and methods to change its patterning. We also synthesize current heterogeneous knowledge on how histone modifications and chromatin remodeling may impact this decisive step in meiotic recombination.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, 113-8654 Tokyo, Japan
| | - Alain Nicolas
- Institut Curie Centre de Recherche, UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris CEDEX 05, France
| |
Collapse
|
31
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
32
|
Rhee HS, Bataille AR, Zhang L, Pugh BF. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 2014; 159:1377-88. [PMID: 25480300 PMCID: PMC4258235 DOI: 10.1016/j.cell.2014.10.054] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/19/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Genes are packaged into nucleosomal arrays, each nucleosome typically having two copies of histones H2A, H2B, H3, and H4. Histones have distinct posttranslational modifications, variant isoforms, and dynamics. Whether each histone copy within a nucleosome has distinct properties, particularly in relation to the direction of transcription, is unknown. Here we use chromatin immunoprecipitation-exonuclease (ChIP-exo) to resolve the organization of individual histones on a genomic scale. We detect widespread subnucleosomal structures in dynamic chromatin, including what appear to be half-nucleosomes consisting of one copy of each histone. We also detect interactions of H3 tails with linker DNA between nucleosomes, which may be negatively regulated by methylation of H3K36. Histone variant H2A.Z is enriched on the promoter-distal half of the +1 nucleosome, whereas H2BK123 ubiquitylation and H3K9 acetylation are enriched on the promoter-proximal half in a transcription-linked manner. Subnucleosome asymmetries might serve as molecular beacons that guide transcription.
Collapse
Affiliation(s)
- Ho Sung Rhee
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Liye Zhang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
33
|
Kuang Z, Cai L, Zhang X, Ji H, Tu BP, Boeke JD. High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast. Nat Struct Mol Biol 2014; 21:854-63. [PMID: 25173176 PMCID: PMC4190017 DOI: 10.1038/nsmb.2881] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a 'just-in-time supply chain' by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications relative to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and 'sharpness' relative to RNA expression both within and between cycle phases. Chromatin-modifier occupancy reveals subtly distinct spatial and temporal patterns compared to those of the modifications themselves.
Collapse
Affiliation(s)
- Zheng Kuang
- High Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ling Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xuekui Zhang
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Benjamin P. Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jef D. Boeke
- High Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
34
|
Fowler KR, Sasaki M, Milman N, Keeney S, Smith GR. Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res 2014; 24:1650-1664. [PMID: 25024163 PMCID: PMC4199369 DOI: 10.1101/gr.172122.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/01/2014] [Indexed: 12/30/2022]
Abstract
Fission yeast Rec12 (Spo11 homolog) initiates meiotic recombination by forming developmentally programmed DNA double-strand breaks (DSBs). DSB distributions influence patterns of heredity and genome evolution, but the basis of the highly nonrandom choice of Rec12 cleavage sites is poorly understood, largely because available maps are of relatively low resolution and sensitivity. Here, we determined DSBs genome-wide at near-nucleotide resolution by sequencing the oligonucleotides attached to Rec12 following DNA cleavage. The single oligonucleotide size class allowed us to deeply sample all break events. We find strong evidence across the genome for differential DSB repair accounting for crossover invariance (constant cM/kb in spite of DSB hotspots). Surprisingly, about half of all crossovers occur in regions where DSBs occur at low frequency and are widely dispersed in location from cell to cell. These previously undetected, low-level DSBs thus play an outsized and crucial role in meiosis. We further find that the influence of underlying nucleotide sequence and chromosomal architecture differs in multiple ways from that in budding yeast. DSBs are not strongly restricted to nucleosome-depleted regions, as they are in budding yeast, but are nevertheless spatially influenced by chromatin structure. Our analyses demonstrate that evolutionarily fluid factors contribute to crossover initiation and regulation.
Collapse
Affiliation(s)
- Kyle R Fowler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mariko Sasaki
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Neta Milman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
35
|
Yadav VK, Thakur RK, Eckloff B, Baral A, Singh A, Halder R, Kumar A, Alam MP, Kundu TK, Pandita R, Pandita TK, Wieben ED, Chowdhury S. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity. Nucleic Acids Res 2014; 42:9602-11. [PMID: 25081206 PMCID: PMC4150765 DOI: 10.1093/nar/gku596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/29/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.
