1
|
Gimenez S, Eychenne M, Legeai F, Gamble S, d'Alençon E. Towards identification of a holocentromere marker in the lepidopteran model Spodoptera frugiperda. Chromosoma 2025; 134:2. [PMID: 40067534 PMCID: PMC11897090 DOI: 10.1007/s00412-025-00828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Some insects have holocentric chromosomes, with multiple kinetochores rather than a single centromere. They also lack the CENP-A and CENP-C proteins, suggesting a kinetochore assembly process different from that of monocentric chromosomes. The homolog of CENP-T was recently shown to bind silent chromatin and to play a key role in kinetochore assembly in Bombyx mori, but its role in other insects with holocentric chromosomes is unknown. We identified kinetochore genes and analyzed their expression in Spodoptera frugiperda. We silenced the kinetochore genes cenp-L, cenp-S, cenp-X and ndc80 and searched for chromosome segregation defects in Sf9 cells. All kinetochore genes except cenp-S were more strongly expressed in gonadal than in somatic tissues. Immunofluorescence microscopy and RT-qPCR demonstrated the effective silencing of the target genes by transfection with dsRNA. In Sf9 cells depleted of CENP-L and NDC80, immunofluorescence microscopy revealed increases in mitotic index and in the proportion of cells with unaligned chromosomes or multipolar spindles. The depletion of CENP-S and CENP-X had no effect on mitotic index and no division defects were observed. This suggests that CENP-L and NDC80 play key roles in chromosome segregation, whereas the functions of CENP-S and CENP-X remain unknown. We have begun to characterize the kinetochore proteins (CENP-L, CENP-S, CENP-X, NDC80), a prerequisite for holocentromere identification in S. frugiperda. This study also provides the first information about the role, in Lepidoptera, of CENP-L, a protein essential to the structure of the constitutive centromere-associated network in species with monocentric chromosomes.
Collapse
Affiliation(s)
| | | | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France
- University of Rennes, INRIA, CNRS, IRISA, Rennes, France
| | - Sally Gamble
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|
2
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive Conservation of Intron Number and Other Genetic Elements Revealed by a Chromosome-level Genome Assembly of the Hyper-polymorphic Nematode Caenorhabditis brenneri. Genome Biol Evol 2025; 17:evaf037. [PMID: 40037811 PMCID: PMC11925023 DOI: 10.1093/gbe/evaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
With within-species genetic diversity estimates that span the gamut of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and, notably, across Metazoa. Here, we present a high-quality, gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat-rich arms. A comparison of C. brenneri with other nematodes from the "Elegans" group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation of orthogroup size, indicative of high rates of gene turnover, consistent with previous studies. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. A comparison of gene structures revealed a strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
3
|
Page-McCaw PS, Pokidysheva EN, Darris CE, Chetyrkin S, Fidler AL, Gallup J, Murawala P, Hudson JK, Boudko S, Hudson BG. Collagen IV of basement membranes: I. Origin and diversification of COL4 genes enabling animal evolution and adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.563013. [PMID: 37905027 PMCID: PMC10614949 DOI: 10.1101/2023.10.18.563013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagen IV is a major component of basement membranes, a specialized form of extracellular matrix that enabled the assembly of multicellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), forming three supramolecular scaffolds: Col-IVα121, Col-IVα345 and Col-IVα121-α556. The α-chains are encoded by six genes (COL4A1-6) that occur in pairs in a head-to-head arrangement. In Alport syndrome, variants in COL4A3, 4 or 5 genes, encoding Col-IVα345 scaffold in glomerular basement membrane (GBM), the kidney ultrafilter, cause progressive renal failure in millions of people worldwide. How variants cause dysfunction remains obscure. Here, we gained insights into Col-IVα345 function by determining its evolutionary lineage, as revealed from phylogenetic analyses and tissue expression of COL4 gene-pairs. We found that the COL4A⟨1|2⟩ gene-pair emerged in basal Ctenophores and Cnidaria phyla and is highly conserved across metazoans. The COL4A⟨1|2⟩ duplicated and arose as the progenitor to the COL4A⟨3|4⟩ gene-pair in cyclostomes, coinciding with emergence of kidney GBM, and expressed and conserved in jawed-vertebrates, except for amphibians, and a second duplication as the progenitor to the COL4A⟨5|6⟩ gene-pair and conserved in jawed-vertebrates. These findings revealed that Col-IVα121 is the progenitor scaffold, expressed ubiquitously in metazoan basement membranes, and which evolved into vertebrate Col-IVα345 and expressed in GBM. The Col-IVα345 scaffold, in comparison, has an increased number of cysteine residues, varying in number with osmolarity of the environment. Cysteines mediate disulfide crosslinks between protomers, an adaptation enabling a compact GBM that withstands the high hydrostatic pressure associated with glomerular ultrafiltration.
Collapse
|
4
|
Bouvarel L, Liu D, Zheng C. Visualizing genomic evolution in Caenorhabditis through WormSynteny. BMC Genomics 2024; 25:1009. [PMID: 39468698 PMCID: PMC11520455 DOI: 10.1186/s12864-024-10919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.
