1
|
Ziesel A, Jabbari H. Unveiling hidden structural patterns in the SARS-CoV-2 genome: Computational insights and comparative analysis. PLoS One 2024; 19:e0298164. [PMID: 38574063 PMCID: PMC10994416 DOI: 10.1371/journal.pone.0298164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5' and 3' untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.
Collapse
Affiliation(s)
- Alison Ziesel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hosna Jabbari
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
3
|
Will S. LocARNA 2.0: Versatile Simultaneous Alignment and Folding of RNAs. Methods Mol Biol 2024; 2726:235-254. [PMID: 38780734 DOI: 10.1007/978-1-0716-3519-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Generating accurate alignments of non-coding RNA sequences is indispensable in the quest for understanding RNA function. Nevertheless, aligning RNAs remains a challenging computational task. In the twilight-zone of RNA sequences with low sequence similarity, sequence homologies and compatible, favorable (a priori unknown) structures can be inferred only in dependency of each other. Thus, simultaneous alignment and folding (SA&F) remains the gold-standard of comparative RNA analysis, even if this method is computationally highly demanding. This text introduces to the recent release 2.0 of the software package LocARNA, focusing on its practical application. The package enables versatile, fast and accurate analysis of multiple RNAs. For this purpose, it implements SA&F algorithms in a specific, lightweight flavor that makes them routinely applicable in large scale. Its high performance is achieved by combining ensemble-based sparsification of the structure space and banding strategies. Probabilistic banding strongly improves the performance of LocARNA 2.0 even over previous releases, while simplifying its effective use. Enabling flexible application to various use cases, LocARNA provides tools to globally and locally compare, cluster, and multiply aligned RNAs based on optimization and probabilistic variants of SA&F, which optionally integrate prior knowledge, expressible by anchor and structure constraints.
Collapse
Affiliation(s)
- Sebastian Will
- LIX, CNRS UMR 7161, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
4
|
Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat Commun 2021; 12:2300. [PMID: 33863890 PMCID: PMC8052449 DOI: 10.1038/s41467-021-22549-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3'-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.
Collapse
|
5
|
Miladi M, Sokhoyan E, Houwaart T, Heyne S, Costa F, Grüning B, Backofen R. GraphClust2: Annotation and discovery of structured RNAs with scalable and accessible integrative clustering. Gigascience 2019; 8:giz150. [PMID: 31808801 PMCID: PMC6897289 DOI: 10.1093/gigascience/giz150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND RNA plays essential roles in all known forms of life. Clustering RNA sequences with common sequence and structure is an essential step towards studying RNA function. With the advent of high-throughput sequencing techniques, experimental and genomic data are expanding to complement the predictive methods. However, the existing methods do not effectively utilize and cope with the immense amount of data becoming available. RESULTS Hundreds of thousands of non-coding RNAs have been detected; however, their annotation is lagging behind. Here we present GraphClust2, a comprehensive approach for scalable clustering of RNAs based on sequence and structural similarities. GraphClust2 bridges the gap between high-throughput sequencing and structural RNA analysis and provides an integrative solution by incorporating diverse experimental and genomic data in an accessible manner via the Galaxy framework. GraphClust2 can efficiently cluster and annotate large datasets of RNAs and supports structure-probing data. We demonstrate that the annotation performance of clustering functional RNAs can be considerably improved. Furthermore, an off-the-shelf procedure is introduced for identifying locally conserved structure candidates in long RNAs. We suggest the presence and the sparseness of phylogenetically conserved local structures for a collection of long non-coding RNAs. CONCLUSIONS By clustering data from 2 cross-linking immunoprecipitation experiments, we demonstrate the benefits of GraphClust2 for motif discovery under the presence of biological and methodological biases. Finally, we uncover prominent targets of double-stranded RNA binding protein Roquin-1, such as BCOR's 3' untranslated region that contains multiple binding stem-loops that are evolutionary conserved.