Collapse
Affiliation(s)
- Vinod Kumar Yadav
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ram Krishna Thakur
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Bruce Eckloff
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Aradhita Baral
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Ankita Singh
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Rashi Halder
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India
| | - Akinchan Kumar
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammad Parwez Alam
- Dr B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110 007, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Raj Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Eric D Wieben
- Advanced Genomics Technology Center, Mayo Clinic, Rochester, MN, USA
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
36
|
Mosesson Y, Voichek Y, Barkai N. Divergence and selectivity of expression-coupled histone modifications in budding yeasts. PLoS One 2014; 9:e101538. [PMID: 25007273 PMCID: PMC4090005 DOI: 10.1371/journal.pone.0101538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Various histone modifications are widely associated with gene expression, but their functional selectivity at individual genes remains to be characterized. Here, we identify widespread differences between genome-wide patterns of two prominent marks, H3K9ac and H3K4me3, in budding yeasts. As well as characteristic gene profiles, relative modification levels vary significantly amongst genes, irrespective of expression. Interestingly, we show that these differences couple to contrasting features: higher methylation to essential, periodically expressed, 'DPN' (Depleted Proximal Nucleosome) genes, and higher acetylation to non-essential, responsive, 'OPN' (Occupied Proximal Nucleosome) genes. Thus, H3K4me3 may generally associate with expression stability, and H3K9ac, with variability. To evaluate this notion, we examine their association with expression divergence between the closely related species, S. cerevisiae and S. paradoxus. Although individually well conserved at orthologous genes, changes between modifications are mostly uncorrelated, indicating largely non-overlapping regulatory mechanisms. Notably, we find that inter-species differences in methylation, but not acetylation, are well correlated with expression changes, thereby proposing H3K4me3 as a candidate regulator of expression divergence. Taken together, our results suggest distinct evolutionary roles for expression-linked modifications, wherein H3K4me3 may contribute to stabilize average expression, whilst H3K9ac associates with more indirect aspects such as responsiveness.
Collapse
Affiliation(s)
- Yaron Mosesson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
37
|
Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS One 2014; 9:e96648. [PMID: 24797370 PMCID: PMC4010517 DOI: 10.1371/journal.pone.0096648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs) in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation) in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.
Collapse
|
38
|
Ito M, Kugou K, Fawcett JA, Mura S, Ikeda S, Innan H, Ohta K. Meiotic recombination cold spots in chromosomal cohesion sites. Genes Cells 2014; 19:359-73. [PMID: 24635992 DOI: 10.1111/gtc.12138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/25/2013] [Indexed: 01/26/2023]
Abstract
Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.
Collapse
Affiliation(s)
- Masaru Ito
- Department of Life Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|
40
|
Elfving N, Chereji RV, Bharatula V, Björklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82. [PMID: 24598258 PMCID: PMC4027177 DOI: 10.1093/nar/gku176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling.
Collapse
Affiliation(s)
- Nils Elfving
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Răzvan V Chereji
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
41
|
Flores O, Deniz Ö, Soler-López M, Orozco M. Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res 2014; 42:4934-46. [PMID: 24586063 PMCID: PMC4005669 DOI: 10.1093/nar/gku165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleosome organization plays a key role in the regulation of gene expression. However, despite the striking advances in the accuracy of nucleosome maps, there are still severe discrepancies on individual nucleosome positioning and how this influences gene regulation. The variability among nucleosome maps, which precludes the fine analysis of nucleosome positioning, might emerge from diverse sources. We have carefully inspected the extrinsic factors that may induce diversity by the comparison of microccocal nuclease (MNase)-Seq derived nucleosome maps generated under distinct conditions. Furthermore, we have also explored the variation originated from intrinsic nucleosome dynamics by generating additional maps derived from cell cycle synchronized and asynchronous yeast cultures. Taken together, our study has enabled us to measure the effect of noise in nucleosome occupancy and positioning and provides insights into the underlying determinants. Furthermore, we present a systematic approach that may guide the standardization of MNase-Seq experiments in order to generate reproducible genome-wide nucleosome patterns.
Collapse
Affiliation(s)
- Oscar Flores
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
Park D, Morris AR, Battenhouse A, Iyer VR. Simultaneous mapping of transcript ends at single-nucleotide resolution and identification of widespread promoter-associated non-coding RNA governed by TATA elements. Nucleic Acids Res 2014; 42:3736-49. [PMID: 24413663 PMCID: PMC3973313 DOI: 10.1093/nar/gkt1366] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Understanding the relationships between regulatory factor binding, chromatin structure, cis-regulatory elements and RNA-regulation mechanisms relies on accurate information about transcription start sites (TSS) and polyadenylation sites (PAS). Although several approaches have identified transcript ends in yeast, limitations of resolution and coverage have remained, and definitive identification of TSS and PAS with single-nucleotide resolution has not yet been achieved. We developed SMORE-seq (simultaneous mapping of RNA ends by sequencing) and used it to simultaneously identify the strongest TSS for 5207 (90%) genes and PAS for 5277 (91%) genes. The new transcript annotations identified by SMORE-seq showed improved distance relationships with TATA-like regulatory elements, nucleosome positions and active RNA polymerase. We found 150 genes whose TSS were downstream of the annotated start codon, and additional analysis of evolutionary conservation and ribosome footprinting suggests that these protein-coding sequences are likely to be mis-annotated. SMORE-seq detected short non-coding RNAs transcribed divergently from more than a thousand promoters in wild-type cells under normal conditions. These divergent non-coding RNAs were less evident at promoters containing canonical TATA boxes, suggesting a model where transcription initiation at promoters by RNAPII is bidirectional, with TATA elements serving to constrain the directionality of initiation.