Collapse
Affiliation(s)
- Lilly Bouvarel
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Dongyao Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
6
|
Ma F, Lau CY, Zheng C. Young duplicate genes show developmental stage- and cell type-specific expression and function in Caenorhabditis elegans. CELL GENOMICS 2024; 4:100467. [PMID: 38190105 PMCID: PMC10794840 DOI: 10.1016/j.xgen.2023.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Gene duplication produces the material that fuels evolutionary innovation. The "out-of-testis" hypothesis suggests that sperm competition creates selective pressure encouraging the emergence of new genes in male germline, but the somatic expression and function of the newly evolved genes are not well understood. We systematically mapped the expression of young duplicate genes throughout development in Caenorhabditis elegans using both whole-organism and single-cell transcriptomic data. Based on the expression dynamics across developmental stages, young duplicate genes fall into three clusters that are preferentially expressed in early embryos, mid-stage embryos, and late-stage larvae. Early embryonic genes are involved in protein degradation and develop essentiality comparable to the genomic average. In mid-to-late embryos and L4-stage larvae, young genes are enriched in intestine, epidermal cells, coelomocytes, and amphid chemosensory neurons. Their molecular functions and inducible expression indicate potential roles in innate immune response and chemosensory perceptions, which may contribute to adaptation outside of the sperm.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Traut W, Sahara K, ffrench-Constant RH. Lepidopteran Synteny Units reveal deep chromosomal conservation in butterflies and moths. G3 (BETHESDA, MD.) 2023; 13:jkad134. [PMID: 37310934 PMCID: PMC10411566 DOI: 10.1093/g3journal/jkad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
DNA is compacted into individual particles or chromosomes that form the basic units of inheritance. However, different animals and plants have widely different numbers of chromosomes. This means that we cannot readily tell which chromosomes are related to which. Here, we describe a simple technique that looks at the similarity of genes on each chromosome and thus gives us a true picture of their homology or similarity through evolutionary time. We use this new system to look at the chromosomes of butterflies and moths or Lepidoptera. We term the associated synteny units, Lepidopteran Synteny Units (LSUs). Using a sample of butterfly and moth genomes from across evolutionary time, we show that LSUs form a simple and reliable method of tracing chromosomal homology back through time. Surprisingly, this technique reveals that butterfly and moth chromosomes show conserved blocks dating back to their sister group the Trichoptera. As Lepidoptera have holocentric chromosomes, it will be interesting to see if similar levels of synteny are shown in groups of animals with monocentric chromosomes. The ability to define homology via LSU analysis makes it considerably easier to approach many questions in chromosomal evolution.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Ken Sahara
- Laboratory of Molecular Entomology, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | | |
Collapse
|
8
|
Stevens L, Moya ND, Tanny RE, Gibson SB, Tracey A, Na H, Chitrakar R, Dekker J, Walhout AJ, Baugh LR, Andersen EC. Chromosome-level reference genomes for two strains of Caenorhabditis briggsae: an improved platform for comparative genomics. Genome Biol Evol 2022; 14:6554914. [PMID: 35348662 PMCID: PMC9011032 DOI: 10.1093/gbe/evac042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The publication of the Caenorhabditis briggsae reference genome in 2003 enabled the first comparative genomics studies between C. elegans and C. briggsae, shedding light on the evolution of genome content and structure in the Caenorhabditis genus. However, despite being widely used, the currently available C. briggsae reference genome is substantially less complete and structurally accurate than the C. elegans reference genome. Here, we used high-coverage Oxford Nanopore long-read and chromosome conformation capture data to generate chromosome-level reference genomes for two C. briggsae strains: QX1410, a new reference strain closely related to the laboratory AF16 strain, and VX34, a highly divergent strain isolated in China. We also sequenced 99 recombinant inbred lines (RILs) generated from reciprocal crosses between QX1410 and VX34 to create a recombination map and identify chromosomal domains. Additionally, we used both short- and long-read RNA sequencing (RNA-seq) data to generate high-quality gene annotations. By comparing these new reference genomes to the current reference, we reveal that hyper-divergent haplotypes cover large portions of the C. briggsae genome, similar to recent reports in C. elegans and C. tropicalis. We also show that the genomes of selfing Caenorhabditis species have undergone more rearrangement than their outcrossing relatives, which has biased previous estimates of rearrangement rate in Caenorhabditis. These new genomes provide a substantially improved platform for comparative genomics in Caenorhabditis and narrow the gap between the quality of genomic resources available for C. elegans and C. briggsae.
Collapse
Affiliation(s)
- Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas D. Moya
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Robyn E. Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sophia B. Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Huimin Na
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Onken B, Sedore CA, Coleman‐Hulbert AL, Hall D, Johnson E, Jones EG, Banse SA, Huynh P, Guo S, Xue J, Chen E, Harinath G, Foulger A, Chao EA, Hope J, Bhaumik D, Plummer T, Inman D, Morshead M, Guo M, Lithgow G, Phillips PC, Driscoll M. Metformin treatment of diverse Caenorhabditis species reveals the importance of genetic background in longevity and healthspan extension outcomes. Aging Cell 2022; 21:e13488. [PMID: 34837316 PMCID: PMC8761014 DOI: 10.1111/acel.13488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/31/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Metformin, the most commonly prescribed anti‐diabetes medication, has multiple reported health benefits, including lowering the risks of cardiovascular disease and cancer, improving cognitive function with age, extending survival in diabetic patients, and, in several animal models, promoting youthful physiology and lifespan. Due to its longevity and health effects, metformin is now the focus of the first proposed clinical trial of an anti‐aging drug—the Targeting Aging with Metformin (TAME) program. Genetic variation will likely influence outcomes when studying metformin health effects in human populations. To test for metformin impact in diverse genetic backgrounds, we measured lifespan and healthspan effects of metformin treatment in three Caenorhabditis species representing genetic variability greater than that between mice and humans. We show that metformin increases median survival in three C. elegans strains, but not in C. briggsae and C. tropicalis strains. In C. briggsae, metformin either has no impact on survival or decreases lifespan. In C. tropicalis, metformin decreases median survival in a dose‐dependent manner. We show that metformin prolongs the period of youthful vigor in all C. elegans strains and in two C. briggsae strains, but that metformin has a negative impact on the locomotion of C. tropicalis strains. Our data demonstrate that metformin can be a robust promoter of healthy aging across different genetic backgrounds, but that genetic variation can determine whether metformin has positive, neutral, or negative lifespan/healthspan impact. These results underscore the importance of tailoring treatment to individuals when testing for metformin health benefits in diverse human populations.
Collapse
Affiliation(s)
- Brian Onken
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | | | | | - David Hall
- The Buck Institute for Research on Aging Novato California USA
| | - Erik Johnson
- Institute of Ecology and Evolution University of Oregon Eugene Oregon USA
| | | | - Stephen A. Banse
- Institute of Ecology and Evolution University of Oregon Eugene Oregon USA
| | - Phu Huynh
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Suzhen Guo
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Jian Xue
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Esteban Chen
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Girish Harinath
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| | - Anna C. Foulger
- The Buck Institute for Research on Aging Novato California USA
| | | | - June Hope
- The Buck Institute for Research on Aging Novato California USA
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging Novato California USA
| | - Todd Plummer
- The Buck Institute for Research on Aging Novato California USA
| | - Delaney Inman
- The Buck Institute for Research on Aging Novato California USA
| | | | - Max Guo
- Division of Aging Biology National Institute on Aging Bethesda Maryland USA
| | | | | | - Monica Driscoll
- Nelson Biological Laboratories Department of Molecular Biology and Biochemistry Rutgers University Piscataway New Jersey USA
| |
Collapse
|
10
|
Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. J Fungi (Basel) 2021; 7:jof7100864. [PMID: 34682285 PMCID: PMC8537764 DOI: 10.3390/jof7100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection.
Collapse
|
11
|
The double-stranded DNA-binding proteins TEBP-1 and TEBP-2 form a telomeric complex with POT-1. Nat Commun 2021; 12:2668. [PMID: 33976151 PMCID: PMC8113555 DOI: 10.1038/s41467-021-22861-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Telomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.