Collapse
Affiliation(s)
- Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Eteri Sokhoyan
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Torsten Houwaart
- Institute of Medical Microbiology and Hospital Hygiene, University of Dusseldorf, Universitaetsstr. 1, 40225 Dusseldorf, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Stuebeweg 51, 79108 Freiburg, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Exeter, North Park Road, EX4 4QF Exeter, UK
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- ZBSA Centre for Biological Systems Analysis, University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- ZBSA Centre for Biological Systems Analysis, University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Emamjomeh A, Zahiri J, Asadian M, Behmanesh M, Fakheri BA, Mahdevar G. Identification, Prediction and Data Analysis of Noncoding RNAs: A Review. Med Chem 2019; 15:216-230. [PMID: 30484409 DOI: 10.2174/1573406414666181015151610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/03/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs. OBJECTIVE The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA's roles in cellular processes and drugs design, briefly. METHOD In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases. RESULTS The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs. CONCLUSION ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Asadian
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Barat A Fakheri
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Ghasem Mahdevar
- Department of Mathematics, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Evolutionary Patterns of Non-Coding RNA in Cardiovascular Biology. Noncoding RNA 2019; 5:ncrna5010015. [PMID: 30709035 PMCID: PMC6468844 DOI: 10.3390/ncrna5010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high prevalence and place a huge burden on society as well as the healthcare system. These complex diseases are often the result of multiple genetic and environmental risk factors and pose a great challenge to understanding their etiology and consequences. With the advent of next generation sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs), have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional characterization of most of these molecules is still lacking. The exploration of conservation of sequences across related species has been used to functionally annotate protein coding genes. In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make it difficult to characterize functional homologs for these sequences. Recent studies have tried to explore other dimensions of interspecies conservation to elucidate the functional role of these novel transcripts. In this review, we summarize various methodologies adopted to explore the evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure, syntenic, and expression level.
Collapse
|
8
|
Abstract
Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and significance of WGA and present an overview of the methods that address it. We also examine the problem of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in order to make most effective use of our rapidly growing databases of whole genomes.
Collapse
Affiliation(s)
- Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Kirsch R, Seemann SE, Ruzzo WL, Cohen SM, Stadler PF, Gorodkin J. Identification and characterization of novel conserved RNA structures in Drosophila. BMC Genomics 2018; 19:899. [PMID: 30537930 PMCID: PMC6288889 DOI: 10.1186/s12864-018-5234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Comparative genomics approaches have facilitated the discovery of many novel non-coding and structured RNAs (ncRNAs). The increasing availability of related genomes now makes it possible to systematically search for compensatory base changes - and thus for conserved secondary structures - even in genomic regions that are poorly alignable in the primary sequence. The wealth of available transcriptome data can add valuable insight into expression and possible function for new ncRNA candidates. Earlier work identifying ncRNAs in Drosophila melanogaster made use of sequence-based alignments and employed a sliding window approach, inevitably biasing identification toward RNAs encoded in the more conserved parts of the genome. RESULTS To search for conserved RNA structures (CRSs) that may not be highly conserved in sequence and to assess the expression of CRSs, we conducted a genome-wide structural alignment screen of 27 insect genomes including D. melanogaster and integrated this with an extensive set of tiling array data. The structural alignment screen revealed ∼30,000 novel candidate CRSs at an estimated false discovery rate of less than 10%. With more than one quarter of all individual CRS motifs showing sequence identities below 60%, the predicted CRSs largely complement the findings of sliding window approaches applied previously. While a sixth of the CRSs were ubiquitously expressed, we found that most were expressed in specific developmental stages or cell lines. Notably, most statistically significant enrichment of CRSs were observed in pupae, mainly in exons of untranslated regions, promotors, enhancers, and long ncRNAs. Interestingly, cell lines were found to express a different set of CRSs than were found in vivo. Only a small fraction of intergenic CRSs were co-expressed with the adjacent protein coding genes, which suggests that most intergenic CRSs are independent genetic units. CONCLUSIONS This study provides a more comprehensive view of the ncRNA transcriptome in fly as well as evidence for differential expression of CRSs during development and in cell lines.
Collapse
Affiliation(s)
- Rebecca Kirsch
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, Leipzig, D-04107 Germany
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
| | - Walter L. Ruzzo
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- School of Computer Science and Engineering, University of Washington, Box 352350, Seattle, 98195-2350 WA USA
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, 98195-5065 WA USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109-1024 WA USA
| | - Stephen M. Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200 Denmark
| | - Peter F. Stadler
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, Leipzig, D-04107 Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103 Germany
- Faculdad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá, COL-111321 D.C. Colombia
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna, A-1090 Austria
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501 USA
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
| |
Collapse
|
10
|
Pervouchine DD. Towards Long-Range RNA Structure Prediction in Eukaryotic Genes. Genes (Basel) 2018; 9:genes9060302. [PMID: 29914113 PMCID: PMC6027157 DOI: 10.3390/genes9060302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023] Open
Abstract
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
Collapse
Affiliation(s)
- Dmitri D Pervouchine
- Skolkovo Institute for Science and Technology, Ulitsa Nobelya 3, Moscow 121205, Russia.
