1
|
Coppage A, Bhatnagar E, Joshi M, Siddiqui M, McRae L, Conant GC. A Class of Allopolyploidy Showing High Duplicate Retention and Continued Homoeologous Exchanges. Genome Biol Evol 2025; 17:evaf054. [PMID: 40103234 PMCID: PMC11965797 DOI: 10.1093/gbe/evaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/30/2025] [Accepted: 03/16/2025] [Indexed: 03/20/2025] Open
Abstract
We describe four ancient polyploidy events where the descendant taxa retain many more duplicated gene copies than has been seen in other paleopolyploidies of similar ages. Using POInT (the Polyploidy Orthology Inference Tool), we modeled the evolution of these four events, showing that they do not represent recent independent polyploidies despite the rarity of shared gene losses. We find that these events have elevated rates of interlocus gene conversion and that these gene conversion events are spatially clustered in the genomes. Regions of gene conversion also show very low synonymous divergence between the corresponding paralogous genes. We suggest that these genomes have experienced a delay in the return to a diploid state after their polyploidies. Under this hypothesis, homoeologous exchanges between the duplicated regions created by the polyploidy persist to this day, explaining the high rates of duplicate retention. Genomes with these characteristics arguably represent a new class of paleopolyploid taxa because they possess evolutionary patterns distinct from the more common and well-known paradigm of the rapid loss of many of the duplicated pairs created by polyploidy.
Collapse
Affiliation(s)
- Abbey Coppage
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Esha Bhatnagar
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mitali Joshi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mustafa Siddiqui
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Logan McRae
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Gavin C Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Ogawa T, Nonaka Y, Shoji H, Nakamura T. Evolution and function of galectins in Xenopus laevis: Comparison with mammals and new perspectives. BBA ADVANCES 2025; 7:100157. [PMID: 40224191 PMCID: PMC11986560 DOI: 10.1016/j.bbadva.2025.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Galectins are metal-independent sugar-binding proteins that recognize galactose (the β-galactoside structure) and regulate the cross-linking of sugar chains between cells and the extracellular matrix. Their specificity for galactose is attributed to their highly conserved carbohydrate recognition domain. Galectins participate in biological processes across species, including development, differentiation, morphogenesis, tumor progression, metastasis, immunity, and apoptosis. However, the relationship between the binding of galectin to sugar chains (glycans) and their biological functions remains unclear. Thus, a comprehensive functional analysis of galectins is required to better characterize their evolutionarily conserved and unique functions. We have previously identified and characterized 12 Xenopus laevis galectins (xgalectins), the only non-mammalian vertebrate species in which galectins have been comprehensively characterized to date. In this review, we present the latest findings on the types and functions of xgalectins and discuss prospects for elucidating their diverse functions from an evolutionary perspective through comparisons with mammalian galectins.
Collapse
Affiliation(s)
- Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Genome Medical Science and Medical Genetics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Ishikawa, Japan
| | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
Shi T, Gao Z, Chen J, Van de Peer Y. Dosage sensitivity shapes balanced expression and gene longevity of homoeologs after whole-genome duplications in angiosperms. THE PLANT CELL 2024; 36:4323-4337. [PMID: 39121058 PMCID: PMC7616505 DOI: 10.1093/plcell/koae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Following whole-genome duplication (WGD), duplicate gene pairs (homoeologs) can evolve varying degrees of expression divergence. However, the determinants influencing these relative expression level differences (RFPKM) between homoeologs remain elusive. In this study, we analyzed the RFPKM between homoeologs in 3 angiosperms, Nymphaea colorata, Nelumbo nucifera, and Acorus tatarinowii, all having undergone a single WGD since the origin of angiosperms. Our results show significant positive correlations in RFPKM of homoeologs among tissues within the same species, and among orthologs across these 3 species, indicating convergent expression balance/bias between homoeologous gene copies following independent WGDs. We linked RFPKM between homoeologs to gene attributes associated with dosage-balance constraints, such as protein-protein interactions, lethal-phenotype scores in Arabidopsis (Arabidopsis thaliana) orthologs, domain numbers, and expression breadth. Notably, homoeologs with lower RFPKM often had more interactions and higher lethal-phenotype scores, indicating selective pressures favoring balanced expression. Also, homoeologs with lower RFPKM were more likely to be retained after WGDs in angiosperms. Within Nelumbo, greater RFPKM between homoeologs correlated with increased cis- and trans-regulatory differentiation between species, highlighting the ongoing escalation of gene expression divergence. We further found that expression degeneration in 1 copy of homoeologs is inclined toward nonfunctionalization. Our research highlights the importance of balanced expression, shaped by dosage-balance constraints, in the evolutionary retention of homoeologs in plants.