Collapse
Affiliation(s)
- Daechan Park
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to detect genome-wide interactions between a protein of interest and DNA in vivo. Loci showing strong enrichment over adjacent background regions are typically considered to be sites of binding. Insufficient attention has been given to systematic artifacts inherent to the ChIP-seq procedure that might generate a misleading picture of protein binding to certain loci. We show here that unrelated transcription factors appear to consistently bind to the gene bodies of highly transcribed genes in yeast. Strikingly, several types of negative control experiments, including a protein that is not expected to bind chromatin, also showed similar patterns of strong binding within gene bodies. These false positive signals were evident across sequencing platforms and immunoprecipitation protocols, as well as in previously published datasets from other labs. We show that these false positive signals derive from high rates of transcription, and are inherent to the ChIP procedure, although they are exacerbated by sequencing library construction procedures. This expression bias is strong enough that a known transcriptional repressor like Tup1 can erroneously appear to be an activator. Another type of background bias stems from the inherent nucleosomal structure of chromatin, and can potentially make it seem like certain factors bind nucleosomes even when they don't. Our analysis suggests that a mock ChIP sample offers a better normalization control for the expression bias, whereas the ChIP input is more appropriate for the nucleosomal periodicity bias. While these controls alleviate the effect of the biases to some extent, they are unable to eliminate it completely. Caution is therefore warranted regarding the interpretation of data that seemingly show the association of various transcription and chromatin factors with highly transcribed genes in yeast.
Collapse
|
44
|
SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 2013; 154:1246-56. [PMID: 24034248 DOI: 10.1016/j.cell.2013.08.043] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
SWR-C/SWR1 and INO80 are multisubunit complexes that catalyze the deposition and removal, respectively, of histone variant H2A.Z from the first nucleosome at the start of genes. How they target and engage these +1 nucleosomes is unclear. Using ChIP-exo, we identified the subnucleosomal placement of 20 of their subunits across the yeast genome. The Swc2 subunit of SWR-C bound a narrowly defined region in the adjacent nucleosome-free region (NFR), where it positioned the Swr1 subunit over one of two sites of H2A.Z deposition at +1. The genomic binding maps suggest that many subunits have a rather plastic organization that allows subunits to exchange between the two complexes. One outcome of promoting H2A/H2A.Z exchange was an enhanced turnover of entire nucleosomes, thereby creating dynamic chromatin at the start of genes. Our findings provide unifying concepts on how these two opposing chromatin remodeling complexes function selectively at the +1 nucleosome of nearly all genes.
Collapse
|
45
|
Soriano I, Quintales L, Antequera F. Clustered regulatory elements at nucleosome-depleted regions punctuate a constant nucleosomal landscape in Schizosaccharomyces pombe. BMC Genomics 2013; 14:813. [PMID: 24256300 PMCID: PMC4046669 DOI: 10.1186/1471-2164-14-813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nucleosomes facilitate the packaging of the eukaryotic genome and modulate the access of regulators to DNA. A detailed description of the nucleosomal organization under different transcriptional programmes is essential to understand their contribution to genomic regulation. RESULTS To visualize the dynamics of individual nucleosomes under different transcriptional programmes we have generated high-resolution nucleosomal maps in Schizosaccharomyces pombe. We show that 98.5% of the genome remains almost invariable during mitosis and meiosis while remodelling is limited to approximately 1100 nucleosomes in the promoters of a subset of meiotic genes. These inducible nucleosome-depleted regions (NDR) and also those constitutively present in the genome overlap precisely with clusters of binding sites for transcription factors (TF) specific for meiosis and for different functional classes of genes, respectively. Deletion of two TFs affects only a small fraction of all the NDRs to which they bind in vivo, indicating that TFs collectively contribute to NDR maintenance. CONCLUSIONS Our results show that the nucleosomal profile in S. pombe is largely maintained under different physiological conditions and patterns of gene expression. This relatively constant landscape favours the concentration of regulators in constitutive and inducible NDRs. The combinatorial analysis of binding motifs in this discrete fraction of the genome will facilitate the definition of the transcriptional regulatory networks.