- The Faculty of Bioengineering and Bioinformatics, Moscow State University 1-73, Moscow 119899, Russia.
- Faculty of Computer Science, Higher School of Economics, Kochnovskiy Proyezd 3, Moscow 125319, Russia.
| |
Collapse
|
11
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Abstract
Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Ivo L Hofacker
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.,Bioinformatics and Computational Biology Research Group, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
| | - Peter F Stadler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria. .,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany. .,Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA.
| |
Collapse
|
13
|
Ren C, Liu F, Ouyang Z, An G, Zhao C, Shuai J, Cai S, Bo X, Shu W. Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: implications for human disease. Sci Rep 2017; 7:15518. [PMID: 29138457 PMCID: PMC5686184 DOI: 10.1038/s41598-017-15822-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Enhancer RNAs (eRNAs) are a novel class of non-coding RNA (ncRNA) molecules transcribed from the DNA sequences of enhancer regions. Despite extensive efforts devoted to revealing the potential functions and underlying mechanisms of eRNAs, it remains an open question whether eRNAs are mere transcriptional noise or relevant biologically functional species. Here, we identified a catalogue of eRNAs in a broad range of human cell/tissue types and extended our understanding of eRNAs by demonstrating their multi-omic signatures. Gene Ontology (GO) analysis revealed that eRNAs play key roles in human cell identity. Furthermore, we detected numerous known and novel functional RNA structures within eRNA regions. To better characterize the cis-regulatory effects of non-coding variation in these structural ncRNAs, we performed a comprehensive analysis of the genetic variants of structural ncRNAs in eRNA regions that are associated with inflammatory autoimmune diseases. Disease-associated variants of the structural ncRNAs were disproportionately enriched in immune-specific cell types. We also identified riboSNitches in lymphoid eRNAs and investigated the potential pathogenic mechanisms by which eRNAs might function in autoimmune diseases. Collectively, our findings offer valuable insights into the function of eRNAs and suggest that eRNAs might be effective diagnostic and therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feng Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Zhangyi Ouyang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gaole An
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenghui Zhao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Shuai
- Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Shuhong Cai
- Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
14
|
Li S, Breaker RR. Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. BMC Genomics 2017; 18:785. [PMID: 29029611 PMCID: PMC5640933 DOI: 10.1186/s12864-017-4171-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND With the development of rapid and inexpensive DNA sequencing, the genome sequences of more than 100 fungal species have been made available. This dataset provides an excellent resource for comparative genomics analyses, which can be used to discover genetic elements, including noncoding RNAs (ncRNAs). Bioinformatics tools similar to those used to uncover novel ncRNAs in bacteria, likewise, should be useful for searching fungal genomic sequences, and the relative ease of genetic experiments with some model fungal species could facilitate experimental validation studies. RESULTS We have adapted a bioinformatics pipeline for discovering bacterial ncRNAs to systematically analyze many fungal genomes. This comparative genomics pipeline integrates information on conserved RNA sequence and structural features with alternative splicing information to reveal fungal RNA motifs that are candidate regulatory domains, or that might have other possible functions. A total of 15 prominent classes of structured ncRNA candidates were identified, including variant HDV self-cleaving ribozyme representatives, atypical snoRNA candidates, and possible structured antisense RNA motifs. Candidate regulatory motifs were also found associated with genes for ribosomal proteins, S-adenosylmethionine decarboxylase (SDC), amidase, and HexA protein involved in Woronin body formation. We experimentally confirm that the variant HDV ribozymes undergo rapid self-cleavage, and we demonstrate that the SDC RNA motif reduces the expression of SAM decarboxylase by translational repression. Furthermore, we provide evidence that several other motifs discovered in this study are likely to be functional ncRNA elements. CONCLUSIONS Systematic screening of fungal genomes using a computational discovery pipeline has revealed the existence of a variety of novel structured ncRNAs. Genome contexts and similarities to known ncRNA motifs provide strong evidence for the biological and biochemical functions of some newly found ncRNA motifs. Although initial examinations of several motifs provide evidence for their likely functions, other motifs will require more in-depth analysis to reveal their functions.