Collapse
Affiliation(s)
- Tao Shi
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Zhiyan Gao
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0028Pretoria, South-Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095Nanjing, China
| |
Collapse
|
4
|
Ban S, Suh HY, Lee SH, Kim SH, Oh S, Jung JH. Comparative transcriptome analysis of persimmon somatic mutants ( Diospyros kaki) identifies regulatory networks for fruit maturation and size. FRONTIERS IN PLANT SCIENCE 2024; 15:1448851. [PMID: 39157515 PMCID: PMC11327018 DOI: 10.3389/fpls.2024.1448851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Bud sports in fruit crops often result in new cultivars with unique traits, such as distinct fruit size and color, compared to their parent plants. This study investigates the phenotypic differences and gene expression patterns in Tonewase and Ohtanenashi persimmon bud sports compared to those in their parent, Hiratanenashi, based on RNA-seq data. Tonewase is characterized by early maturation, whereas Ohtanenashi is noted for its larger fruit size. Despite the importance of these traits in determining fruit quality, their molecular bases in persimmons have been understudied. We compared transcriptome-level differences during fruit development between the bud sport samples and their original cultivar. Comprehensive transcriptome analyses identified 15,814 differentially expressed genes and 26 modules via weighted gene co-expression network analysis. Certain modules exhibited unique expression patterns specific to the different cultivars during fruit development, likely contributing to the phenotypic differences observed. Specifically, M11, M16, M22, and M23 were uniquely expressed in Tonewase, whereas M13 and M24 showed distinct patterns in Ohtanenashi. By focusing on genes with distinct expression profiles, we aimed to uncover the genetic basis of cultivar-specific traits. Our findings suggest that changes in the expression of genes associated with ethylene and cell wall pathways may drive Tonewase's earlier maturation, whereas genes related to the cell cycle within the M24 module appear crucial for Ohtanenashi's larger fruit size. Additionally, ethylene and transcription factor genes within this module may contribute to the increased fruit size observed. This study elucidates the differences in transcriptomic changes during fruit development between the two bud sport samples and their original cultivar, enhancing our understanding of the genetic determinants influencing fruit size and maturation.