Collapse
|
12
|
Teterina AA, Willis JH, Phillips PC. Chromosome-Level Assembly of the Caenorhabditis remanei Genome Reveals Conserved Patterns of Nematode Genome Organization. Genetics 2020; 214:769-780. [PMID: 32111628 PMCID: PMC7153949 DOI: 10.1534/genetics.119.303018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
The nematode Caenorhabditis elegans is one of the key model systems in biology, including possessing the first fully assembled animal genome. Whereas C. elegans is a self-reproducing hermaphrodite with fairly limited within-population variation, its relative C. remanei is an outcrossing species with much more extensive genetic variation, making it an ideal parallel model system for evolutionary genetic investigations. Here, we greatly improve on previous assemblies by generating a chromosome-level assembly of the entire C. remanei genome (124.8 Mb of total size) using long-read sequencing and chromatin conformation capture data. Like other fully assembled genomes in the genus, we find that the C. remanei genome displays a high degree of synteny with C. elegans despite multiple within-chromosome rearrangements. Both genomes have high gene density in central regions of chromosomes relative to chromosome ends and the opposite pattern for the accumulation of repetitive elements. C. elegans and C. remanei also show similar patterns of interchromosome interactions, with the central regions of chromosomes appearing to interact with one another more than the distal ends. The new C. remanei genome presented here greatly augments the use of the Caenorhabditis as a platform for comparative genomics and serves as a basis for molecular population genetics within this highly diverse species.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 117071, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
13
|
Delprat A, Guillén Y, Ruiz A. Computational Sequence Analysis of Inversion Breakpoint Regions in the Cactophilic Drosophila mojavensis Lineage. J Hered 2020; 110:102-117. [PMID: 30407542 DOI: 10.1093/jhered/esy057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022] Open
Abstract
We investigated rates of chromosomal evolution in Drosophila mojavensis using whole-genome sequence information from D. mojavensis, Drosophila buzzatii, and Drosophila virilis. Drosophila mojavensis is a cactophilic species of the repleta group living under extreme ecological conditions in the deserts of the Southwestern United States and Northwestern México. The genome of D. buzzatii, another member of the repleta group, was recently sequenced and the largest scaffolds anchored to all chromosomes using diverse procedures. Chromosome organization between D. mojavensis and D. buzzatii was compared using MUMmer and GRIMM software. Our results corroborate previous cytological analyses that indicated chromosome 2 differed between these 2 species by 10 inversions, chromosomes X and 5 differed by one inversion each, and chromosome 4 was homosequential. In contrast, we found that chromosome 3 differed by 5 inversions instead of the expected 2 that were previously inferred by cytological analyses. Thirteen of these inversions occurred in the D. mojavensis lineage: 12 are fixed and one of them is a polymorphic inversion previously described in populations from Sonora and Baja California, México. We previously investigated the breakpoints of chromosome 2 inversions fixed in D. mojavensis. Here we characterized the breakpoint regions of the 5 inversions found in chromosome 3 in order to infer the molecular mechanism that generated each inversion and its putative functional consequences. Overall, our results reveal a number of gene alterations at the inversion breakpoints with putative adaptive consequences that point to natural selection as the cause for fast chromosomal evolution in D. mojavensis.
Collapse
Affiliation(s)
- Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Alfredo Ruiz
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
14
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
15
|
Li Y, Park H, Smith TE, Moran NA. Gene Family Evolution in the Pea Aphid Based on Chromosome-Level Genome Assembly. Mol Biol Evol 2020; 36:2143-2156. [PMID: 31173104 PMCID: PMC6759078 DOI: 10.1093/molbev/msz138] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome structural variations, including duplications, deletions, insertions, and inversions, are central in the evolution of eukaryotic genomes. However, structural variations present challenges for high-quality genome assembly, hampering efforts to understand the evolution of gene families and genome architecture. An example is the genome of the pea aphid (Acyrthosiphon pisum) for which the current assembly is composed of thousands of short scaffolds, many of which are known to be misassembled. Here, we present an improved version of the A. pisum genome based on the use of two long-range proximity ligation methods. The new assembly contains four long scaffolds (40-170 Mb), corresponding to the three autosomes and the X chromosome of A. pisum, and encompassing 86% of the new assembly. Assembly accuracy is supported by several quality assessments. Using this assembly, we identify the chromosomal locations and relative ages of duplication events, and the locations of horizontally acquired genes. The improved assembly illuminates the mode of gene family evolution by providing proximity information between paralogs. By estimating nucleotide polymorphism and coverage depth from resequencing data, we determined that many short scaffolds not assembling to chromosomes represent hemizygous regions, which are especially frequent on the highly repetitive X chromosome. Aligning the X-linked aphicarus region, responsible for male wing dimorphism, to the new assembly revealed a 50-kb deletion that cosegregates with the winged male phenotype in some clones. These results show that long-range scaffolding methods can substantially improve assemblies of repetitive genomes and facilitate study of gene family evolution and structural variation.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Hyunjin Park
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Thomas E Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
16
|
Assembly of Schizosaccharomyces cryophilus chromosomes and their comparative genomic analyses revealed principles of genome evolution of the haploid fission yeasts. Sci Rep 2018; 8:14629. [PMID: 30279451 PMCID: PMC6168568 DOI: 10.1038/s41598-018-32525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022] Open
Abstract
The fission yeast clade, which has a distinct life history from other yeasts, can provide important clues about evolutionary changes. To reveal these changes the large S. cryophilus supercontigs were assembled into chromosomes using synteny relationships and the conserved pericentromeric, subtelomeric genes. Togetherness of the supercontigs was confirmed by PCR. Investigation of the gene order revealed localisation of the rDNA arrays, more than 300 new conserved orthologues and proved that S. cryophilus supercontigs were mosaics of collinear blocks. PFGE analysis showed that size of the S. cryophilus chromosomes differ from the S. pombe chromosomes. Comparative genomic analyses of the newly assembled chromosomes confirmed that the closest relative of S. cryophilus was S. octosporus not just in sequence similarity but also in a structural way, and revealed that preservation of the conserved regions did not arise from the lower number of chromosomal rearrangements. Translocations were more typical in the closely related species, while the number of inversions increased with the phylogenetic distances. Our data suggested that sites of the chromosomal rearrangements were not random and often associated with repetitive sequences, structural- and nucleotide evolution might correlate. Chromosomal rearrangements of the fission yeasts compared to other lineages were also discussed.
Collapse
|
17
|
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol 2018; 16:e2005359. [PMID: 30063702 PMCID: PMC6067683 DOI: 10.1371/journal.pbio.2005359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.
Collapse
Affiliation(s)
- Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Bernd Schierwater
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Ecology & Evolution, Yale University, New Haven, Connecticut, United States of America
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
18
|
Insights into the karyotype evolution and speciation of the beetle Euchroma gigantea (Coleoptera: Buprestidae). Chromosome Res 2018. [PMID: 29524007 DOI: 10.1007/s10577-018-9576-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Euchroma Dejean, 1833 (Buprestidae: Coleoptera) is a monotypic genus comprising the species Euchroma gigantea, with populations presenting a degree of karyotypic variation/polymorphism rarely found within a single taxonomic (specific) unit, as well as drastically incompatible meiotic configurations in populations from extremes of the species range. To better understand the complex karyotypic evolution of E. gigantea, the karyotypes of specimens from five populations in Brazil were investigated using molecular cytogenetics and phylogenetic approaches. Herein, we used FISH with histone genes as well as sequencing of the COI to determine differential distribution of markers and relationships among populations. The analyses revealed new karyotypes, with variability for chromosome number and morphology of multiple sex chromosome mechanisms, occurrence of B chromosome variants (punctiform and large ones), and high dispersion of histone genes in different karyotypes. These data indicate that chromosomal polymorphism in E. gigantea is greater than previously reported, and that the species can be a valuable model for cytogenetic studies. The COI phylogenetic and haplotype analyses highlighted the formation of three groups with chromosomally polymorphic individuals. Finally, we compared the different karyotypes and proposed a model for the chromosomal evolution of this species. The species E. gigantea includes at least three cytogenetically polymorphic lineages. Moreover, in each of these lineages, different chromosomal rearrangements have been fixed. Dispersion of repetitive sequences may have favored the high frequency of these rearrangements, which could be related to both adaptation of the species to different habitats and the speciation process.