Collapse
Affiliation(s)
- Sanshu Li
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 China
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| |
Collapse
|
15
|
Miladi M, Junge A, Costa F, Seemann SE, Havgaard JH, Gorodkin J, Backofen R. RNAscClust: clustering RNA sequences using structure conservation and graph based motifs. Bioinformatics 2017; 33:2089-2096. [PMID: 28334186 PMCID: PMC5870858 DOI: 10.1093/bioinformatics/btx114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
MOTIVATION Clustering RNA sequences with common secondary structure is an essential step towards studying RNA function. Whereas structural RNA alignment strategies typically identify common structure for orthologous structured RNAs, clustering seeks to group paralogous RNAs based on structural similarities. However, existing approaches for clustering paralogous RNAs, do not take the compensatory base pair changes obtained from structure conservation in orthologous sequences into account. RESULTS Here, we present RNAscClust , the implementation of a new algorithm to cluster a set of structured RNAs taking their respective structural conservation into account. For a set of multiple structural alignments of RNA sequences, each containing a paralog sequence included in a structural alignment of its orthologs, RNAscClust computes minimum free-energy structures for each sequence using conserved base pairs as prior information for the folding. The paralogs are then clustered using a graph kernel-based strategy, which identifies common structural features. We show that the clustering accuracy clearly benefits from an increasing degree of compensatory base pair changes in the alignments. AVAILABILITY AND IMPLEMENTATION RNAscClust is available at http://www.bioinf.uni-freiburg.de/Software/RNAscClust . CONTACT gorodkin@rth.dk or backofen@informatik.uni-freiburg.de. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Junge
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fabrizio Costa
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan E Seemann
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jakob Hull Havgaard
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- Center for Biological Signalling Studies (BIOSS), Cluster of Excellence, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27436689 DOI: 10.1002/wrna.1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022]
Abstract
The diversity of long non-coding RNAs (lncRNAs) in the human transcriptome is in stark contrast to the sparse exploration of their functions concomitant with their conservation and evolution. The pervasive transcription of the largely non-coding human genome makes the evolutionary age and conservation patterns of lncRNAs to a topic of interest. Yet it is a fairly unexplored field and not that easy to determine as for protein-coding genes. Although there are a few experimentally studied cases, which are conserved at the sequence level, most lncRNAs exhibit weak or untraceable primary sequence conservation. Recent studies shed light on the interspecies conservation of secondary structures among lncRNA homologs by using diverse computational methods. This highlights the importance of structure on functionality of lncRNAs as opposed to the poor impact of primary sequence changes. Further clues in the evolution of lncRNAs are given by selective constraints on non-coding gene structures (e.g., promoters or splice sites) as well as the conservation of prevalent spatio-temporal expression patterns. However, a rapid evolutionary turnover is observable throughout the heterogeneous group of lncRNAs. This still gives rise to questions about its functional meaning. WIREs RNA 2017, 8:e1376. doi: 10.1002/wrna.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Anne Nitsche
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Institute de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Cedex, France
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology - IZI, Leipzig, Germany.,Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.,Department of Theoretical Chemistry, University of Vienna, Wien, Austria.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
17
|
Chirn GW, Rahman R, Sytnikova YA, Matts JA, Zeng M, Gerlach D, Yu M, Berger B, Naramura M, Kile BT, Lau NC. Conserved piRNA Expression from a Distinct Set of piRNA Cluster Loci in Eutherian Mammals. PLoS Genet 2015; 11:e1005652. [PMID: 26588211 PMCID: PMC4654475 DOI: 10.1371/journal.pgen.1005652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022] Open
Abstract
The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction. Animal genomes from flies to humans contain many hundreds of non-coding elements called Piwi-interacting RNAs (piRNAs) cluster loci (piC loci). Some of these elements generate piRNAs that direct the silencing of transposable elements, which are pervasive genetic parasites. However, we lack an understanding of the targeting function for the remaining bulk of piRNAs because their loci are not complementarity to transposable elements. In addition, the field does not know if all piC loci are quickly evolving, or if some piC loci might be deeply conserved in piRNA expression, an indication of its potentially functional importance. Our study confirms the highly rapid evolution in piRNA expression capacity for the majority of piC loci in flies and mammals, with many clade- and species-specific piC loci expression patterns. In spite of this, we also discover a cohort of piC loci that are deeply conserved in piRNA expression from the human to the dog, a significantly broad phylogenetic spectrum of eutherian mammals. However, this conservation in piRNA expression ends at non-eutherian mammals like marsupials and monotremes. Existing mutations in two of these Eutherian-Conserved piC (ECpiC) loci impair mouse reproduction and abrogate piRNA production. Therefore, we suggest these ECpiC loci are conserved for piRNA expression due to their important function in eutherian reproduction and stand out as prime candidates for future genetic studies.