Collapse
Affiliation(s)
- Seunghyun Ban
- Department of Horticulture, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
- World Horti Center, Kyungpook National University, Sangju, Republic of Korea
| | - Hye-young Suh
- Sangju Persimmon Research Institute, Gyeongsangbuk-do Agricultural Research and Extension Services, Sangju, Republic of Korea
| | - Su Hyeon Lee
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Si-Hong Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Sewon Oh
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| |
Collapse
|
5
|
Cui L, Cheng H, Yang Z, Xia C, Zhang L, Kong X. Comparative Analysis Reveals Different Evolutionary Fates and Biological Functions in Wheat Duplicated Genes ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3021. [PMID: 37687268 PMCID: PMC10489728 DOI: 10.3390/plants12173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Wheat (Triticum aestivum L.) is a staple food crop that provides 20% of total human calorie consumption. Gene duplication has been considered to play an important role in evolution by providing new genetic resources. However, the evolutionary fates and biological functions of the duplicated genes in wheat remain to be elucidated. In this study, the resulting data showed that the duplicated genes evolved faster with shorter gene lengths, higher codon usage bias, lower expression levels, and higher tissue specificity when compared to non-duplicated genes. Our analysis further revealed functions of duplicated genes in various biological processes with significant enrichment to environmental stresses. In addition, duplicated genes derived from dispersed, proximal, tandem, transposed, and whole-genome duplication differed in abundance, evolutionary rate, gene compactness, expression pattern, and genetic diversity. Tandem and proximal duplicates experienced stronger selective pressure and showed a more compact gene structure with diverse expression profiles than other duplication modes. Moreover, genes derived from different duplication modes showed an asymmetrical evolutionary pattern for wheat A, B, and D subgenomes. Several candidate duplication hotspots associated with wheat domestication or polyploidization were characterized as potential targets for wheat molecular breeding. Our comprehensive analysis revealed the evolutionary trajectory of duplicated genes and laid the foundation for future functional studies on wheat.
Collapse
Affiliation(s)
- Licao Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Zhe Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Chuan Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Lichao Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.C.); (H.C.); (Z.Y.); (C.X.); (L.Z.)
| |
Collapse
|
6
|
Zhang B, Zheng H, Wu H, Wang C, Liang Z. Recent genome-wide replication promoted expansion and functional differentiation of the JAZs in soybeans. Int J Biol Macromol 2023; 238:124064. [PMID: 36933593 DOI: 10.1016/j.ijbiomac.2023.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Jasmonate Zim-domain (JAZ) protein is an inhibitor of the jasmonate (JA) signal transduction pathway, and plays an important role in regulating plant growth, development, and defense. However, there have been few studies on its function under environmental stress in soybeans. In this study, a total of 275 JAZs protein-coding genes were identified in 29 soybean genomes. SoyC13 contained the least JAZ family members (26 JAZs), which was twice as high as AtJAZs. The genes are mainly generated by recent genome-wide replication (WGD), which replicated during the Late Cenozoic Ice Age. In addition, transcriptome analysis showed that the differences in gene expression patterns in the roots, stems, and leaves of the 29 cultivars at the V1 stage were not significant, but there was a significant difference among the three seed development stages. Finally, qRT-PCR results showed that GmJAZs responded the most strongly to heat stress, followed by drought and cold stress. This is consistent with the reason for their expansion and promoter analysis results. Therefore, we explored the significant role of conserved, duplicated, and neofunctionalized JAZs in the evolution of soybeans, which will contribute to the functional characterization of GmJAZ and the improvement of crops.
Collapse
Affiliation(s)
- Bingxue Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zheng
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haihang Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunli Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi 712100, China.
| | - Zongsuo Liang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Brasó-Vives M, Marlétaz F, Echchiki A, Mantica F, Acemel RD, Gómez-Skarmeta JL, Hartasánchez DA, Le Targa L, Pontarotti P, Tena JJ, Maeso I, Escriva H, Irimia M, Robinson-Rechavi M. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol 2022; 23:243. [PMID: 36401278 PMCID: PMC9673378 DOI: 10.1186/s13059-022-02808-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE), University College London, London, UK
| | - Amina Echchiki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Federica Mantica
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael D Acemel
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - José L Gómez-Skarmeta
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Diego A Hartasánchez
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lorlane Le Targa
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- CNRS, Paris, France
| | - Juan J Tena
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Ignacio Maeso
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hector Escriva
- Biologie Intégrative des Organismes Marins, BIOM, CNRS-Sorbonne University, Banyuls-sur-Mer, France
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
8
|
