1
|
Li J, Song S, Zhang J. Repeated Evolution of Transcript Dosage Compensation of Independently Formed Nematode Neo-X Chromosomes. Genome Biol Evol 2025; 17:evaf061. [PMID: 40171700 PMCID: PMC11981892 DOI: 10.1093/gbe/evaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Ohno proposed that, during the origin of X/Y sex chromosomes from a pair of autosomes, X-linked genes must double their per-allele expressions to compensate for the degeneration of their Y homologs. Whether Ohno's hypothesis holds in the nematode Caenorhabditis elegans remains unresolved despite that C. elegans is a model for studying between-sex X chromosome dosage compensation. Genome sequencing revealed independent fusions of an ancestrally autosomal linkage group to the X chromosome in C. elegans and Brugia malayi, two species belonging to different suborders of the order Rhabditida, allowing testing Ohno's hypothesis in repeated origins of neo-X chromosomes from the same autosomal linkage group. For each C. elegans X-linked gene and its autosomal ortholog in Pristionchus pacificus, we computed the X:AA ratio in transcript level and observed a median of ∼1. The same is true for B. malayi X-linked genes when compared with their autosomal orthologs in Dirofilaria immitis. We find a significant enrichment of presumably dosage-sensitive transcription factor genes among the autosomal genes of P. pacificus (or D. immitis) that become X-linked in C. elegans (or B. malayi), but the results are mixed for other groups of presumably dosage-sensitive genes, providing a partial support to the hypothesis that X upregulation depends on the prevalence of dosage-sensitive genes in the proto-X. We conclude that, unlike the virtual absence of X upregulation at the transcript level in eutherian mammals, Ohno's hypothesis is strongly supported in both nematode lineages investigated.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siliang Song
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Mrnjavac A, Vicoso B. Reduced Efficacy of Selection on a Young Z Chromosome Region of Schistosoma japonicum. Genome Biol Evol 2025; 17:evaf021. [PMID: 39913672 PMCID: PMC11833683 DOI: 10.1093/gbe/evaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/19/2025] Open
Abstract
Sex-linked and autosomal loci experience different selective pressures and evolutionary dynamics. X (or Z) chromosomes are often hemizygous in males (or females), as Y (or W) chromosomes often degenerate. Such hemizygous regions can be under greater efficacy of selection, as recessive mutations are immediately exposed to selection in the heterogametic sex leading to faster adaptation and faster divergence on the X chromosome (the so-called Faster-X or Faster-Z effect). However, in young nonrecombining regions, Y/W chromosomes often have many functional genes, and many X/Z-linked loci are therefore diploid. The sheltering of recessive mutations on the X/Z by the Y/W homolog is expected to drive slower adaptation for diploid X/Z loci, i.e. a reduction in the efficacy of selection. While the Faster-X effect has been studied extensively, much less is known empirically about the evolutionary dynamics of diploid X or Z chromosomes. Here, we took advantage of published population genomic data in the female-heterogametic human parasite Schistosoma japonicum to characterize the gene content and diversity levels of the diploid and hemizygous regions of the Z chromosome. We used different metrics of selective pressures acting on genes to test for differences in the efficacy of selection in hemizygous and diploid Z regions, relative to autosomes. We found consistent patterns suggesting reduced Ne, and reduced efficacy of purifying selection, on both hemizygous and diploid Z regions. Moreover, relaxed selection was particularly pronounced for female-biased genes on the diploid Z, as predicted by recent theoretical work.
Collapse
Affiliation(s)
- Andrea Mrnjavac
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| |
Collapse
|
3
|
Jayaprasad S, Peona V, Ellerstrand SJ, Rossini R, Bunikis I, Pettersson OV, Olsen R, Rubin C, Einarsdottir E, Bonath F, Bradford TM, Cooper SJB, Hansson B, Suh A, Kawakami T, Schielzeth H, Palacios‐Gimenez OM. Orthopteran Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and Evolution of Supergenes. Mol Ecol 2024; 33:e17567. [PMID: 39475093 PMCID: PMC11589690 DOI: 10.1111/mec.17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.