Collapse
Affiliation(s)
- Gung-wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yuliya A. Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jessica A. Matts
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mei Zeng
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Daniel Gerlach
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Michael Yu
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bonnie Berger
- Mathematics Department and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mayumi Naramura
- Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benjamin T. Kile
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Jenkins AM, Waterhouse RM, Muskavitch MAT. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genomics 2015; 16:337. [PMID: 25903279 PMCID: PMC4409983 DOI: 10.1186/s12864-015-1507-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Results Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. Conclusions This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1507-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland. .,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland. .,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA. .,The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| | - Marc A T Muskavitch
- Boston College, Chestnut Hill, MA, 02467, USA. .,Biogen Idec, 14 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Otto C, Möhl M, Heyne S, Amit M, Landau GM, Backofen R, Will S. ExpaRNA-P: simultaneous exact pattern matching and folding of RNAs. BMC Bioinformatics 2014; 15:404. [PMID: 25551362 PMCID: PMC4302096 DOI: 10.1186/s12859-014-0404-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023] Open
Abstract
Background Identifying sequence-structure motifs common to two RNAs can speed up the comparison of structural RNAs substantially. The core algorithm of the existent approach ExpaRNA solves this problem for a priori known input structures. However, such structures are rarely known; moreover, predicting them computationally is no rescue, since single sequence structure prediction is highly unreliable. Results The novel algorithm ExpaRNA-P computes exactly matching sequence-structure motifs in entire Boltzmann-distributed structure ensembles of two RNAs; thereby we match and fold RNAs simultaneously, analogous to the well-known “simultaneous alignment and folding” of RNAs. While this implies much higher flexibility compared to ExpaRNA, ExpaRNA-P has the same very low complexity (quadratic in time and space), which is enabled by its novel structure ensemble-based sparsification. Furthermore, we devise a generalized chaining algorithm to compute compatible subsets of ExpaRNA-P’s sequence-structure motifs. Resulting in the very fast RNA alignment approach ExpLoc-P, we utilize the best chain as anchor constraints for the sequence-structure alignment tool LocARNA. ExpLoc-P is benchmarked in several variants and versus state-of-the-art approaches. In particular, we formally introduce and evaluate strict and relaxed variants of the problem; the latter makes the approach sensitive to compensatory mutations. Across a benchmark set of typical non-coding RNAs, ExpLoc-P has similar accuracy to LocARNA but is four times faster (in both variants), while it achieves a speed-up over 30-fold for the longest benchmark sequences (≈400nt). Finally, different ExpLoc-P variants enable tailoring of the method to specific application scenarios. ExpaRNA-P and ExpLoc-P are distributed as part of the LocARNA package. The source code is freely available at http://www.bioinf.uni-freiburg.de/Software/ExpaRNA-P. Conclusions ExpaRNA-P’s novel ensemble-based sparsification reduces its complexity to quadratic time and space. Thereby, ExpaRNA-P significantly speeds up sequence-structure alignment while maintaining the alignment quality. Different ExpaRNA-P variants support a wide range of applications. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0404-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Otto
- Bioinformatics, Institute of Computer Science, University of Freiburg, Freiburg, Germany.
| | - Mathias Möhl
- Bioinformatics, Institute of Computer Science, University of Freiburg, Freiburg, Germany.
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, Freiburg, 79108, Germany.
| | - Mika Amit
- Department of Computer Science, University of Haifa, Mount Carmel, Haifa, Israel.
| | - Gad M Landau
- Department of Computer Science, University of Haifa, Mount Carmel, Haifa, Israel. .,Department of Computer Science and Engineering, NYU-Poly, Brooklyn, NY, USA.
| | - Rolf Backofen
- Bioinformatics, Institute of Computer Science, University of Freiburg, Freiburg, Germany. .,Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany. .,Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany. .,Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870, Denmark.
| | - Sebastian Will
- Bioinformatics, Institute of Computer Science, University of Freiburg, Freiburg, Germany. .,Bioinformatics, Department of Computer Science, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, Zhang T, Qi Y, Gerstein MB, Guo Y, Lu ZJ. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:848-61. [PMID: 25256571 DOI: 10.1111/tpj.12679] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 05/19/2023]
Abstract
Recently, in addition to poly(A)+ long non-coding RNAs (lncRNAs), many lncRNAs without poly(A) tails, have been characterized in mammals. However, the non-polyA lncRNAs and their conserved motifs, especially those associated with environmental stresses, have not been fully investigated in plant genomes. We performed poly(A)- RNA-seq for seedlings of Arabidopsis thaliana under four stress conditions, and predicted lncRNA transcripts. We classified the lncRNAs into three confidence levels according to their expression patterns, epigenetic signatures and RNA secondary structures. Then, we further classified the lncRNAs to poly(A)+ and poly(A)- transcripts. Compared with poly(A)+ lncRNAs and coding genes, we found that poly(A)- lncRNAs tend to have shorter transcripts and lower expression levels, and they show significant expression specificity in response to stresses. In addition, their differential expression is significantly enriched in drought condition and depleted in heat condition. Overall, we identified 245 poly(A)+ and 58 poly(A)- lncRNAs that are differentially expressed under various stress stimuli. The differential expression was validated by qRT-PCR, and the signaling pathways involved were supported by specific binding of transcription factors (TFs), phytochrome-interacting factor 4 (PIF4) and PIF5. Moreover, we found many conserved sequence and structural motifs of lncRNAs from different functional groups (e.g. a UUC motif responding to salt and a AU-rich stem-loop responding to cold), indicated that the conserved elements might be responsible for the stress-responsive functions of lncRNAs.