Xiong H, Wang D, Shao C, Yang X, Yang J, Ma T, Davis CC, Liu L, Xi Z. Species Tree Estimation and the Impact of Gene Loss Following Whole-Genome Duplication. Syst Biol 2022; 71:1348-1361. [PMID: 35689633 PMCID: PMC9558847 DOI: 10.1093/sysbio/syac040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Whole-genome duplication (WGD) occurs broadly and repeatedly across the history of eukaryotes and is recognized as a prominent evolutionary force, especially in plants. Immediately following WGD, most genes are present in two copies as paralogs. Due to this redundancy, one copy of a paralog pair commonly undergoes pseudogenization and is eventually lost. When speciation occurs shortly after WGD; however, differential loss of paralogs may lead to spurious phylogenetic inference resulting from the inclusion of pseudoorthologs–paralogous genes mistakenly identified as orthologs because they are present in single copies within each sampled species. The influence and impact of including pseudoorthologs versus true orthologs as a result of gene extinction (or incomplete laboratory sampling) are only recently gaining empirical attention in the phylogenomics community. Moreover, few studies have yet to investigate this phenomenon in an explicit coalescent framework. Here, using mathematical models, numerous simulated data sets, and two newly assembled empirical data sets, we assess the effect of pseudoorthologs on species tree estimation under varying degrees of incomplete lineage sorting (ILS) and differential gene loss scenarios following WGD. When gene loss occurs along the terminal branches of the species tree, alignment-based (BPP) and gene-tree-based (ASTRAL, MP-EST, and STAR) coalescent methods are adversely affected as the degree of ILS increases. This can be greatly improved by sampling a sufficiently large number of genes. Under the same circumstances, however, concatenation methods consistently estimate incorrect species trees as the number of genes increases. Additionally, pseudoorthologs can greatly mislead species tree inference when gene loss occurs along the internal branches of the species tree. Here, both coalescent and concatenation methods yield inconsistent results. These results underscore the importance of understanding the influence of pseudoorthologs in the phylogenomics era. [Coalescent method; concatenation method; incomplete lineage sorting; pseudoorthologs; single-copy gene; whole-genome duplication.]
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Danying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Chen Shao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jialin Yang
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | - Liang Liu
- Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
10
|
Hao Y, Mabry ME, Edger PP, Freeling M, Zheng C, Jin L, VanBuren R, Colle M, An H, Abrahams RS, Washburn JD, Qi X, Barry K, Daum C, Shu S, Schmutz J, Sankoff D, Barker MS, Lyons E, Pires JC, Conant GC. The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Res 2021; 31:799-810. [PMID: 33863805 PMCID: PMC8092008 DOI: 10.1101/gr.270033.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
The members of the tribe Brassiceae share a whole-genome triplication (WGT), and one proposed model for its formation is a two-step pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here, we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using the Polyploidy Orthology Inference Tool (POInT). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring before the arrival of the third. We also, for the 90,000 individual genes in our study, make parental subgenome assignments, inferring, with measured uncertainty, from which of the progenitor genomes of the allohexaploidy each gene derives. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a "mix and match" model of allopolyploidy, in which subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Makenzie E Mabry
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Genetics and Genome Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marivi Colle
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hong An
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - R Shawn Abrahams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Jacob D Washburn
- Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri 65211, USA
| | - Xinshuai Qi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| |
Collapse
|
11
|
Jiang M, Li P, Wang W. Comparative analysis of MAPK and MKK gene families reveals differential evolutionary patterns in Brachypodium distachyon inbred lines. PeerJ 2021; 9:e11238. [PMID: 33868831 PMCID: PMC8034371 DOI: 10.7717/peerj.11238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are involved with signal transduction in almost every aspect of plant growth and development, as well as biotic and abiotic stress responses. The evolutionary analysis of MAPKs and MKKs in individual or entire plant species has been reported, but the evolutionary patterns in the diverse inbred lines of Brachypodium distachyon are still unclear. RESULTS We conducted the systematical molecular evolutionary analysis of B. distachyon. A total of 799 MAPKs and 618 MKKs were identified from 53 B. distachyon inbred lines. Remarkably, only three inbred lines had 16 MPKs and most of those inbred lines lacked MPK7-2 members, whereas 12 MKKs existed in almost all B. distachyon inbred lines. Phylogenetic analysis indicated that MAPKs and MKKs were divided into four groups as previously reported, grouping them in the same branch as corresponding members. MPK21-2 was the exception and fell into two groups, which may be due to their exon-intron patterns, especially the untranslated regions (UTRs). We also found that differential evolution patterns of MKK10 paralogues from ancient tandem duplicates may have undergone functional divergence. Expression analyses suggested that MAPKs and MKKs likely played different roles in different genetic contexts within various tissues and with abiotic stresses. CONCLUSION Our study revealed that UTRs affected the structure and evolution of MPK21-2 genes and the differential evolution of MKK10 paralogues with ancient tandem duplication might have functional divergences. Our findings provide new insights into the functional evolution of genes in closely inbred lines.
