1
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Low overlap of transcription factor DNA binding and regulatory targets. Nature 2025:10.1038/s41586-025-08916-0. [PMID: 40240607 DOI: 10.1038/s41586-025-08916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes1,2. How multiple TFs cooperate to regulate individual genes is still unclear. In yeast, most TFs are thought to regulate transcription via binding to upstream activating sequences, which are situated within a few hundred base pairs upstream of the regulated gene3. Although this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way. Here we integrated information on the binding and expression targets for the near-complete set of yeast TFs and show that, contrary to expectations, there are few TFs with dedicated activator or repressor roles, and that most TFs have a dual function. Although nearly all protein-coding genes are regulated by one or more TFs, our analysis revealed limited overlap between TF binding and gene regulation. Rapid depletion of many TFs also revealed many regulatory targets that were distant from detectable TF binding sites, suggesting unexpected regulatory mechanisms. Our study provides a comprehensive survey of TF functions and offers insights into interactions between the set of TFs expressed in a single cell type and how they contribute to the complex programme of gene regulation.
Collapse
Affiliation(s)
| | | | - Rafal Donczew
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Morin A, Chu CP, Pavlidis P. Identifying reproducible transcription regulator coexpression patterns with single cell transcriptomics. PLoS Comput Biol 2025; 21:e1012962. [PMID: 40257984 PMCID: PMC12011263 DOI: 10.1371/journal.pcbi.1012962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ching Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Morin A, Chu CP, Pavlidis P. Identifying Reproducible Transcription Regulator Coexpression Patterns with Single Cell Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580581. [PMID: 38559016 PMCID: PMC10979919 DOI: 10.1101/2024.02.15.580581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes such as the regulation of gene transcription. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 million cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - C. Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hecker D, Lauber M, Behjati Ardakani F, Ashrafiyan S, Manz Q, Kersting J, Hoffmann M, Schulz MH, List M. Computational tools for inferring transcription factor activity. Proteomics 2023; 23:e2200462. [PMID: 37706624 DOI: 10.1002/pmic.202200462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.
Collapse
Affiliation(s)
- Dennis Hecker
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Michael Lauber
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Fatemeh Behjati Ardakani
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Shamim Ashrafiyan
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Quirin Manz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- GeneSurge GmbH, München, Germany
| | - Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcel H Schulz
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Lin Y, Peng G, Bruner DW, Miller AH, Saba NF, Higgins KA, Shin DM, Claussen H, Johnston HR, Houser MC, Wommack EC, Xiao C. Associations of differentially expressed genes with psychoneurological symptoms in patients with head and neck cancer: A longitudinal study. J Psychosom Res 2023; 175:111518. [PMID: 37832274 PMCID: PMC11789059 DOI: 10.1016/j.jpsychores.2023.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE Patients with head and neck cancer (HNC) experience psychoneurological symptoms (PNS, i.e., depression, fatigue, sleep disturbance, pain, and cognitive dysfunction) during intensity-modulated radiotherapy (IMRT) that negatively impact their functional status, quality of life, and overall survival. The underlying mechanisms for PNS are still not fully understood. This study aimed to examine differentially expressed genes and pathways related to PNS for patients undergoing IMRT (i.e., before, end of, 6 months, and 12 months after IMRT). METHODS Participants included 142 patients with HNC (mean age 58.9 ± 10.3 years, 72.5% male, 83.1% White). Total RNA extracted from blood leukocytes were used for genome-wide gene expression assays. Linear mixed effects model was used to examine the association between PNS and gene expression across time. Gene Ontology (GO) enrichment analysis was employed to identify pathways related to PNS. RESULTS A total of 1352 genes (162 upregulated, 1190 downregulated) were significantly associated with PNS across time (false discovery rate (FDR) < 0.05). Among these genes, 112 GO terms were identified (FDR < 0.05). The top 20 GO terms among the significant upregulated genes were related to immune and inflammatory responses, while the top 20 GO terms among the significant downregulated genes were associated with telomere maintenance. CONCLUSION This study is the first to identify genes and pathways linked to immune and inflammatory responses and telomere maintenance that are associated with PNS in patients with HNC receiving IMRT. Inflammation and aging markers may be candidate biomarkers for PNS. Understanding biological markers may produce targets for novel interventions.