Collapse
|
19
|
Tang W, Seth M, Tu S, Shen EZ, Li Q, Shirayama M, Weng Z, Mello CC. A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans. Dev Cell 2018; 44:762-770.e3. [PMID: 29456136 DOI: 10.1016/j.devcel.2018.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 01/25/2023]
Abstract
In metazoans, Piwi-related Argonaute proteins engage piRNAs (Piwi-interacting small RNAs) to defend the genome against invasive nucleic acids, such as transposable elements. Yet many organisms-including worms and humans-express thousands of piRNAs that do not target transposons, suggesting that piRNA function extends beyond genome defense. Here, we show that the X chromosome-derived piRNA 21ux-1 downregulates XOL-1 (XO Lethal), a master regulator of X chromosome dosage compensation and sex determination in Caenorhabditis elegans. Mutations in 21ux-1 and several Piwi-pathway components sensitize hermaphrodites to dosage compensation and sex determination defects. We show that the piRNA pathway also targets xol-1 in C. briggsae, a nematode species related to C. elegans. Our findings reveal physiologically important piRNA-mRNA interactions, raising the possibility that piRNAs function broadly to ensure robust gene expression and germline development.
Collapse
Affiliation(s)
- Wen Tang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Meetu Seth
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - En-Zhi Shen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qian Li
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Masaki Shirayama
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
SMORE: Synteny Modulator of Repetitive Elements. Life (Basel) 2017; 7:life7040042. [PMID: 29088079 PMCID: PMC5745555 DOI: 10.3390/life7040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022] Open
Abstract
Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available.
Collapse
|
21
|
Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over 7 million years. Parasitology 2017; 144:1302-1315. [PMID: 28583210 DOI: 10.1017/s0031182017000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genome assemblies can form the basis of comparative analyses fostering insight into the evolutionary genetics of a parasite's pathogenicity, host-pathogen interactions, environmental constraints and invasion biology; however, the length and complexity of many parasite genomes has hampered the development of well-resolved assemblies. In order to improve Trichinella genome assemblies, the genome of the sylvatic encapsulated species Trichinella murrelli was sequenced using third-generation, long-read technology and, using syntenic comparisons, scaffolded to a reference genome assembly of Trichinella spiralis, markedly improving both. A high-quality draft assembly for T. murrelli was achieved that totalled 63·2 Mbp, half of which was condensed into 26 contigs each longer than 571 000 bp. When compared with previous assemblies for parasites in the genus, ours required 10-fold fewer contigs, which were five times longer, on average. Better assembly across repetitive regions also enabled resolution of 8 Mbp of previously indeterminate sequence. Furthermore, syntenic comparisons identified widespread scaffold misassemblies in the T. spiralis reference genome. The two new assemblies, organized for the first time into three chromosomal scaffolds, will be valuable resources for future studies linking phenotypic traits within each species to their underlying genetic bases.
Collapse
|
22
|
McGill LM, Fitzpatrick DA, Pisani D, Burnell AM. Estimation of phylogenetic divergence times in Panagrolaimidae and other nematodes using relaxed molecular clocks calibrated with insect and crustacean fossils. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study presents the use of relaxed molecular clock methods to infer the dates of divergence between Panagrolaimus species. Autocorrelated relaxed tree methods, combined with well characterised fossil calibration dates, yield estimates of nematode divergence dates in accordance with the palaeontological age of fossil ascarid eggs and with the previously estimated date of 18 Ma (range 11.6 to 29.9 Ma) for the divergence of the Caenorhabditis lineage. Our data indicate that Panagrolaimus davidi from Antarctica separated ca 21.98 Ma from its currently known, most closely related strain. Thus, P. davidi may have existed in Antarctica prior to the Last Glacial Maximum, although this seems unlikely as it shares physiological and life history traits with closely related nematodes from temperate climates. These traits may have facilitated colonisation of Antarctica by P. davidi after the quaternary glaciation, analogous to the colonisation of Surtsey Island, Iceland, by P. superbus after its volcanic formation. This study demonstrates that autocorrelated relaxed tree methods combined with well characterised fossil calibration dates may be used as a method to estimate the divergence dates within nematodes in order to gain insight into their evolutionary history.
Collapse
Affiliation(s)
- Lorraine M. McGill
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Davide Pisani
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Ann M. Burnell
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
23
|
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics. ADVANCES IN PARASITOLOGY 2016; 93:569-98. [PMID: 27238013 DOI: 10.1016/bs.apar.2016.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model.
Collapse
|
24
|
Manicardi GC, Nardelli A, Mandrioli M. Fast chromosomal evolution and karyotype instability: recurrent chromosomal rearrangements in the peach potato aphidMyzus persicae(Hemiptera: Aphididae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gian Carlo Manicardi
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 213/d 41125 Modena Italy
| | - Andrea Nardelli
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 213/d 41125 Modena Italy
| | - Mauro Mandrioli
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 213/d 41125 Modena Italy
| |
Collapse
|
25
|
Fraga D, Aryal M, Hall JE, Rae E, Snider M. Characterization of the arginine kinase isoforms in Caenorhabditis elegans. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:85-101. [PMID: 25981702 DOI: 10.1016/j.cbpb.2015.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/23/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Phosphagen kinases (PKs) are well-studied enzymes involved in energy homeostasis in a wide range of animal, protozoan, and even some bacterial species. Recent genome efforts have allowed comparative work on the PKs to extend beyond the biochemistry of individual proteins to the comparative cellular physiology and examining of the role of all PK family members in an organism. The sequencing of the Caenorhabditis elegans genome and availability of sophisticated genetic tools within that system affords the opportunity to conduct a detailed physiological analysis of the PKs from a well known invertebrate for comparison with the extensive work conducted on vertebrate systems. As a first step in this effort we have carried out a detailed molecular genetic and biochemical characterization of the PKs in C. elegans. Our results reveal that C. elegans has five PK genes encoding arginine kinases that range in catalytic efficiency (kcat/KM(Arg)) from (3.1±0.6)×10(4) to (9±4)×10(5) M(-1) s(-1). This range is generally within the range seen for arginine kinases from a variety of species. Our molecular genetic and phylogenetic analysis reveals that the gene family has undergone extensive intron loss and gain within the suborder Rhabditina. In addition, within C. elegans we find evidence of gene duplication and loss. The analysis described here for the C. elegans AKs represents one of the most complete biochemical and molecular genetic analysis of a PK family within a genetically tractable invertebrate system and opens up the possibility of conducting detailed physiological comparisons with vertebrate systems using the sophisticated tools available with this model invertebrate system.