Collapse
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
12
|
Sellers RA, Robertson DL, Tassabehji M. Ancestry of the AUTS2 family-A novel group of polycomb-complex proteins involved in human neurological disease. PLoS One 2020; 15:e0232101. [PMID: 33306672 PMCID: PMC7732068 DOI: 10.1371/journal.pone.0232101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Abstract
Autism susceptibility candidate 2 (AUTS2) is a neurodevelopmental regulator associated with an autosomal dominant intellectual disability syndrome, AUTS2 syndrome, and is implicated as an important gene in human-specific evolution. AUTS2 exists as part of a tripartite gene family, the AUTS2 family, which includes two relatively undefined proteins, Fibrosin (FBRS) and Fibrosin-like protein 1 (FBRSL1). Evolutionary ancestors of AUTS2 have not been formally identified outside of the Animalia clade. A Drosophila melanogaster protein, Tay bridge, with a role in neurodevelopment, has been shown to display limited similarity to the C-terminal of AUTS2, suggesting that evolutionary ancestors of the AUTS2 family may exist within other Protostome lineages. Here we present an evolutionary analysis of the AUTS2 family, which highlights ancestral homologs of AUTS2 in multiple Protostome species, implicates AUTS2 as the closest human relative to the progenitor of the AUTS2 family, and demonstrates that Tay bridge is a divergent ortholog of the ancestral AUTS2 progenitor gene. We also define regions of high relative sequence identity, with potential functional significance, shared by the extended AUTS2 protein family. Using structural predictions coupled with sequence conservation and human variant data from 15,708 individuals, a putative domain structure for AUTS2 was produced that can be used to aid interpretation of the consequences of nucleotide variation on protein structure and function in human disease. To assess the role of AUTS2 in human-specific evolution, we recalculated allele frequencies at previously identified human derived sites using large population genome data, and show a high prevalence of ancestral alleles, suggesting that AUTS2 may not be a rapidly evolving gene, as previously thought.
Collapse
Affiliation(s)
- Robert A. Sellers
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, United Kingdom
| | - May Tassabehji
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
14
|
Conant GC. The lasting after-effects of an ancient polyploidy on the genomes of teleosts. PLoS One 2020; 15:e0231356. [PMID: 32298330 PMCID: PMC7161988 DOI: 10.1371/journal.pone.0231356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
The ancestor of most teleost fishes underwent a whole-genome duplication event three hundred million years ago. Despite its antiquity, the effects of this event are evident both in the structure of teleost genomes and in how the surviving duplicated genes still operate to drive form and function. I inferred a set of shared syntenic regions that survive from the teleost genome duplication (TGD) using eight teleost genomes and the outgroup gar genome (which lacks the TGD). I then phylogenetically modeled the TGD's resolution via shared and independent gene losses and applied a new simulation-based statistical test for the presence of bias toward the preservation of genes from one parental subgenome. On the basis of that test, I argue that the TGD was likely an allopolyploidy. I find that duplicate genes surviving from this duplication in zebrafish are less likely to function in early embryo development than are genes that have returned to single copy at some point in this species' history. The tissues these ohnologs are expressed in, as well as their biological functions, lend support to recent suggestions that the TGD was the source of a morphological innovation in the structure of the teleost retina. Surviving duplicates also appear less likely to be essential than singletons, despite the fact that their single-copy orthologs in mouse are no less essential than other genes.