Collapse
Affiliation(s)
- Yufen Lin
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, USA; Winship Cancer Institute, Emory University, Atlanta, USA
| | - Gang Peng
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, USA
| | - Deborah W Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, USA; Winship Cancer Institute, Emory University, Atlanta, USA; School of Medicine, Emory University, Atlanta, USA
| | - Andrew H Miller
- Winship Cancer Institute, Emory University, Atlanta, USA; School of Medicine, Emory University, Atlanta, USA
| | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, USA; School of Medicine, Emory University, Atlanta, USA
| | - Kristin A Higgins
- Winship Cancer Institute, Emory University, Atlanta, USA; School of Medicine, Emory University, Atlanta, USA
| | - Dong M Shin
- Winship Cancer Institute, Emory University, Atlanta, USA; School of Medicine, Emory University, Atlanta, USA
| | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, USA
| | | | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, USA
| | | | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, USA; Winship Cancer Institute, Emory University, Atlanta, USA.
| |
Collapse
|
7
|
Nambiar A, Dubinkina V, Liu S, Maslov S. FUN-PROSE: A deep learning approach to predict condition-specific gene expression in fungi. PLoS Comput Biol 2023; 19:e1011563. [PMID: 37971967 PMCID: PMC10653424 DOI: 10.1371/journal.pcbi.1011563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
mRNA levels of all genes in a genome is a critical piece of information defining the overall state of the cell in a given environmental condition. Being able to reconstruct such condition-specific expression in fungal genomes is particularly important to metabolically engineer these organisms to produce desired chemicals in industrially scalable conditions. Most previous deep learning approaches focused on predicting the average expression levels of a gene based on its promoter sequence, ignoring its variation across different conditions. Here we present FUN-PROSE-a deep learning model trained to predict differential expression of individual genes across various conditions using their promoter sequences and expression levels of all transcription factors. We train and test our model on three fungal species and get the correlation between predicted and observed condition-specific gene expression as high as 0.85. We then interpret our model to extract promoter sequence motifs responsible for variable expression of individual genes. We also carried out input feature importance analysis to connect individual transcription factors to their gene targets. A sizeable fraction of both sequence motifs and TF-gene interactions learned by our model agree with previously known biological information, while the rest corresponds to either novel biological facts or indirect correlations.
Collapse
Affiliation(s)
- Ananthan Nambiar
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
| | - Veronika Dubinkina
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California, United States of America
| | - Simon Liu
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois, United States of America
| |
Collapse
|
8
|
Han Y, Li W, Filko A, Li J, Zhang F. Genome-wide promoter responses to CRISPR perturbations of regulators reveal regulatory networks in Escherichia coli. Nat Commun 2023; 14:5757. [PMID: 37717013 PMCID: PMC10505187 DOI: 10.1038/s41467-023-41572-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Elucidating genome-scale regulatory networks requires a comprehensive collection of gene expression profiles, yet measuring gene expression responses for every transcription factor (TF)-gene pair in living prokaryotic cells remains challenging. Here, we develop pooled promoter responses to TF perturbation sequencing (PPTP-seq) via CRISPR interference to address this challenge. Using PPTP-seq, we systematically measure the activity of 1372 Escherichia coli promoters under single knockdown of 183 TF genes, illustrating more than 200,000 possible TF-gene responses in one experiment. We perform PPTP-seq for E. coli growing in three different media. The PPTP-seq data reveal robust steady-state promoter activities under most single TF knockdown conditions. PPTP-seq also enables identifications of, to the best of our knowledge, previously unknown TF autoregulatory responses and complex transcriptional control on one-carbon metabolism. We further find context-dependent promoter regulation by multiple TFs whose relative binding strengths determined promoter activities. Additionally, PPTP-seq reveals different promoter responses in different growth media, suggesting condition-specific gene regulation. Overall, PPTP-seq provides a powerful method to examine genome-wide transcriptional regulatory networks and can be potentially expanded to reveal gene expression responses to other genetic elements.
Collapse
Affiliation(s)
- Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Wanji Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Alden Filko
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA.