Collapse
Affiliation(s)
- Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
46
|
Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 2013; 9:e1003922. [PMID: 24244190 PMCID: PMC3828143 DOI: 10.1371/journal.pgen.1003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022] Open
Abstract
The vast majority of meiotic recombination events (crossovers (COs) and non-crossovers (NCOs)) cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called “pollen-typing”, we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO) events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1) and their track lengths were quite small (a few hundred base pairs). We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots. During meiosis, genomes are reshuffled by recombination between homologous chromosomes. Reciprocal recombination events called crossovers are clustered in several kilobase-wide regions called hotspots, where their frequency is greatly enhanced compared to adjacent regions. Our understanding of hotspot organization is based on analyses performed in only a few species and rules differ between species. For the first time, hundreds of recombination events were analyzed in Arabidopsis thaliana revealing several new features: (i) crossovers are concentrated in hotspots where their rate reaches up to 50 times the genome average; (ii) non-crossovers events, (also called gene conversions not associated with crossovers) also occur in hotspots but at very different levels; and (iii) in the absence of the recombination protein MSH4, the crossover rate is dramatically reduced (70 times less than the wild-type level) and the crossover distribution within a hotspot is also largely modified; unexpectedly, the non-crossover rate was also altered (15% of the wild-type level at a hotspot). Finally we showed that factors acting in cis and in trans may influence the level and distribution of crossovers at and between hotspots.
Collapse
|
47
|
Abstract
Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure. Therefore, investigating features and roles of meiotic chromatin is crucial to elucidate the in vivo mechanism of meiotic recombination initiation. Recent progress in genome-wide chromatin analyses tremendously improved our understanding on this point, but many critical questions are left unaddressed. In this review, we summarize current knowledge in the field, and also discuss the future problems that must be solved to understand the role of chromatin structure in meiotic recombination.
Collapse
Affiliation(s)
- Takatomi Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | | |
Collapse
|
48
|
Lubliner S, Keren L, Segal E. Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Res 2013; 41:5569-81. [PMID: 23599004 PMCID: PMC3675475 DOI: 10.1093/nar/gkt256] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The core promoter is the region in which RNA polymerase II is recruited to the DNA and acts to initiate transcription, but the extent to which the core promoter sequence determines promoter activity levels is largely unknown. Here, we identified several base content and k-mer sequence features of the yeast core promoter sequence that are highly predictive of maximal promoter activity. These features are mainly located in the region 75 bp upstream and 50 bp downstream of the main transcription start site, and their associations hold for both constitutively active promoters and promoters that are induced or repressed in specific conditions. Our results unravel several architectural features of yeast core promoters and suggest that the yeast core promoter sequence downstream of the TATA box (or of similar sequences involved in recruitment of the pre-initiation complex) is a major determinant of maximal promoter activity. We further show that human core promoters also contain features that are indicative of maximal promoter activity; thus, our results emphasize the important role of the core promoter sequence in transcriptional regulation.
Collapse
Affiliation(s)
- Shai Lubliner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
49
|
Teif VB, Erdel F, Beshnova DA, Vainshtein Y, Mallm JP, Rippe K. Taking into account nucleosomes for predicting gene expression. Methods 2013; 62:26-38. [PMID: 23523656 DOI: 10.1016/j.ymeth.2013.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/10/2013] [Indexed: 01/10/2023] Open
Abstract
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum-DKFZ & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 2013; 9:e1003329. [PMID: 23505383 PMCID: PMC3591295 DOI: 10.1371/journal.pgen.1003329] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/04/2013] [Indexed: 01/30/2023] Open
Abstract
Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. Although many aging regulators have been discovered, we are still uncovering how each contributes to the basic biology underlying cell lifespan and how certain longevity-promoting regimens, such as calorie restriction, manipulate the aging process across species. Since many cellular aging processes between human cells and budding yeast are related, we examined a collection of genetically diverse yeast and discovered that a genetic variant in vineyard yeast confers a 41% lifespan increase. The responsible sequence in the vineyard yeast reduces the amount of DNA replication that initiates at the ribosomal DNA (rDNA) locus, a chromosome-sized region of the genome that is dedicated to the production of ribosomal RNA required for protein synthesis and growth. Strikingly, we find that calorie restriction conditions also reduce rDNA replication, potentially promoting longevity by the same mechanism. While the rDNA has been previously linked to lifespan control, how this single locus affects global cell function has remained elusive. We find that a weakly replicating rDNA promotes DNA replication across the rest of the cell's genome, perhaps through the re-allocation of replication resources from decreased rDNA demand. Our findings suggest that the cell's inability to complete genome replication is one of the major impediments to yeast longevity.
Collapse
|