Collapse
Affiliation(s)
- Suvratha Jayaprasad
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| | - Valentina Peona
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Swiss Ornithological InstituteSempachSwitzerland
| | | | - Roberto Rossini
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Department of BiosciencesUniversity of OsloOsloNorway
| | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyUppsala Genome CenterUppsala UniversityNational Genomics Infrastructure hosted by SciLifeLabUppsalaSweden
| | - Olga V. Pettersson
- Department of Immunology, Genetics and PathologyUppsala Genome CenterUppsala UniversityNational Genomics Infrastructure hosted by SciLifeLabUppsalaSweden
| | - Remi‐André Olsen
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversitySolnaSweden
| | - Carl‐Johan Rubin
- Department of Medical Biochemistry and Microbiology – Disciplinary Domain of Medicine and PharmacyFaculty of MedicineUppsala UniversityUppsalaSweden
| | - Elisabet Einarsdottir
- Department of Gene TechnologyScience for Life LaboratoryKTH‐Royal Institute of TechnologySolnaSweden
| | - Franziska Bonath
- Department of Gene TechnologyScience for Life LaboratoryKTH‐Royal Institute of TechnologySolnaSweden
| | - Tessa M. Bradford
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological Sciences and Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Steven J. B. Cooper
- Evolutionary Biology UnitSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological Sciences and Environment InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Alexander Suh
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
- Centre for Molecular Biodiversity ResearchLeibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum A. KoenigBonnGermany
| | | | - Holger Schielzeth
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Octavio M. Palacios‐Gimenez
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
- Department of Organismal Biology–Systematic BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
4
|
Höök L, Vila R, Wiklund C, Backström N. Temporal dynamics of faster neo-Z evolution in butterflies. Evolution 2024; 78:1554-1567. [PMID: 38813673 DOI: 10.1093/evolut/qpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
The faster-Z/X hypothesis predicts that sex-linked genes should diverge faster than autosomal genes. However, studies across different lineages have shown mixed support for this effect. So far, most analyses have focused on old and well-differentiated sex chromosomes, but less is known about the divergence of more recently acquired neo-sex chromosomes. In Lepidoptera (moths and butterflies), Z-autosome fusions are frequent, but the evolutionary dynamics of neo-Z chromosomes have not been explored in detail. Here, we analyzed the faster-Z effect in Leptidea sinapis, a butterfly with three Z chromosomes. We show that the neo-Z chromosomes have been acquired stepwise, resulting in strata of differentiation and masculinization. While all Z chromosomes showed evidence of the faster-Z effect, selection for genes on the youngest neo-Z chromosome (Z3) appears to have been hampered by a largely intact, homologous neo-W chromosome. However, the intermediately aged neo-Z chromosome (Z2), which lacks W gametologs, showed fewer evolutionary constraints, resulting in particularly fast evolution. Our results therefore support that neo-sex chromosomes can constitute temporary hot-spots of adaptation and divergence. The underlying dynamics are likely causally linked to shifts in selective constraints, evolution of gene expression, and degeneration of W-linked gametologs which gradually expose Z-linked genes to selection.
Collapse
Affiliation(s)
- Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Christer Wiklund
- Department of Zoology, Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Minovic A, Nozawa M. Evolution of sex-biased genes in Drosophila species with neo-sex chromosomes: Potential contribution to reducing the sexual conflict. Ecol Evol 2024; 14:e11701. [PMID: 39050657 PMCID: PMC11266434 DOI: 10.1002/ece3.11701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
An advantage of sex chromosomes may be the potential to reduce sexual conflict because they provide a basis for selection to operate separately on females and males. However, evaluating the relationship between sex chromosomes and sexual conflict is challenging owing to the difficulty in measuring sexual conflict and substantial divergence between species with and without sex chromosomes. We therefore examined sex-biased gene expression as a proxy for sexual conflict in three sets of Drosophila species with and without young sex chromosomes, the so-called neo-sex chromosomes. In all sets, we detected more sex-biased genes in the species with neo-sex chromosomes than in the species without neo-sex chromosomes in larvae, pupae, and adult somatic tissues but not in gonads. In particular, many unbiased genes became either female- or male-biased after linkage to the neo-sex chromosomes in larvae, despite the low sexual dimorphism. For example, genes involved in metabolism, a key determinant for the rate of development in many animals, were enriched in the genes that acquired sex-biased expression on the neo-sex chromosomes at the larval stage. These genes may be targets of sexually antagonistic selection (i.e., large size and rapid development are selected for in females but selected against in males). These results indicate that acquiring neo-sex chromosomes may have contributed to a reduction in sexual conflict, particularly at the larval stage, in Drosophila..
Collapse
Affiliation(s)
- Anika Minovic
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
| | - Masafumi Nozawa
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
- Research Center for Genomics and BioinformaticsTokyo Metropolitan UniversityHachiojiJapan
| |
Collapse
|
6
|
Li S, Lao J, Sun Y, Hua X, Lin P, Wang F, Shen G, Zhao P, Xia Q. CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms ( Bombyx mori). Int J Mol Sci 2024; 25:1907. [PMID: 38339188 PMCID: PMC10856159 DOI: 10.3390/ijms25031907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.
