1
|
da Silva Rodrigues G, Yumi Noronha N, Ribeiro de Lima JG, Harumi Yonehara Noma I, Crystine da Silva Sobrinho A, Maria Diani L, Pinto AP, Pereira Rodrigues K, Augusta de Souza Pinhel M, Barbosa Nonino C, Moriguchi Watanabe L, Roberto Bueno Júnior C. Combined exercise training decreases blood pressure in OLDER women with NOS3 polymorphism providing changes in differentially methylated regions (DMRs). Epigenetics 2024; 19:2375030. [PMID: 38967279 PMCID: PMC11229753 DOI: 10.1080/15592294.2024.2375030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.
Collapse
Affiliation(s)
| | - Natalia Yumi Noronha
- Department of Gynecology and Obstetrics, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Isabela Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Luísa Maria Diani
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana P. Pinto
- School of Physical Education of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Karine Pereira Rodrigues
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Carlos Roberto Bueno Júnior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- School of Physical Education of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Wei S, Luo S, Zhang H, Li Y, Zhao J. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. GENES & NUTRITION 2023; 18:12. [PMID: 37598138 PMCID: PMC10439541 DOI: 10.1186/s12263-023-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Paternal high-fat diet (HFD) can alter the epigenetics of sperm DNA, resulting in the transmission of obesity-related traits to the offspring. Previous studies have mainly focused on the HFD-induced changes in DNA methylation of imprinted genes, overlooking the potential involvement of non-imprinted genes in this process. SETD2, an important epigenetically-regulated gene known for its response to environmental stress, remains poorly understood in the context of high-fat diet-induced epigenetic changes. Here we examined the effect of obesity from a HFD on paternal SETD2 expression and methylation in sperm, and embryos at the blastocyst stage and during subsequent development, to determine the alteration of SETD2 in paternal intergenerational and transgenerational inheritance. The result showed that mice fed with HFD for two months had significantly increased SETD2 expression in testis and sperm. The paternal HFD significantly altered the DNA methylation level with 20 of the 26 CpG sites being changed in sperm from F0 mice. Paternal high-fat diet increased apoptotic index and decreased total cell number of blastocysts, which were closely correlated with DNA methylation level of sperm. Out of the 26 CpG sites, we also found three CpG sites that were significantly changed in the sperm from F1 mice, which meant that the methylation changes at these three CpG sites were maintained.In conclusion, we found that paternal exposure to an HFD disrupted the methylation pattern of SETD2 in the sperm of F0 mice and resulted in perturbed SETD2 expression. Furthermore, the paternal high-fat diet influenced embryo apoptosis and development, possibly through the SETD2 pathway. The altered methylation of SETD2 in sperm induced by paternal HFD partially persisted in the sperm of the F1 generation, highlighting the role of SETD2 as an epigenetic carrier for paternal intergenerational and transgenerational inheritance.
Collapse
Affiliation(s)
- Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiwei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, China
| | - Haifeng Zhang
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.
| | - Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Simper MS, Coletta LD, Gaddis S, Lin K, Mikulec CD, Takata T, Tomida MW, Zhang D, Tang DG, Estecio MR, Shen J, Lu Y. Commercial ChIP-Seq Library Preparation Kits Performed Differently for Different Classes of Protein Targets. J Biomol Tech 2022; 33:3fc1f5fe.7910785e. [PMID: 36910579 PMCID: PMC10001930 DOI: 10.7171/3fc1f5fe.7910785e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) is a powerful method commonly used to study global protein-DNA interactions including both transcription factors and histone modifications. We have found that the choice of ChIP-Seq library preparation protocol plays an important role in overall ChIP-Seq data quality. However, very few studies have compared ChIP-Seq libraries prepared by different protocols using multiple targets and a broad range of input DNA levels. Results In this study, we evaluated the performance of 4 ChIP-Seq library preparation protocols (New England Biolabs [NEB] NEBNext Ultra II, Roche KAPA HyperPrep, Diagenode MicroPlex, and Bioo [now PerkinElmer] NEXTflex) on 3 target proteins, chosen to represent the 3 typical signal enrichment patterns in ChIP-Seq experiments: sharp peaks (H3K4me3), broad domains (H3K27me3), and punctate peaks with a protein binding motif (CTCF). We also tested a broad range of different input DNA levels from 0.10 to 10 ng for H3K4me3 and H3K27me3 experiments. Conclusions Our results suggest that the NEB protocol may be better for preparing H3K4me3 (and potentially other histone modifications with sharp peak enrichment) libraries; the Bioo protocol may be better for preparing H3K27me3 (and potentially other histone modifications with broad domain enrichment) libraries, and the Diagenode protocol may be better for preparing CTCF (and potentially other transcription factors with well-defined binding motifs) libraries. For ChIP-Seq experiments using novel targets without a known signal enrichment pattern, the NEB protocol might be the best choice, as it performed well for each of the 3 targets we tested across a wide array of input DNA levels.