Collapse
Affiliation(s)
- Dean Fraga
- Program in Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH 44691, United States; Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| | - Manish Aryal
- Program in Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH 44691, United States
| | - Joseph E Hall
- Program in Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH 44691, United States
| | - Evan Rae
- Program in Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH 44691, United States
| | - Mark Snider
- Program in Biochemistry and Molecular Biology, The College of Wooster, Wooster, OH 44691, United States; Department of Chemistry, The College of Wooster, Wooster, OH 44691, United States
| |
Collapse
|
26
|
Ragle JM, Katzman S, Akers TF, Barberan-Soler S, Zahler AM. Coordinated tissue-specific regulation of adjacent alternative 3' splice sites in C. elegans. Genome Res 2015; 25:982-94. [PMID: 25922281 PMCID: PMC4484395 DOI: 10.1101/gr.186783.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/27/2015] [Indexed: 12/30/2022]
Abstract
Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Taylor F Akers
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sergio Barberan-Soler
- Gene Regulation, Stem Cells, and Cancer Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Alan M Zahler
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
27
|
Wadsworth CB, Li X, Dopman EB. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity (Edinb) 2015; 114:593-600. [PMID: 25626887 DOI: 10.1038/hdy.2014.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023] Open
Abstract
Despite unparalleled access to species' genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process-genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases-one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies.
Collapse
Affiliation(s)
- C B Wadsworth
- Department of Biology, Tufts University, Medford, MA, USA
| | - X Li
- Department of Biology, Tufts University, Medford, MA, USA
| | - E B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
28
|
Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 2014; 91:136. [PMID: 25320148 DOI: 10.1095/biolreprod.114.121418] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The dmrt6 gene has been isolated from tetrapods and recently from a coelacanth, Latimeria chalumnae. Its evolutionary history and exact function remain unclear. In the present study, dmrt6 was isolated from Perciformes (five cichlids and stickleback), Siluriformes (southern catfish), and Lepisosteiformes (spotted gar). Syntenic and phylogenetic analyses indicated that dmrt6 experienced gene transposition after the divergence of teleosts from other bony fish as gene loci surrounding dmrt6 were conserved among teleosts (but was completely different from gene loci surrounding dmrt6 in tetrapods and spotted gar), while these gene loci were conserved among nonteleost species. Real-time PCR and in situ hybridization revealed that dmrt6 was highly expressed in the XY gonads from 90 days after hatching (dah) onward and was observed exclusively in spermatocytes of the testes in tilapia. Dmrt6 knockout by CRISPR/Cas9 resulted in fewer spermatocytes, down-regulated Cyp11b2 in testes, and consequently produced a lower level of serum 11-ketotestosterone (11-KT) in Dmrt6-deficient XY fish compared with the XY control at 120 dah. From 150 to 180 dah, spermatogenesis gradually recovered, and cyp11b2 expression and serum 11-KT level were restored to the same levels as those of the XY control fish. In addition, a Dmrt6 mutation was observed in genomic DNA of sperm of G0 mutant fish and F1 fish. Taken together, our data suggest that dmrt6 also exists in bony fish. Its absence in most fish genomes was probably due to incomplete sequencing and/or secondary loss. The dmrt6 gene is highly expressed in spermatocytes and is involved in spermatogenesis in tilapia.
Collapse
Affiliation(s)
- Xianbo Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yunying Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Abstract
Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.
Collapse
|
30
|
Vergara IA, Tarailo-Graovac M, Frech C, Wang J, Qin Z, Zhang T, She R, Chu JSC, Wang K, Chen N. Genome-wide variations in a natural isolate of the nematode Caenorhabditis elegans. BMC Genomics 2014; 15:255. [PMID: 24694239 PMCID: PMC4023591 DOI: 10.1186/1471-2164-15-255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 03/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Increasing genetic and phenotypic differences found among natural isolates of C. elegans have encouraged researchers to explore the natural variation of this nematode species. Results Here we report on the identification of genomic differences between the reference strain N2 and the Hawaiian strain CB4856, one of the most genetically distant strains from N2. To identify both small- and large-scale genomic variations (GVs), we have sequenced the CB4856 genome using both Roche 454 (~400 bps single reads) and Illumina GA DNA sequencing methods (101 bps paired-end reads). Compared to previously described variants (available in WormBase), our effort uncovered twice as many single nucleotide variants (SNVs) and increased the number of small InDels almost 20-fold. Moreover, we identified and validated large insertions, most of which range from 150 bps to 1.2 kb in length in the CB4856 strain. Identified GVs had a widespread impact on protein-coding sequences, including 585 single-copy genes that have associated severe phenotypes of reduced viability in RNAi and genetics studies. Sixty of these genes are homologs of human genes associated with diseases. Furthermore, our work confirms previously identified GVs associated with differences in behavioural and biological traits between the N2 and CB4856 strains. Conclusions The identified GVs provide a rich resource for future studies that aim to explain the genetic basis for other trait differences between the N2 and CB4856 strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
31
|
Behura SK, Severson DW. Overlapping genes of Aedes aegypti: evolutionary implications from comparison with orthologs of Anopheles gambiae and other insects. BMC Evol Biol 2013; 13:124. [PMID: 23777277 PMCID: PMC3689595 DOI: 10.1186/1471-2148-13-124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 06/12/2013] [Indexed: 11/11/2022] Open
Abstract
Background Although gene overlapping is a common feature of prokaryote and mitochondria genomes, such genes have also been identified in many eukaryotes. The overlapping genes in eukaryotes are extensively rearranged even between closely related species. In this study, we investigated retention and rearrangement of positionally overlapping genes between the mosquitoes Aedes aegypti (dengue virus vector) and Anopheles gambiae (malaria vector). The overlapping gene pairs of A. aegypti were further compared with orthologs of other selected insects to conduct several hypothesis driven investigations relating to the evolution and rearrangement of overlapping genes. Results The results show that as much as ~10% of the predicted genes of A. aegypti and A. gambiae are localized in positional overlapping manner. Furthermore, the study shows that differential abundance of introns and simple sequence repeats have significant association with positional rearrangement of overlapping genes between the two species. Gene expression analysis further suggests that antisense transcripts generated from the oppositely oriented overlapping genes are differentially regulated and may have important regulatory functions in these mosquitoes. Our data further shows that synonymous and non-synonymous mutations have differential but non-significant effect on overlapping localization of orthologous genes in other insect genomes. Conclusion Gene overlapping in insects may be a species-specific evolutionary process as evident from non-dependency of gene overlapping with species phylogeny. Based on the results, our study suggests that overlapping genes may have played an important role in genome evolution of insects.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
32
|
Mandrioli M, Manicardi GC. Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics? Curr Genomics 2013; 13:343-9. [PMID: 23372420 PMCID: PMC3401891 DOI: 10.2174/138920212801619250] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022] Open
Abstract
The presence of chromosomes with diffuse centromeres (holocentric chromosomes) has been reported in several taxa since more than fifty years, but a full understanding of their origin is still lacking. Comparative and functional genomics are nowadays furnishing new data to better understand holocentric chromosome evolution thus opening new perspectives to analyse karyotype rearrangements in species with holocentric chromosomes in particular evidencing unusual common features, such as the uniform GC content and gene distribution along chromosomes.