Collapse
Affiliation(s)
- Gavin C. Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States of America
- Program in Genetics, North Carolina State University, Raleigh, NC, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
15
|
The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat Ecol Evol 2020; 4:841-852. [PMID: 32231327 PMCID: PMC7269910 DOI: 10.1038/s41559-020-1166-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random. A genome assembly of the sterlet, Acipenser ruthenus, reveals a whole-genome duplication early in the evolution of the entire sturgeon lineage and provides details about the rediploidization of the genome.
Collapse
|
16
|
Defoort J, Van de Peer Y, Carretero-Paulet L. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication. Genome Biol Evol 2020; 11:2292-2305. [PMID: 31364708 PMCID: PMC6735927 DOI: 10.1093/gbe/evz156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 01/17/2023] Open
Abstract
Gene duplicates, generated through either whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behavior that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum, and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time, and mechanism of origin.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Lorenzo Carretero-Paulet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| |
Collapse
|
17
|
Wilson J, Staley JM, Wyckoff GJ. Extinction of chromosomes due to specialization is a universal occurrence. Sci Rep 2020; 10:2170. [PMID: 32034231 PMCID: PMC7005762 DOI: 10.1038/s41598-020-58997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The human X and Y chromosomes evolved from a pair of autosomes approximately 180 million years ago. Despite their shared evolutionary origin, extensive genetic decay has resulted in the human Y chromosome losing 97% of its ancestral genes while gene content and order remain highly conserved on the X chromosome. Five 'stratification' events, most likely inversions, reduced the Y chromosome's ability to recombine with the X chromosome across the majority of its length and subjected its genes to the erosive forces associated with reduced recombination. The remaining functional genes are ubiquitously expressed, functionally coherent, dosage-sensitive genes, or have evolved male-specific functionality. It is unknown, however, whether functional specialization is a degenerative phenomenon unique to sex chromosomes, or if it conveys a potential selective advantage aside from sexual antagonism. We examined the evolution of mammalian orthologs to determine if the selective forces that led to the degeneration of the Y chromosome are unique in the genome. The results of our study suggest these forces are not exclusive to the Y chromosome, and chromosomal degeneration may have occurred throughout our evolutionary history. The reduction of recombination could additionally result in rapid fixation through isolation of specialized functions resulting in a cost-benefit relationship during times of intense selective pressure.
Collapse
Affiliation(s)
- Jason Wilson
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.
| | - Joshua M Staley
- Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA
| | - Gerald J Wyckoff
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.,Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA.,University of Missouri-Kansas City School of Biological and Chemical Sciences, Department of Molecular Biology and Biochemistry, Kansas City, 64108, Missouri, USA
| |
Collapse
|
18
|
Qiao X, Li Q, Yin H, Qi K, Li L, Wang R, Zhang S, Paterson AH. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 2019; 20:38. [PMID: 30791939 PMCID: PMC6383267 DOI: 10.1186/s13059-019-1650-2] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. RESULTS We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events-transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. CONCLUSIONS We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Collapse
Affiliation(s)
- Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605 USA
| |
Collapse
|
19
|
Naseeb S, Ames RM, Delneri D, Lovell SC. Rapid functional and evolutionary changes follow gene duplication in yeast. Proc Biol Sci 2017; 284:20171393. [PMID: 28835561 PMCID: PMC5577496 DOI: 10.1098/rspb.2017.1393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022] Open
Abstract
Duplication of genes or genomes provides the raw material for evolutionary innovation. After duplication a gene may be lost, recombine with another gene, have its function modified or be retained in an unaltered state. The fate of duplication is usually studied by comparing extant genomes and reconstructing the most likely ancestral states. Valuable as this approach is, it may miss the most rapid evolutionary events. Here, we engineered strains of Saccharomyces cerevisiae carrying tandem and non-tandem duplications of the singleton gene IFA38 to monitor (i) the fate of the duplicates in different conditions, including time scale and asymmetry of gene loss, and (ii) the changes in fitness and transcriptome of the strains immediately after duplication and after experimental evolution. We found that the duplication brings widespread transcriptional changes, but a fitness advantage is only present in fermentable media. In respiratory conditions, the yeast strains consistently lose the non-tandem IFA38 gene copy in a surprisingly short time, within only a few generations. This gene loss appears to be asymmetric and dependent on genome location, since the original IFA38 copy and the tandem duplicate are retained. Overall, this work shows for the first time that gene loss can be extremely rapid and context dependent.