Collapse
Affiliation(s)
- Chao Di
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pervouchine DD. IRBIS: a systematic search for conserved complementarity. RNA (NEW YORK, N.Y.) 2014; 20:1519-31. [PMID: 25142064 PMCID: PMC4174434 DOI: 10.1261/rna.045088.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/26/2014] [Indexed: 05/28/2023]
Abstract
IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible. In this article, I provide a rigorous description of the method, benchmarking on simulated and real data, and a set of stringent predictions of intramolecular RNA structure in placental mammals, drosophilids, and nematodes. I discuss two particular cases of long-range RNA structures that are likely to have a causal effect on single- and multiple-exon skipping, one in the mammalian gene Dystonin and the other in the insect gene Ca-α1D. In Dystonin, one of the two complementary boxes contains a binding site of Rbfox protein similar to one recently described in Enah gene. I also report that snoRNAs and long noncoding RNAs (lncRNAs) have a high capacity of base-pairing to introns of protein-coding genes, suggesting possible involvement of these transcripts in splicing regulation. I also find that conserved sequences that occur equally likely on both strands of DNA (e.g., transcription factor binding sites) contribute strongly to the false-discovery rate and, therefore, would confound every such analysis. IRBIS is an open-source software that is available at http://genome.crg.es/~dmitri/irbis/.
Collapse
Affiliation(s)
- Dmitri D Pervouchine
- Centre for Genomic Regulation and UPF, Barcelona 08003, Spain Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
22
|
Interconversion between parallel and antiparallel conformations of a 4H RNA junction in domain 3 of foot-and-mouth disease virus IRES captured by dynamics simulations. Biophys J 2014; 106:447-58. [PMID: 24461020 DOI: 10.1016/j.bpj.2013.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 01/31/2023] Open
Abstract
RNA junctions are common secondary structural elements present in a wide range of RNA species. They play crucial roles in directing the overall folding of RNA molecules as well as in a variety of biological functions. In particular, there has been great interest in the dynamics of RNA junctions, including conformational pathways of fully base-paired 4-way (4H) RNA junctions. In such constructs, all nucleotides participate in one of the four double-stranded stem regions, with no connecting loops. Dynamical aspects of these 4H RNAs are interesting because frequent interchanges between parallel and antiparallel conformations are thought to occur without binding of other factors. Gel electrophoresis and single-molecule fluorescence resonance energy transfer experiments have suggested two possible pathways: one involves a helical rearrangement via disruption of coaxial stacking, and the other occurs by a rotation between the helical axes of coaxially stacked conformers. Employing molecular dynamics simulations, we explore this conformational variability in a 4H junction derived from domain 3 of the foot-and-mouth disease virus internal ribosome entry site (IRES); this junction contains highly conserved motifs for RNA-RNA and RNA-protein interactions, important for IRES activity. Our simulations capture transitions of the 4H junction between parallel and antiparallel conformations. The interconversion is virtually barrier-free and occurs via a rotation between the axes of coaxially stacked helices with a transient perpendicular intermediate. We characterize this transition, with various interhelical orientations, by pseudodihedral angle and interhelical distance measures. The high flexibility of the junction, as also demonstrated experimentally, is suitable for IRES activity. Because foot-and-mouth disease virus IRES structure depends on long-range interactions involving domain 3, the perpendicular intermediate, which maintains coaxial stacking of helices and thereby consensus primary and secondary structure information, may be beneficial for guiding the overall organization of the RNA system in domain 3.