Collapse
Affiliation(s)
- Mauro Mandrioli
- Dipartimento di Biologia, Università di Modena e Reggio Emilia, Via Campi 213/D, Modena, Italy
| | | |
Collapse
|
33
|
Rivi M, Monti V, Mazzoni E, Cassanelli S, Panini M, Bizzaro D, Mandrioli M, Manicardi GC. Karyotype variations in Italian populations of the peach-potato aphid Myzus persicae (Hemiptera: Aphididae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:663-71. [PMID: 22647317 DOI: 10.1017/s0007485312000247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we present cytogenetic data regarding 66 Myzus persicae strains collected in different regions of Italy. Together with the most common 2n = 12 karyotype, the results showed different chromosomal rearrangements: 2n = 12 with A1-3 reciprocal translocation, 2n = 13 with A1-3 reciprocal translocation and A3 fission, 2n = 13 with A3 fission, 2n = 13 with A4 fission, 2n = 14 with X and A3 fissions. A 2n = 12-13 chromosomal mosaicism has also been observed. Chromosomal aberrations (and in particular all strains showing A1-3 reciprocal translocation) are especially frequent in strains collected on tobacco plants, and we suggest that a clastogenic effect of nicotine, further benefited by the holocentric nature of aphid chromosomes, could be at the basis of the observed phenomenon.
Collapse
Affiliation(s)
- M Rivi
- Dipartimento di Scienze Agrarie e degli Alimenti, Università di Modena e Reggio Emilia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yan C, Bi Y, Yin D, Zhao Z. A method for rapid and simultaneous mapping of genetic loci and introgression sizes in nematode species. PLoS One 2012; 7:e43770. [PMID: 22952761 PMCID: PMC3432054 DOI: 10.1371/journal.pone.0043770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022] Open
Abstract
Caenorhabditis briggsae is emerging as an attractive model organism not only in studying comparative biology against C. elegans, but also in developing novel experimentation avenues. In particular, recent identification of a new Caenorhabditis species, C. sp.9 with which it can mate and produce viable progeny provides an opportunity for studying the genetics of hybrid incompatibilities (HI) between the two. Mapping of a specific HI locus demands repeated backcrossing to get hold of the specific genomic region underlying an observed phenotype. To facilitate mapping of HI loci between C. briggsae and C. sp.9, an efficient mapping method and a genetic map ideally consisting of dominant markers are required for systematic introgression of genomic fragments between the two species. We developed a fast and cost-effective method for high throughput mapping of dominant loci with resolution up to 1 million bps in C. briggsae. The method takes advantage of the introgression between C. briggsae and C. sp.9 followed by PCR genotyping using C. briggsae specific primers. Importantly, the mapping results can not only serve as an effective way for estimating the chromosomal position of a genetic locus in C. briggsae, but also provides size information for the introgression fragment in an otherwise C. sp.9 background. In addition, it also helps generate introgression line as a side-product that is invaluable for the subsequent mapping of HI loci. The method will greatly facilitate the construction of a genetic map consisting of dominant markers and pave the way for systematic isolation of HI loci between C. briggsae and C. sp.9 which has so far not been attempted between nematode species. The method is designed for mapping of a dominant allele, but can be easily adapted for mapping of any other type of alleles in any other species if introgression between a sister species pair is feasible.
Collapse
Affiliation(s)
| | | | | | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
- * E-mail:
| |
Collapse
|
35
|
Zou M, Wang G, He S. Evolutionary patterns of RNA-based gene duplicates in Caenorhabditis nematodes coincide with their genomic features. BMC Res Notes 2012; 5:398. [PMID: 22853807 PMCID: PMC3532220 DOI: 10.1186/1756-0500-5-398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA-based gene duplicates (retrocopies) played pivotal roles in many physiological processes. Nowadays, functional retrocopies have been systematically identified in several mammals, fruit flies, plants, zebrafish and other chordates, etc. However, studies about this kind of duplication in Caenorhabditis nematodes have not been reported. FINDINGS We identified 43, 48, 43, 9, and 42 retrocopies, of which 6, 15, 18, 3, and 13 formed chimeric genes in C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. At least 5 chimeric types exist in Caenorhabditis species, of which retrocopy recruiting both N and C terminus is the commonest one. Evidences from different analyses demonstrate many retrocopies and almost all chimeric genes may be functional in these species. About half of retrocopies in each species has coordinates in other species, and we suggest that retrocopies in closely related species may be helpful in identifying retrocopies for one certain species. CONCLUSIONS A number of retrocopies and chimeric genes exist in Caenorhabditis genomes, and some of them may be functional. The evolutionary patterns of these genes may correlate with their genomic features, such as the activity of retroelements, the high rate of mutation and deletion rate, and a large proportion of genes subject to trans-splicing.
Collapse
Affiliation(s)
- Ming Zou
- The key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
| | - Shunping He
- The key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
36
|
Uyar B, Chu JS, Vergara IA, Chua SY, Jones MR, Wong T, Baillie DL, Chen N. RNA-seq analysis of the C. briggsae transcriptome. Genome Res 2012; 22:1567-80. [PMID: 22772596 PMCID: PMC3409270 DOI: 10.1101/gr.134601.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/30/2012] [Indexed: 12/18/2022]
Abstract
Curation of a high-quality gene set is the critical first step in genome research, enabling subsequent analyses such as ortholog assignment, cis-regulatory element finding, and synteny detection. In this project, we have reannotated the genome of Caenorhabditis briggsae, the best studied sister species of the model organism Caenorhabditis elegans. First, we applied a homology-based gene predictor genBlastG to annotate the C. briggsae genome. We then validated and further improved the C. briggsae gene annotation through RNA-seq analysis of the C. briggsae transcriptome, which resulted in the first validated C. briggsae gene set (23,159 genes), among which 7347 genes (33.9% of all genes with introns) have all of their introns confirmed. Most genes (14,812, or 68.3%) have at least one intron validated, compared with only 3.9% in the most recent WormBase release (WS228). Of all introns in the revised gene set (103,083), 61,503 (60.1%) have been confirmed. Additionally, we have identified numerous trans-splicing leaders (SL1 and SL2 variants) in C. briggsae, leading to the first genome-wide annotation of operons in C. briggsae (1105 operons). The majority of the annotated operons (564, or 51.0%) are perfectly conserved in C. elegans, with an additional 345 operons (or 31.2%) somewhat divergent. Additionally, RNA-seq analysis revealed over 10 thousand small-size assembly errors in the current C. briggsae reference genome that can be readily corrected. The revised C. briggsae genome annotation represents a solid platform for comparative genomics analysis and evolutionary studies of Caenorhabditis species.
Collapse
Affiliation(s)
- Bora Uyar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- CIHR/MSFHR Bioinformatics Training Program, Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
| | - Jeffrey S.C. Chu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ismael A. Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Shu Yi Chua
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Martin R. Jones
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tammy Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- CIHR/MSFHR Bioinformatics Training Program, Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1G1, Canada
| |
Collapse
|
37
|
Inversion and crossover recombination contributions to the spacing between two functionally linked genes. Biosystems 2012; 109:169-78. [PMID: 22664801 DOI: 10.1016/j.biosystems.2012.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 03/26/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
Abstract
The roles of inversion and crossover recombination in determining the spacing between two functionally linked genes on an individual strand of DNA and the resulting genetic organization throughout the population is not well understood. We employ a computer simulation to look at the spacing between functionally linked genes after many generations of a population of haploid individuals, each with a single chromosome. Simulations show that inversion and crossover recombination combine to create four attractors in gene spacing. The two major attractors include one in which the linked genes are forced to be near each other and one in which the linked genes are forced to be separated by one third of the chromosome length. Multiplicative functional linkage between two linked genes also causes a decreased average spacing compared to additive and random functional linkage.