Collapse
Affiliation(s)
- Shimin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Yue Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Xiaoting Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Ogawa M, Tsuneizumi K, Abe T, Nozawa M. Testing immediate dosage compensation in Drosophila miranda via irradiation with heavy-ion beams. Genes Genet Syst 2023; 98:201-206. [PMID: 37779054 DOI: 10.1266/ggs.23-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Many organisms with heteromorphic sex chromosomes possess a mechanism of dosage compensation (DC) in which X-linked genes are upregulated in males to mitigate the dosage imbalance between sexes and between chromosomes. However, how quickly the DC is established during evolution remains unknown. In this study, by irradiating Drosophila miranda male flies, which carry young sex chromosomes (the so-called neo-sex chromosomes), with heavy-ion beams, we induced deletions in the neo-Y chromosome to mimic the condition of Y-chromosome degeneration, in which functional neo-Y-linked genes are nonfunctionalized; furthermore, we tested whether their neo-X-linked gametologs were immediately upregulated. Because the males that received 2-Gy iron-ion beam irradiation exhibited lower fertility, we sequenced the genomes and transcriptomes of six F1 males derived from these males. Our pipeline identified 82 neo-Y-linked genes in which deletions were predicted in the F1 males. Only three of them showed a one-to-one gametologous relationship with the neo-X-linked genes. The candidate deletions in these three genes occurred in UTRs and did not seriously affect their expression levels. These observations indirectly suggest that DC was unlikely to have operated on the neo-X-linked genes immediately after the pseudogenization of their neo-Y-linked gametologs in D. miranda. Therefore, the dosage imbalance caused by deletions in the neo-Y-linked genes without paralogs may not have effectively been compensated, and individuals with such deletions could have exhibited lethality. Future studies on sex chromosomes at different ages will further reveal the relationship between the age of sex chromosomes and the stringency of DC.
Collapse
Affiliation(s)
- Masafumi Ogawa
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | - Tomoko Abe
- Ion Beam Breeding Team, RIKEN Nishina Center for Accelerator-Based Science
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University
| |
Collapse
|
8
|
Charlesworth D, Hastings A, Graham C. Can a Y Chromosome Degenerate in an Evolutionary Instant? A Commentary on Fong et al. 2023. Genome Biol Evol 2023; 15:evad105. [PMID: 37290043 PMCID: PMC10480580 DOI: 10.1093/gbe/evad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
It is well known that the Y chromosomes of Drosophila and mammals and the W chromosomes of birds carry only small fractions of the genes carried by the homologous X or Z chromosomes, and this "genetic degeneration" is associated with loss of recombination between the sex chromosome pair. However, it is still not known how much evolutionary time is needed to reach such nearly complete degeneration. The XY pair of species in a group of closely related poecilid fish is homologous but has been found to have either nondegenerated or completely degenerated Y chromosomes. We evaluate evidence described in a recent paper and show that the available data cast doubt on the view that degeneration has been extraordinarily rapid in the latter (Micropoecilia species).
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abigail Hastings
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Flynn JM, Hu KB, Clark AG. Three recent sex chromosome-to-autosome fusions in a Drosophila virilis strain with high satellite DNA content. Genetics 2023; 224:iyad062. [PMID: 37052958 PMCID: PMC10213488 DOI: 10.1093/genetics/iyad062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The karyotype, or number and arrangement of chromosomes, has varying levels of stability across both evolution and disease. Karyotype changes often originate from DNA breaks near the centromeres of chromosomes, which generally contain long arrays of tandem repeats or satellite DNA. Drosophila virilis possesses among the highest relative satellite abundances of studied species, with almost half its genome composed of three related 7 bp satellites. We discovered a strain of D. virilis that we infer recently underwent three independent chromosome fusion events involving the X and Y chromosomes, in addition to one subsequent fission event. Here, we isolate and characterize the four different karyotypes we discovered in this strain which we believe demonstrates remarkable genome instability. We discovered that one of the substrains with an X-autosome fusion has an X-to-Y chromosome nondisjunction rate 20 × higher than the D. virilis reference strain (21% vs 1%). Finally, we found an overall higher rate of DNA breakage in the substrain with higher satellite DNA compared to a genetically similar substrain with less satellite DNA. This suggests that satellite DNA abundance may play a role in the risk of genome instability. Overall, we introduce a novel system consisting of a single strain with four different karyotypes, which we believe will be useful for future studies of genome instability, centromere function, and sex chromosome evolution.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| | - Kevin B Hu
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building Room 227, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Mrnjavac A, Khudiakova KA, Barton NH, Vicoso B. Slower-X: reduced efficiency of selection in the early stages of X chromosome evolution. Evol Lett 2023; 7:4-12. [PMID: 37065438 PMCID: PMC10091493 DOI: 10.1093/evlett/qrac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.
Collapse
Affiliation(s)
- Andrea Mrnjavac
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Ksenia A Khudiakova
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| |
Collapse
|
11
|
Jonika MM, Alfieri JM, Sylvester T, Buhrow AR, Blackmon H. Why not Y naught. Heredity (Edinb) 2022; 129:75-78. [PMID: 35581478 PMCID: PMC9338309 DOI: 10.1038/s41437-022-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
| | | | | | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|