Collapse
|
23
|
Mohammed J, Bortolamiol-Becet D, Flynt AS, Gronau I, Siepel A, Lai EC. Adaptive evolution of testis-specific, recently evolved, clustered miRNAs in Drosophila. RNA (NEW YORK, N.Y.) 2014; 20:1195-209. [PMID: 24942624 PMCID: PMC4105746 DOI: 10.1261/rna.044644.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 05/09/2023]
Abstract
The propensity of animal miRNAs to regulate targets bearing modest complementarity, most notably via pairing with miRNA positions ∼2-8 (the "seed"), is believed to drive major aspects of miRNA evolution. First, minimal targeting requirements have allowed most conserved miRNAs to acquire large target cohorts, thus imposing strong selection on miRNAs to maintain their seed sequences. Second, the modest pairing needed for repression suggests that evolutionarily nascent miRNAs may generally induce net detrimental, rather than beneficial, regulatory effects. Hence, levels and activities of newly emerged miRNAs are expected to be limited to preserve the status quo of gene expression. In this study, we unexpectedly show that Drosophila testes specifically express a substantial miRNA population that contravenes these tenets. We find that multiple genomic clusters of testis-restricted miRNAs harbor recently evolved miRNAs, whose experimentally verified orthologs exhibit divergent sequences, even within seed regions. Moreover, this class of miRNAs exhibits higher expression and greater phenotypic capacities in transgenic misexpression assays than do non-testis-restricted miRNAs of similar evolutionary age. These observations suggest that these testis-restricted miRNAs may be evolving adaptively, and several methods of evolutionary analysis provide strong support for this notion. Consistent with this, proof-of-principle tests show that orthologous miRNAs with divergent seeds can distinguish target sensors in a species-cognate manner. Finally, we observe that testis-restricted miRNA clusters exhibit extraordinary dynamics of miRNA gene flux in other Drosophila species. Altogether, our findings reveal a surprising tissue-directed influence of miRNA evolution, involving a distinct mode of miRNA function connected to adaptive gene regulation in the testis.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Alex S Flynt
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Ilan Gronau
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
24
|
Matsumoto K, Suzuki A, Wakaguri H, Sugano S, Suzuki Y. Construction of mate pair full-length cDNAs libraries and characterization of transcriptional start sites and termination sites. Nucleic Acids Res 2014; 42:e125. [PMID: 25034687 PMCID: PMC4176323 DOI: 10.1093/nar/gku600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To identify and characterize transcript structures ranging from transcriptional start sites (TSSs) to poly(A)-addition sites (PASs), we constructed and analyzed human TSS/PAS mate pair full-length cDNA libraries from 14 tissue types and four cell lines. The collected information enabled us to define TSS cluster (TSC) and PAS cluster (PAC) relationships for a total of 8530/9400 RefSeq genes, as well as 4251/5618 of their putative alternative promoters/terminators and 4619/4605 intervening transcripts, respectively. Analyses of the putative alternative TSCs and alternative PACs revealed that their selection appeared to be mostly independent, with rare exceptions. In those exceptional cases, pairs of transcript units rarely overlapped one another and were occasionally separated by Rad21/CTCF. We also identified a total of 172 similar cases in which TSCs and PACs spanned adjacent but distinct genes. In these cases, different transcripts may utilize different functional units of a particular gene or of adjacent genes. This approach was also useful for identifying fusion gene transcripts in cancerous cells. Furthermore, we could construct cDNA libraries in which 3′-end mate pairs were distributed randomly over the transcripts. These libraries were useful for assembling the internal structure of previously uncharacterized alternative promoter products, as well as intervening transcripts.
Collapse
Affiliation(s)
- Kyoko Matsumoto
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Ayako Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroyuki Wakaguri
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Sumio Sugano
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
25
|
Dorweiler JE, Ni T, Zhu J, Munroe SH, Anderson JT. Certain adenylated non-coding RNAs, including 5' leader sequences of primary microRNA transcripts, accumulate in mouse cells following depletion of the RNA helicase MTR4. PLoS One 2014; 9:e99430. [PMID: 24926684 PMCID: PMC4057207 DOI: 10.1371/journal.pone.0099430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022] Open
Abstract
RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA's primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Ting Ni
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Jun Zhu
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| | - James T. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| |
Collapse
|
26
|
Abstract
Transcriptomics experiments and computational predictions both enable systematic discovery of new functional RNAs. However, many putative noncoding transcripts arise instead from artifacts and biological noise, and current computational prediction methods have high false positive rates. I discuss prospects for improving computational methods for analyzing and identifying functional RNAs, with a focus on detecting signatures of conserved RNA secondary structure. An interesting new front is the application of chemical and enzymatic experiments that probe RNA structure on a transcriptome-wide scale. I review several proposed approaches for incorporating structure probing data into the computational prediction of RNA secondary structure. Using probabilistic inference formalisms, I show how all these approaches can be unified in a well-principled framework, which in turn allows RNA probing data to be easily integrated into a wide range of analyses that depend on RNA secondary structure inference. Such analyses include homology search and genome-wide detection of new structural RNAs.