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
9
|
Recio PS, Mitra NJ, Shively CA, Song D, Jaramillo G, Lewis KS, Chen X, Mitra R. Zinc cluster transcription factors frequently activate target genes using a non-canonical half-site binding mode. Nucleic Acids Res 2023; 51:5006-5021. [PMID: 37125648 PMCID: PMC10250231 DOI: 10.1093/nar/gkad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Gene expression changes are orchestrated by transcription factors (TFs), which bind to DNA to regulate gene expression. It remains surprisingly difficult to predict basic features of the transcriptional process, including in vivo TF occupancy. Existing thermodynamic models of TF function are often not concordant with experimental measurements, suggesting undiscovered biology. Here, we analyzed one of the most well-studied TFs, the yeast zinc cluster Gal4, constructed a Shea-Ackers thermodynamic model to describe its binding, and compared the results of this model to experimentally measured Gal4p binding in vivo. We found that at many promoters, the model predicted no Gal4p binding, yet substantial binding was observed. These outlier promoters lacked canonical binding motifs, and subsequent investigation revealed Gal4p binds unexpectedly to DNA sequences with high densities of its half site (CGG). We confirmed this novel mode of binding through multiple experimental and computational paradigms; we also found most other zinc cluster TFs we tested frequently utilize this binding mode, at 27% of their targets on average. Together, these results demonstrate a novel mode of binding where zinc clusters, the largest class of TFs in yeast, bind DNA sequences with high densities of half sites.
Collapse
Affiliation(s)
- Pamela S Recio
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Nikhil J Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Christian A Shively
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - David Song
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Grace Jaramillo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Kristine Shady Lewis
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
10
|
Morin A, Chu ECP, Sharma A, Adrian-Hamazaki A, Pavlidis P. Characterizing the targets of transcription regulators by aggregating ChIP-seq and perturbation expression data sets. Genome Res 2023; 33:763-778. [PMID: 37308292 PMCID: PMC10317128 DOI: 10.1101/gr.277273.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research. ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a primary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments. Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identification, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of ranking human and mouse TR-target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combining these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a framework extensible to other TRs, our work also provides empirically ranked TR-target listings, as well as transparent experiment-level gene summaries for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Eric Ching-Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Aman Sharma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alex Adrian-Hamazaki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
11
|
Abid D, Brent MR. NetProphet 3: a machine learning framework for transcription factor network mapping and multi-omics integration. Bioinformatics 2023; 39:7000334. [PMID: 36692138 PMCID: PMC9912366 DOI: 10.1093/bioinformatics/btad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION Many methods have been proposed for mapping the targets of transcription factors (TFs) from gene expression data. It is known that combining outputs from multiple methods can improve performance. To date, outputs have been combined by using either simplistic formulae, such as geometric mean, or carefully hand-tuned formulae that may not generalize well to new inputs. Finally, the evaluation of accuracy has been challenging due to the lack of genome-scale, ground-truth networks. RESULTS We developed NetProphet3, which combines scores from multiple analyses automatically, using a tree boosting algorithm trained on TF binding location data. We also developed three independent, genome-scale evaluation metrics. By these metrics, NetProphet3 is more accurate than other commonly used packages, including NetProphet 2.0, when gene expression data from direct TF perturbations are available. Furthermore, its integration mode can forge a consensus network from gene expression data and TF binding location data. AVAILABILITY AND IMPLEMENTATION All data and code are available at https://zenodo.org/record/7504131#.Y7Wu3i-B2x8. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dhoha Abid
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Pandamooz S, Jurek B, Dianatpour M, Haerteis S, Limm K, Oefner PJ, Dargahi L, Borhani-Haghighi A, Miyan JA, Salehi MS. The beneficial effects of chick embryo extract preconditioning on hair follicle stem cells: A promising strategy to generate Schwann cells. Cell Prolif 2023:e13397. [PMID: 36631409 DOI: 10.1111/cpr.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Kang Y, Jung WJ, Brent MR. Predicting which genes will respond to transcription factor perturbations. G3 (BETHESDA, MD.) 2022; 12:jkac144. [PMID: 35666184 PMCID: PMC9339286 DOI: 10.1093/g3journal/jkac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
The ability to predict which genes will respond to the perturbation of a transcription factor serves as a benchmark for our systems-level understanding of transcriptional regulatory networks. In previous work, machine learning models have been trained to predict static gene expression levels in a biological sample by using data from the same or similar samples, including data on their transcription factor binding locations, histone marks, or DNA sequence. We report on a different challenge-training machine learning models to predict which genes will respond to the perturbation of a transcription factor without using any data from the perturbed cells. We find that existing transcription factor location data (ChIP-seq) from human cells have very little detectable utility for predicting which genes will respond to perturbation of a transcription factor. Features of genes, including their preperturbation expression level and expression variation, are very useful for predicting responses to perturbation of any transcription factor. This shows that some genes are poised to respond to transcription factor perturbations and others are resistant, shedding light on why it has been so difficult to predict responses from binding locations. Certain histone marks, including H3K4me1 and H3K4me3, have some predictive power when located downstream of the transcription start site. However, the predictive power of histone marks is much less than that of gene expression level and expression variation. Sequence-based or epigenetic properties of genes strongly influence their tendency to respond to direct transcription factor perturbations, partially explaining the oft-noted difficulty of predicting responsiveness from transcription factor binding location data. These molecular features are largely reflected in and summarized by the gene's expression level and expression variation. Code is available at https://github.com/BrentLab/TFPertRespExplainer.