Collapse
|
38
|
MONTI VALENTINA, MANDRIOLI MAURO, RIVI MARCO, MANICARDI GIANCARLO. The vanishing clone: karyotypic evidence for extensive intraclonal genetic variation in the peach potato aphid, Myzus persicae (Hemiptera: Aphididae). Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01812.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Kang S, Tang J, Schaeffer SW, Bader DA. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time. PLoS One 2011; 6:e22483. [PMID: 21887219 PMCID: PMC3160844 DOI: 10.1371/journal.pone.0022483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way. We design a new DCM based on the spectral method and also develop the COGNAC (Comparing Orders of Genes using Novel Algorithms and high-performance Computers) software package. COGNAC uses the new DCM to reduce the phylogenetic tree search space and selects an output tree from the reduced search space based on the MP principle. We test the new DCM using gene order data and inversion distance. The new DCM not only reduces the number of candidate tree topologies but also excludes erroneous tree topologies which can be selected by original MP methods. Initial labeling of internal genomes affects the accuracy of MP methods using gene order data, and the new DCM enables more accurate initial labeling as well. COGNAC demonstrates superior accuracy as a consequence. We compare COGNAC with FastME and the combination of the state of the art DCM (Rec-I-DCM3) and GRAPPA. COGNAC clearly outperforms FastME in accuracy. COGNAC--using the new DCM--also reconstructs a much more accurate tree in significantly shorter time than GRAPPA with Rec-I-DCM3.
Collapse
Affiliation(s)
- Seunghwa Kang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Stephen W. Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Bader
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
40
|
Laing R, Hunt M, Protasio AV, Saunders G, Mungall K, Laing S, Jackson F, Quail M, Beech R, Berriman M, Gilleard JS. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans. PLoS One 2011; 6:e23216. [PMID: 21858033 PMCID: PMC3156134 DOI: 10.1371/journal.pone.0023216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022] Open
Abstract
The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes.
Collapse
Affiliation(s)
- Roz Laing
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Martin Hunt
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Anna V. Protasio
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gary Saunders
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Karen Mungall
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Frank Jackson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Michael Quail
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Robin Beech
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Matthew Berriman
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
41
|
Gregory WF, Parkinson J. Caenorhabditis elegans-applications to nematode genomics. Comp Funct Genomics 2011; 4:194-202. [PMID: 18629128 PMCID: PMC2447415 DOI: 10.1002/cfg.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 01/30/2003] [Indexed: 11/06/2022] Open
Abstract
The complete genome sequence of the free-living nematode Caenorhabditis elegans was published 4 years ago. Since then, we have seen great strides in technologies that seek to exploit this data. Here we describe the application of some of these techniques and other advances that are helping us to understand about not only the biology of this important model organism but also the entire phylum Nematoda.
Collapse
Affiliation(s)
- William F Gregory
- Institute of Cell Animal and Population Biology Kings Buildings West Mains Rd Edinburgh EH9 3JT UK
| | | |
Collapse
|
42
|
TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 2011; 433:263-76. [PMID: 21175431 DOI: 10.1042/bj20101320] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibrillins and LTBPs [latent TGFβ (transforming growth factor β)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFβ-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFβ propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.
Collapse
|
43
|
Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders. PLoS One 2011; 6:e14547. [PMID: 21283809 PMCID: PMC3023760 DOI: 10.1371/journal.pone.0014547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/21/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.
Collapse
|
44
|
Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 2010; 6:e1001189. [PMID: 21203495 PMCID: PMC3009667 DOI: 10.1371/journal.pgen.1001189] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/30/2010] [Indexed: 12/17/2022] Open
Abstract
The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes. The fungal wheat pathogen Mycosphaerella graminicola emerged in the Middle East 11,000 years ago, coinciding with host domestication. We sequenced the genome of the closest known endemic relative of M. graminicola infecting wild grass hosts. A comparative genome analysis allowed us to infer how speciation and host specialization processes have influenced pathogen evolution. The wild grass-adapted pathogen can infect wheat, but M. graminicola shows a significantly higher degree of host specificity and virulence in a detached leaf assay. The genomes of the pathogens are 7% divergent with a high degree of synteny in the 13 essential core chromosomes. However, structural rearrangements have strongly affected eight small dispensable chromosomes. These chromosomes also show altered rates of non-synonymous and synonymous substitutions. We found 43 genes showing evidence of positive selection. As the divergence of species occurred very recently, these genes are likely involved in host specialization or speciation. None of the genes have a known function, although one encodes a signal peptide and is a potential pathogen effector. We conclude that the genomic basis of the rapid emergence of the wheat-specialized pathogen M. graminicola has involved structural changes in the eight dispensable chromosomes and positive selection in a small number of genes.
Collapse
|
45
|
Vergara IA, Chen N. Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC Genomics 2010; 11:516. [PMID: 20868500 PMCID: PMC2997010 DOI: 10.1186/1471-2164-11-516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate identification of synteny blocks is an important step in comparative genomics towards the understanding of genome architecture and expression. Most computer programs developed in the last decade for identifying synteny blocks have limitations. To address these limitations, we recently developed a robust program called OrthoCluster, and an online database OrthoClusterDB. In this work, we have demonstrated the application of OrthoCluster in identifying synteny blocks between the genomes of Caenorhabditis elegans and Caenorhabditis briggsae, two closely related hermaphrodite nematodes. RESULTS Initial identification and analysis of synteny blocks using OrthoCluster enabled us to systematically improve the genome annotation of C. elegans and C. briggsae, identifying 52 potential novel genes in C. elegans, 582 in C. briggsae, and 949 novel orthologous relationships between these two species. Using the improved annotation, we have detected 3,058 perfect synteny blocks that contain no mismatches between C. elegans and C. briggsae. Among these synteny blocks, the majority are mapped to homologous chromosomes, as previously reported. The largest perfect synteny block contains 42 genes, which spans 201.2 kb in Chromosome V of C. elegans. On average, perfect synteny blocks span 18.8 kb in length. When some mismatches (interruptions) are allowed, synteny blocks ("imperfect synteny blocks") that are much larger in size are identified. We have shown that the majority (80%) of the C. elegans and C. briggsae genomes are covered by imperfect synteny blocks. The largest imperfect synteny block spans 6.14 Mb in Chromosome X of C. elegans and there are 11 synteny blocks that are larger than 1 Mb in size. On average, imperfect synteny blocks span 63.6 kb in length, larger than previously reported. CONCLUSIONS We have demonstrated that OrthoCluster can be used to accurately identify synteny blocks and have found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously identified.