Collapse
Affiliation(s)
- Sean R Eddy
- Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, Virginia 20147;
| |
Collapse
|
27
|
Will S, Siebauer MF, Heyne S, Engelhardt J, Stadler PF, Reiche K, Backofen R. LocARNAscan: Incorporating thermodynamic stability in sequence and structure-based RNA homology search. Algorithms Mol Biol 2013; 8:14. [PMID: 23601347 PMCID: PMC3716875 DOI: 10.1186/1748-7188-8-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background The search for distant homologs has become an import issue in genome annotation. A particular difficulty is posed by divergent homologs that have lost recognizable sequence similarity. This same problem also arises in the recognition of novel members of large classes of RNAs such as snoRNAs or microRNAs that consist of families unrelated by common descent. Current homology search tools for structured RNAs are either based entirely on sequence similarity (such as blast or hmmer) or combine sequence and secondary structure. The most prominent example of the latter class of tools is Infernal. Alternatives are descriptor-based methods. In most practical applications published to-date, however, the information contained in covariance models or manually prescribed search patterns is dominated by sequence information. Here we ask two related questions: (1) Is secondary structure alone informative for homology search and the detection of novel members of RNA classes? (2) To what extent is the thermodynamic propensity of the target sequence to fold into the correct secondary structure helpful for this task? Results Sequence-structure alignment can be used as an alternative search strategy. In this scenario, the query consists of a base pairing probability matrix, which can be derived either from a single sequence or from a multiple alignment representing a set of known representatives. Sequence information can be optionally added to the query. The target sequence is pre-processed to obtain local base pairing probabilities. As a search engine we devised a semi-global scanning variant of LocARNA’s algorithm for sequence-structure alignment. The LocARNAscan tool is optimized for speed and low memory consumption. In benchmarking experiments on artificial data we observe that the inclusion of thermodynamic stability is helpful, albeit only in a regime of extremely low sequence information in the query. We observe, furthermore, that the sensitivity is bounded in particular by the limited accuracy of the predicted local structures of the target sequence. Conclusions Although we demonstrate that a purely structure-based homology search is feasible in principle, it is unlikely to outperform tools such as Infernal in most application scenarios, where a substantial amount of sequence information is typically available. The LocARNAscan approach will profit, however, from high throughput methods to determine RNA secondary structure. In transcriptome-wide applications, such methods will provide accurate structure annotations on the target side. Availability Source code of the free software LocARNAscan 1.0 and supplementary data are available at
http://www.bioinf.uni-leipzig.de/Software/LocARNAscan.
Collapse
|
28
|
Yonemoto H, Asai K, Hamada M. CentroidAlign-Web: A Fast and Accurate Multiple Aligner for Long Non-Coding RNAs. Int J Mol Sci 2013; 14:6144-56. [PMID: 23507751 PMCID: PMC3634467 DOI: 10.3390/ijms14036144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/28/2013] [Accepted: 02/28/2013] [Indexed: 12/31/2022] Open
Abstract
Due to the recent discovery of non-coding RNAs (ncRNAs), multiple sequence alignment (MSA) of those long RNA sequences is becoming increasingly important for classifying and determining the functional motifs in RNAs. However, not only primary (nucleotide) sequences, but also secondary structures of ncRNAs are closely related to their function and are conserved evolutionarily. Hence, information about secondary structures should be considered in the sequence alignment of ncRNAs. Yet, in general, a huge computational time is required in order to compute MSAs, taking secondary structure information into account. In this paper, we describe a fast and accurate web server, called CentroidAlign-Web, which can handle long RNA sequences. The web server also appropriately incorporates information about known secondary structures into MSAs. Computational experiments indicate that our web server is fast and accurate enough to handle long RNA sequences. CentroidAlign-Web is freely available from http://centroidalign.ncrna.org/.
Collapse
Affiliation(s)
- Haruka Yonemoto
- Department of Computational Biology, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan; E-Mails: yonemoto (H.Y.); (K.A.)
| | - Kiyoshi Asai
- Department of Computational Biology, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan; E-Mails: yonemoto (H.Y.); (K.A.)
- Computational Biology Research Center (CBRC), the National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Michiaki Hamada
- Department of Computational Biology, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan; E-Mails: yonemoto (H.Y.); (K.A.)
- Computational Biology Research Center (CBRC), the National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|