Collapse
Affiliation(s)
- Samina Naseeb
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ryan M Ames
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Daniela Delneri
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon C Lovell
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Abstract
Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Junah Kim
- Genomics Division, Department of Agricultural Bio-resource, National Academy of Agricultural Science, Rural Development Administration (RDA), Jeonju, South Korea
| | - Jon S Robertson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 889] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
22
|
Gallagher JP, Grover CE, Hu G, Wendel JF. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis. Mol Ecol 2016; 25:2644-60. [PMID: 27027619 DOI: 10.1111/mec.13626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/18/2022]
Abstract
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species.
Collapse
Affiliation(s)
- Joseph P Gallagher
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
23
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
24
|
Tiley GP, Ané C, Burleigh JG. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data. Genome Biol Evol 2016; 8:1023-37. [PMID: 26988251 PMCID: PMC4860690 DOI: 10.1093/gbe/evw058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses.
Collapse
Affiliation(s)
| | - Cécile Ané
- Department of Statistics, University of Wisconsin-Madison Department of Botany, University of Wisconsin-Madison
| | | |
Collapse
|
25
|
Tine M. Evolutionary significance and diversification of the phosphoglucose isomerase genes in vertebrates. BMC Res Notes 2015; 8:799. [PMID: 26682538 PMCID: PMC4684624 DOI: 10.1186/s13104-015-1683-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 01/20/2024] Open
Abstract
Background Phosphoglucose isomerase (PGI) genes are important multifunctional proteins whose evolution has, until now, not been well elucidated because of the limited number of completely sequenced genomes. Although the multifunctionality of this gene family has been considered as an original and innate characteristic, PGI genes may have acquired novel functions through changes in coding sequences and exon/intron structure, which are known to lead to functional divergence after gene duplication. A whole-genome comparative approach was used to estimate the rates of molecular evolution of this protein family. Results The results confirm the presence of two isoforms in teleost fishes and only one variant in all other vertebrates. Phylogenetic reconstructions grouped the PGI genes into five main groups: lungfishes/coelacanth/cartilaginous fishes, teleost fishes, amphibians, reptiles/birds and mammals, with the teleost group being subdivided into two subclades comprising PGI1 and PGI2. This PGI partitioning into groups is consistent with the synteny and molecular evolution results based on the estimation of the ratios of nonsynonymous to synonymous changes (Ka/Ks) and divergence rates between both PGI paralogs and orthologs. Teleost PGI2 shares more similarity with the variant found in all other vertebrates, suggesting that it has less evolved than PGI1 relative to the PGI of common vertebrate ancestor. Conclusions The diversification of PGI genes into PGI1 and PGI2 is consistent with a teleost-specific duplication before the radiation of this lineage, and after its split from the other infraclasses of ray-finned fishes. The low average Ka/Ks ratios within teleost and mammalian lineages suggest that both PGI1 and PGI2 are functionally constrained by purifying selection and may, therefore, have the same functions. By contrast, the high average Ka/Ks ratios and divergence rates within reptiles and birds indicate that PGI may be involved in different functions. The synteny analyses show that the genomic region harbouring PGI genes has independently undergone genomic rearrangements in mammals versus the reptile/bird lineage in particular, which may have contributed to the actual functional diversification of this gene family. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1683-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mbaye Tine
- Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa. .,Genome Centre Cologne at MPI for Plant Breeding Research, 22 Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
26
|