Collapse
Affiliation(s)
- M S Simper
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - L Della Coletta
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - S Gaddis
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - K Lin
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - C D Mikulec
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - True Takata
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - M W Tomida
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - D Zhang
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Present Address: College of Biology Hunan University Changsha410082 China
| | - D G Tang
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Present Address: Department of Pharmacology and Therapeutics Roswell Park Cancer Institute BuffaloNew York14263 USA
| | - M R Estecio
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| | - J Shen
- Department of Epigenetics and Molecular Carcinogenesis.,Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA.,Program in Genetics and Epigenetics MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences The University of Texas MD Anderson Cancer Center SmithvilleTexas78957 USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis The University of Texas MD Anderson Cancer Center Science ParkSmithvilleTexas78957 USA
| |
Collapse
|
4
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
5
|
Abstract
Cell fusions have a long history of supporting biomedical research. These experimental models, historically referred to as 'somatic cell hybrids', involve combining the plasma membranes of two cells and merging their nuclei within a single cytoplasm. Cell fusion studies involving human and chimpanzee pluripotent stem cells, rather than somatic cells, highlight the need for responsible communication and a revised nomenclature. Applying the terms 'hybrid' and 'parental' to the fused and source cell lines, respectively, evokes reproductive relationships that do not exist between humans and other species. These misnomers become more salient in the context of fused pluripotent stem cells derived from different but closely related species. Here, we propose a precise, versatile and generalizable framework to describe these fused cell lines. We recommend the term 'composite cell line', to distinguish cell lines that are experimentally created through fusions from both reproductive hybrids and natural cell fusion events without obscuring the model in overly technical terms. For scientific audiences, we further recommend technical nomenclature that describes the contributing species, ploidy and cell type.
Collapse
|
6
|
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2018; 356:356/6337/eaaj2239. [PMID: 28473536 DOI: 10.1126/science.aaj2239] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.
Collapse
Affiliation(s)
- Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Ekaterina Morgunova
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Biswajyoti Sahu
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Pratyush K Das
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kazuhiro R Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Minna Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Paul A Ginno
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Domcke
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Dirk Schübeler
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden. .,Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Jullien J, Vodnala M, Pasque V, Oikawa M, Miyamoto K, Allen G, David SA, Brochard V, Wang S, Bradshaw C, Koseki H, Sartorelli V, Beaujean N, Gurdon J. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Mol Cell 2017; 65:873-884.e8. [PMID: 28257702 PMCID: PMC5344684 DOI: 10.1016/j.molcel.2017.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos. Identification of genes resistant to direct transcriptional reprogramming Determination of resistant gene sensitivity to 11 chromatin modifier combinations USP21 removes resistance through its H2AK119 deubiquitylation activity USP21 improves the reprogramming of gene expression in two-cell-stage mouse embryos
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Munender Vodnala
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan
| | - George Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sarah Anne David
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Vincent Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Stan Wang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Charles Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Laboratory for Developmental Genetics, North Research Building, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
8
|
Mitani Y, Vagnozzi RJ, Millay DP. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. FASEB J 2016; 31:400-411. [PMID: 27825107 DOI: 10.1096/fj.201600945r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.
Collapse
Affiliation(s)
- Yasuyuki Mitani
- Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ronald J Vagnozzi
- Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Douglas P Millay
- Department of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Abstract
Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.
Collapse
|
10
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
11
|
Mapping occluded genes. Nat Rev Genet 2014. [DOI: 10.1038/nrg3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|