Collapse
Affiliation(s)
- Yiming Kang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Computer Science and Engineering, Washington University, St. Louis, MO 63108, USA
| | - Wooseok J Jung
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Computer Science and Engineering, Washington University, St. Louis, MO 63108, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Computer Science and Engineering, Washington University, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Weidemüller P, Kholmatov M, Petsalaki E, Zaugg JB. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics 2021; 21:e2000034. [PMID: 34314098 DOI: 10.1002/pmic.202000034] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 01/17/2023]
Abstract
Transcription factors (TFs) are key regulators of intrinsic cellular processes, such as differentiation and development, and of the cellular response to external perturbation through signaling pathways. In this review we focus on the role of TFs as a link between signaling pathways and gene regulation. Cell signaling tends to result in the modulation of a set of TFs that then lead to changes in the cell's transcriptional program. We highlight the molecular layers at which TF activity can be measured and the associated technical and conceptual challenges. These layers include post-translational modifications (PTMs) of the TF, regulation of TF binding to DNA through chromatin accessibility and epigenetics, and expression of target genes. We highlight that a large number of TFs are understudied in both signaling and gene regulation studies, and that our knowledge about known TF targets has a strong literature bias. We argue that TFs serve as a perfect bridge between the fields of gene regulation and signaling, and that separating these fields hinders our understanding of cell functions. Multi-omics approaches that measure multiple dimensions of TF activity are ideally suited to study the interplay of cell signaling and gene regulation using TFs as the anchor to link the two fields.
Collapse
Affiliation(s)
- Paula Weidemüller
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maksim Kholmatov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Evangelia Petsalaki
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
| |
Collapse
|
15
|
Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol 2021; 40:291-305. [PMID: 34303549 DOI: 10.1016/j.tibtech.2021.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is widely used as a cell factory and as an important eukaryal model organism for studying cellular physiology related to human health and disease. Yeast was also the first eukaryal organism for which a genome-scale metabolic model (GEM) was developed. In recent years there has been interest in expanding the modeling framework for yeast by incorporating enzymatic parameters and other heterogeneous cellular networks to obtain a more comprehensive description of cellular physiology. We review the latest developments in multiscale models of yeast, and illustrate how a new generation of multiscale models could significantly enhance the predictive performance and expand the applications of classical GEMs in cell factory design and basic studies of yeast physiology.
Collapse
|
16
|
Ma CZ, Brent MR. Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data. Bioinformatics 2021; 37:1234-1245. [PMID: 33135076 PMCID: PMC8189679 DOI: 10.1093/bioinformatics/btaa947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Motivation The activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now. Results We systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels. We find that expression data in which the activities of individual TFs have been perturbed are both necessary and sufficient for obtaining good performance. To a considerable extent, control strengths inferred using expression data from one growth condition carry over to other conditions, so the control strength matrices derived here can be used by others. Finally, we apply these methods to gain insight into the upstream factors that regulate the activities of yeast TFs Gcr2, Gln3, Gcn4 and Msn2. Availability and implementation Evaluation code and data are available at https://doi.org/10.5281/zenodo.4050573. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cynthia Z Ma
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Arita Y, Kim G, Li Z, Friesen H, Turco G, Wang RY, Climie D, Usaj M, Hotz M, Stoops EH, Baryshnikova A, Boone C, Botstein D, Andrews BJ, McIsaac RS. A genome-scale yeast library with inducible expression of individual genes. Mol Syst Biol 2021; 17:e10207. [PMID: 34096681 PMCID: PMC8182650 DOI: 10.15252/msb.202110207] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics. We characterized YETI using growth phenotyping and BAR-seq screens, and we used a YETI allele to identify the regulon of Rof1, showing that it acts to repress transcription. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from eukaryotic and prokaryotic systems shows that native expression is a variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3 EB42, that gives lower expression than Z3 EV, a feature enabling conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.