Inferring gene duplications, transfers and losses can be done in a discrete framework. J Math Biol 2015; 72:1811-44. [PMID: 26337177 DOI: 10.1007/s00285-015-0930-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/20/2015] [Indexed: 10/23/2022]
Abstract
In the field of phylogenetics, the evolutionary history of a set of organisms is commonly depicted by a species tree-whose internal nodes represent speciation events-while the evolutionary history of a gene family is depicted by a gene tree-whose internal nodes can also represent macro-evolutionary events such as gene duplications and transfers. As speciation events are only part of the events shaping a gene history, the topology of a gene tree can show incongruences with that of the corresponding species tree. These incongruences can be used to infer the macro-evolutionary events undergone by the gene family. This is done by embedding the gene tree inside the species tree and hence providing a reconciliation of those trees. In the past decade, several parsimony-based methods have been developed to infer such reconciliations, accounting for gene duplications ([Formula: see text]), transfers ([Formula: see text]) and losses ([Formula: see text]). The main contribution of this paper is to formally prove an important assumption implicitly made by previous works on these reconciliations, namely that solving the (maximum) parsimony [Formula: see text] reconciliation problem in the discrete framework is equivalent to finding a most parsimonious [Formula: see text] scenario in the continuous framework. In the process, we also prove several intermediate results that are useful on their own and constitute a theoretical toolbox that will likely facilitate future theoretical contributions in the field.
Collapse
|
27
|
Waples RK, Seeb LW, Seeb JE. Linkage mapping with paralogs exposes regions of residual tetrasomic inheritance in chum salmon (Oncorhynchus keta). Mol Ecol Resour 2015; 16:17-28. [DOI: 10.1111/1755-0998.12394] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- R. K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - L. W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| | - J. E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat Street Box 355020 Seattle Washington 98195 USA
| |
Collapse
|
28
|
Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0355. [PMID: 24958928 DOI: 10.1098/rstb.2013.0355] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Collapse
Affiliation(s)
- Yuannian Jiao
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| |
Collapse
|
29
|
McGrath CL, Gout JF, Johri P, Doak TG, Lynch M. Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Res 2014; 24:1665-75. [PMID: 25085612 PMCID: PMC4199370 DOI: 10.1101/gr.173740.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by >10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs’ lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.
Collapse
Affiliation(s)
- Casey L McGrath
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Jean-Francois Gout
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Parul Johri
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47408, USA
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
| |
Collapse
|
30
|
DeMille D, Bikman BT, Mathis AD, Prince JT, Mackay JT, Sowa SW, Hall TD, Grose JH. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1. Mol Biol Cell 2014; 25:2199-215. [PMID: 24850888 PMCID: PMC4091833 DOI: 10.1091/mbc.e13-10-0631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PAS kinase is a conserved sensory protein kinase required for glucose homeostasis. The interactome for yeast PAS kinase 1 (Psk1) is identified, revealing 93 binding partners. Evidence is provided for in vivo phosphorylation of Cbf1 and subsequent inhibition of respiration, supporting a role for Psk1 in partitioning glucose for cell growth. Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - John T Prince
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Jordan T Mackay
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Steven W Sowa
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Tacie D Hall
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
31
|
Chauve C, El-Mabrouk N, Guéguen L, Semeria M, Tannier E. Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later. MODELS AND ALGORITHMS FOR GENOME EVOLUTION 2013. [DOI: 10.1007/978-1-4471-5298-9_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Abstract
Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|