Collapse
Affiliation(s)
- Ismael A Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | |
Collapse
|
46
|
von Grotthuss M, Ashburner M, Ranz JM. Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. Genome Res 2010; 20:1084-96. [PMID: 20601587 PMCID: PMC2909571 DOI: 10.1101/gr.103713.109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/01/2010] [Indexed: 12/14/2022]
Abstract
During evolution, gene repatterning across eukaryotic genomes is not uniform. Some genomic regions exhibit a gene organization conserved phylogenetically, while others are recurrently involved in chromosomal rearrangement, resulting in breakpoint reuse. Both gene order conservation and breakpoint reuse can result from the existence of functional constraints on where chromosomal breakpoints occur or from the existence of regions that are susceptible to breakage. The balance between these two mechanisms is still poorly understood. Drosophila species have very dynamic genomes and, therefore, can be very informative. We compared the gene organization of the main five chromosomal elements (Muller's elements A-E) of nine Drosophila species. Under a parsimonious evolutionary scenario, we estimate that 6116 breakpoints differentiate the gene orders of the species and that breakpoint reuse is associated with approximately 80% of the orthologous landmarks. The comparison of the observed patterns of change in gene organization with those predicted under different simulated modes of evolution shows that fragile regions alone can explain the observed key patterns of Muller's element A (X chromosome) more often than for any other Muller's element. High levels of fragility plus constraints operating on approximately 15% of the genome are sufficient to explain the observed patterns of change and conservation across species. The orthologous landmarks more likely to be under constraint exhibit both a remarkable internal functional heterogeneity and a lack of common functional themes with the exception of the presence of highly conserved noncoding elements. Fragile regions rather than functional constraints have been the main determinant of the evolution of the Drosophila chromosomes.
Collapse
Affiliation(s)
- Marcin von Grotthuss
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
47
|
Chen HD, Fan WL, Kong SG, Lee HC. Universal global imprints of genome growth and evolution--equivalent length and cumulative mutation density. PLoS One 2010; 5:e9844. [PMID: 20418954 PMCID: PMC2854691 DOI: 10.1371/journal.pone.0009844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Segmental duplication is widely held to be an important mode of genome growth and evolution. Yet how this would affect the global structure of genomes has been little discussed. Methods/Principal Findings Here, we show that equivalent length, or , a quantity determined by the variance of fluctuating part of the distribution of the -mer frequencies in a genome, characterizes the latter's global structure. We computed the s of 865 complete chromosomes and found that they have nearly universal but (-dependent) values. The differences among the of a chromosome and those of its coding and non-coding parts were found to be slight. Conclusions We verified that these non-trivial results are natural consequences of a genome growth model characterized by random segmental duplication and random point mutation, but not of any model whose dominant growth mechanism is not segmental duplication. Our study also indicates that genomes have a nearly universal cumulative “point” mutation density of about 0.73 mutations per site that is compatible with the relatively low mutation rates of (15)10/site/Mya previously determined by sequence comparison for the human and E. coli genomes.
Collapse
Affiliation(s)
- Hong-Da Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan
- Department of Physics, National Central University, Chungli, Taiwan
| | - Wen-Lang Fan
- Department of Physics, National Central University, Chungli, Taiwan
- Genomic Research Center, Academia Sinaca, Taipei, Taiwan
| | - Sing-Guan Kong
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan
- Department of Physics, National Central University, Chungli, Taiwan
| | - Hoong-Chien Lee
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli, Taiwan
- Department of Physics, National Central University, Chungli, Taiwan
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
- National Center for Theoretical Science, Shinchu, Taiwan
- * E-mail:
| |
Collapse
|
48
|
Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci U S A 2010; 107:7680-5. [PMID: 20388903 DOI: 10.1073/pnas.0910413107] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The recent assembly of the silkworm Bombyx mori genome with 432 Mb on 28 holocentric chromosomes has become a reference in the genomic analysis of the very diverse Order of Lepidoptera. We sequenced BACs from two major pests, the noctuid moths Helicoverpa armigera and Spodoptera frugiperda, corresponding to 15 regions distributed on 11 B. mori chromosomes, each BAC/region being anchored by known orthologous gene(s) to analyze syntenic relationships and genome rearrangements among the three species. Nearly 300 genes and numerous transposable elements were identified, with long interspersed nuclear elements and terminal inverted repeats the most abundant transposable element classes. There was a high degree of synteny conservation between B. mori and the two noctuid species. Conserved syntenic blocks of identified genes were very small, however, approximately 1.3 genes per block between B. mori and the two noctuid species and 2.0 genes per block between S. frugiperda and H. armigera. This corresponds to approximately two chromosome breaks per Mb DNA per My. This is a much higher evolution rate than among species of the Drosophila genus and may be related to the holocentric nature of the lepidopteran genomes. We report a large cluster of eight members of the aminopeptidase N gene family that we estimate to have been present since the Jurassic. In contrast, several clusters of cytochrome P450 genes showed multiple lineage-specific duplication events, in particular in the lepidopteran CYP9A subfamily. Our study highlights the value of the silkworm genome as a reference in lepidopteran comparative genomics.
Collapse
|
49
|
Moyle LC, Muir CD, Han MV, Hahn MW. The contribution of gene movement to the "two rules of speciation". Evolution 2010; 64:1541-57. [PMID: 20298429 DOI: 10.1111/j.1558-5646.2010.00990.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The two "rules of speciation"--the Large X-effect and Haldane's rule--hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations--the "dominance theory" and faster male evolution--both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex-specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
50
|
Cutter AD, Yan W, Tsvetkov N, Sunil S, Félix MA. Molecular population genetics and phenotypic sensitivity to ethanol for a globally diverse sample of the nematode Caenorhabditis briggsae. Mol Ecol 2010; 19:798-809. [PMID: 20088888 DOI: 10.1111/j.1365-294x.2009.04491.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New genomic resources and genetic tools of the past few years have advanced the nematode genus Caenorhabditis as a model for comparative biology. However, understanding of natural genetic variation at molecular and phenotypic levels remains rudimentary for most species in this genus, and for C. briggsae in particular. Here we characterize phenotypic variation in C. briggsae's sensitivity to the potentially important and variable environmental toxin, ethanol, for globally diverse strains. We also quantify nucleotide variation in a new sample of 32 strains from four continents, including small islands, and for the closest-known relative of this species (C. sp. 9). We demonstrate that C. briggsae exhibits little heritable variation for the effects of ethanol on the norm of reaction for survival and reproduction. Moreover, C. briggsae does not differ significantly from C. elegans in our assays of its response to this substance that both species likely encounter regularly in habitats of rotting fruit and vegetation. However, we uncover drastically more molecular genetic variation than was known previously for this species, despite most strains, including all island strains, conforming to the broad biogeographic patterns described previously. Using patterns of sequence divergence between populations and between species, we estimate that the self-fertilizing mode of reproduction by hermaphrodites in C. briggsae likely evolved sometime between 0.9 and 10 million generations ago. These insights into C. briggsae's natural history and natural genetic variation greatly expand the potential of this organism as an emerging model for studies in molecular and quantitative genetics, the evolution of development, and ecological genetics.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, Canada M5S 3B2.
| | | | | | | | | |
Collapse
|