Collapse
Affiliation(s)
- Yuko Arita
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
| | - Griffin Kim
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | - Zhijian Li
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Helena Friesen
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Gina Turco
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | - Dale Climie
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Matej Usaj
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
| | - Manuel Hotz
- Calico Life Sciences LLCSouth San FranciscoCAUSA
| | | | | | - Charles Boone
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- RIKEN Centre for Sustainable Resource ScienceWakoSaitamaJapan
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | | - Brenda J Andrews
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | | |
Collapse
|
18
|
The Transcription Factor Pdr802 Regulates Titan Cell Formation and Pathogenicity of Cryptococcus neoformans. mBio 2021; 12:mBio.03457-20. [PMID: 33688010 PMCID: PMC8092302 DOI: 10.1128/mbio.03457-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenic yeast Cryptococcus neoformans presents a worldwide threat to human health, especially in the context of immunocompromise, and current antifungal therapy is hindered by cost, limited availability, and inadequate efficacy. After the infectious particle is inhaled, C. neoformans initiates a complex transcriptional program that integrates cellular responses and enables adaptation to the host lung environment. Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills almost 200,000 people worldwide each year. It is acquired when mammalian hosts inhale the infectious propagules; these are deposited in the lung and, in the context of immunocompromise, may disseminate to the brain and cause lethal meningoencephalitis. Once inside the host, C. neoformans undergoes a variety of adaptive processes, including secretion of virulence factors, expansion of a polysaccharide capsule that impedes phagocytosis, and the production of giant (Titan) cells. The transcription factor Pdr802 is one regulator of these responses to the host environment. Expression of the corresponding gene is highly induced under host-like conditions in vitro and is critical for C. neoformans dissemination and virulence in a mouse model of infection. Direct targets of Pdr802 include the quorum sensing proteins Pqp1, Opt1, and Liv3; the transcription factors Stb4, Zfc3, and Bzp4, which regulate cryptococcal brain infectivity and capsule thickness; the calcineurin targets Had1 and Crz1, important for cell wall remodeling and C. neoformans virulence; and additional genes related to resistance to host temperature and oxidative stress, and to urease activity. Notably, cryptococci engineered to lack Pdr802 showed a dramatic increase in Titan cells, which are not phagocytosed and have diminished ability to directly cross biological barriers. This explains the limited dissemination of pdr802 mutant cells to the central nervous system and the consequently reduced virulence of this strain. The role of Pdr802 as a negative regulator of Titan cell formation is thus critical for cryptococcal pathogenicity.
Collapse
|
19
|
Hackett SR, Baltz EA, Coram M, Wranik BJ, Kim G, Baker A, Fan M, Hendrickson DG, Berndl M, McIsaac RS. Learning causal networks using inducible transcription factors and transcriptome-wide time series. Mol Syst Biol 2021; 16:e9174. [PMID: 32181581 PMCID: PMC7076914 DOI: 10.15252/msb.20199174] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/27/2022] Open
Abstract
We present IDEA (the Induction Dynamics gene Expression Atlas), a dataset constructed by independently inducing hundreds of transcription factors (TFs) and measuring timecourses of the resulting gene expression responses in budding yeast. Each experiment captures a regulatory cascade connecting a single induced regulator to the genes it causally regulates. We discuss the regulatory cascade of a single TF, Aft1, in detail; however, IDEA contains > 200 TF induction experiments with 20 million individual observations and 100,000 signal‐containing dynamic responses. As an application of IDEA, we integrate all timecourses into a whole‐cell transcriptional model, which is used to predict and validate multiple new and underappreciated transcriptional regulators. We also find that the magnitudes of coefficients in this model are predictive of genetic interaction profile similarities. In addition to being a resource for exploring regulatory connectivity between TFs and their target genes, our modeling approach shows that combining rapid perturbations of individual genes with genome‐scale time‐series measurements is an effective strategy for elucidating gene regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Adam Baker
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|