1
|
Fine-mapping of an Arabidopsis cell death mutation locus. ACTA ACUST UNITED AC 2009; 43:138-45. [PMID: 18726366 DOI: 10.1007/bf02879122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1999] [Indexed: 10/22/2022]
Abstract
An Arabidopsis cell death mutation locus was mapped to chromosome 2 between /GS1 and mi421. The YAC clone ends, CIC9A3R, CIC11C7L, CIC2G5R and RFLP marker CDs3 within this interval, were used to probe TAMU BAC library and 31 BAC clones were obtained. A BAC contig encompassing the mutation locus, which consists of T6P5, T7M23, T12A21, T8L6 and T18A18, was identified by Southern hybridization with the BAC ends as probes. 11 CAPS and 12 STS markers were developed in this region. These results will facilitate map-based cloning of the genes and sequencing of the genomic DNA in this region.
Collapse
|
2
|
Ilgenfritz H, Bouyer D, Schnittger A, Mathur J, Kirik V, Schwab B, Chua NH, Jürgens G, Hülskamp M. The Arabidopsis STICHEL gene is a regulator of trichome branch number and encodes a novel protein. PLANT PHYSIOLOGY 2003; 131:643-55. [PMID: 12586888 PMCID: PMC166840 DOI: 10.1104/pp.014209] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/25/2002] [Accepted: 11/14/2002] [Indexed: 05/19/2023]
Abstract
Here, we analyze the STICHEL (STI) gene, which plays an important role in the regulation of branch number of the unicellular trichomes in Arabidopsis. We have isolated the STI locus by positional cloning and confirmed the identity by sequencing seven independent sti alleles. The STI gene encodes a protein of 1,218 amino acid residues containing a domain with sequence similarity to the ATP-binding eubacterial DNA-polymerase III gamma-subunits. Because endoreduplication was found to be normal in sti mutants the molecular function of STI in cell morphogenesis is not linked to DNA replication and, therefore, postulated to represent a novel pathway. Northern-blot analysis shows that STI is expressed in all organs suggesting that STI function is not trichome specific. The analysis of sti alleles and transgenic lines overexpressing STI suggests that STI regulates branching in a dosage-dependent manner.
Collapse
Affiliation(s)
- Hilmar Ilgenfritz
- Zentrum für Molekularbiologie Pflanzen, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Phytochromes are plant photoreceptors that regulate plant growth and development with respect to the light environment. Following the initial light-perception event, the phytochromes initiate a signal-transduction process that eventually results in alterations in cellular behavior, including gene expression. Here we describe the molecular cloning and functional characterization of Arabidopsis FHY1. FHY1 encodes a product (FHY1) that specifically transduces signals downstream of the far-red (FR) light-responsive phytochrome A (PHYA) photoreceptor. We show that FHY1 is a novel light-regulated protein that accumulates in dark (D)-grown but not in FR-grown hypocotyl cells. In addition, FHY1 transcript levels are regulated by light, and by the product of FHY3, another gene implicated in FR signaling. These observations indicate that FHY1 function is both FR-signal transducing and FR-signal regulated, suggesting a negative feedback regulation of FHY1 function. Seedlings homozygous for loss-of-function fhy1 alleles are partially blind to FR, whereas seedlings overexpressing FHY1 exhibit increased responses to FR, but not to white (WL) or red (R) light. The increased FR-responses conferred by overexpression of FHY1 are abolished in a PHYA-deficient mutant background, showing that FHY1 requires a signal from PHYA for function, and cannot modulate growth independently of PHYA.
Collapse
Affiliation(s)
- T Desnos
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
4
|
Chang YL, Tao Q, Scheuring C, Ding K, Meksem K, Zhang HB. An integrated map of Arabidopsis thaliana for functional analysis of its genome sequence. Genetics 2001; 159:1231-42. [PMID: 11729165 PMCID: PMC1461882 DOI: 10.1093/genetics/159.3.1231] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.
Collapse
Affiliation(s)
- Y L Chang
- Department of Soil and Crop Sciences and Crop Biotechnology Center, Texas A&M University, College Station, Texas 77843-2123, USA
| | | | | | | | | | | |
Collapse
|
5
|
Saji S, Umehara Y, Antonio BA, Yamane H, Tanoue H, Baba T, Aoki H, Ishige N, Wu J, Koike K, Matsumoto T, Sasaki T. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 2001. [DOI: 10.1139/g00-076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.Key words: physical mapping, YAC contig, rice genome, rice chromosomes.
Collapse
|
6
|
Schubert I, Fransz PF, Fuchs J, de Jong JH. Chromosome painting in plants. METHODS IN CELL SCIENCE : AN OFFICIAL JOURNAL OF THE SOCIETY FOR IN VITRO BIOLOGY 2001. [PMID: 11741144 DOI: 10.1007/978-94-010-0330-8_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in situ suppression' (CISS) hybridisation with chromosome-derived DNA probes and blocking of interchromosomally dispersed repeats by total genomic or C0t-1 DNA in excess, iii) exceptional cases of single chromosome painting by probes containing chromosome-specific dispersed repeats, and iv) Fluorescence in situ hybridisation (FISH) with extended contigs of large insert clones for painting of those chromosomes of a euploid complement which harbour the cloned sequences. While GISH was successfully applied in most plant hybrids and/or their derivatives, painting of individual chromosomes by CISS hybridisations of chromosome-specific DNA probes have so far not revealed convincing results in plants. The reason for this failure and the use of possible alternative approaches are discussed. At least for small plant genomes, painting by large insert single sequence clones provides a promising alternative tool to solve cytogenetic questions, which up to now could not be tackled otherwise. An example of such a painting is described in detail for Arabidopsis thaliana.
Collapse
Affiliation(s)
- I Schubert
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany.
| | | | | | | |
Collapse
|
7
|
Federspiel N. Deciphering a weed. Genomic sequencing of Arabidopsis. PLANT PHYSIOLOGY 2000; 124:1456-1459. [PMID: 11115858 PMCID: PMC1539295 DOI: 10.1104/pp.124.4.1456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- N Federspiel
- Exelixis, Inc., 170 Harbor Way, P.O. Box 511, South San Francisco, California 94083-0511, USA.
| |
Collapse
|
8
|
Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 2000; 156:327-39. [PMID: 10978296 PMCID: PMC1461246 DOI: 10.1093/genetics/156.1.327] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In maize (Zea mays L., 2n = 2x = 20), map-based cloning and genome organization studies are often complicated because of the complexity of the genome. Maize chromosome addition lines of hexaploid cultivated oat (Avena sativa L., 2n = 6x = 42), where maize chromosomes can be individually manipulated, represent unique materials for maize genome analysis. Maize chromosome addition lines are particularly suitable for the dissection of a single maize chromosome using radiation because cultivated oat is an allohexaploid in which multiple copies of the oat basic genome provide buffering to chromosomal aberrations and other mutations. Irradiation (gamma rays at 30, 40, and 50 krad) of a monosomic maize chromosome 9 addition line produced maize chromosome 9 radiation hybrids (M9RHs)-oat lines possessing different fragments of maize chromosome 9 including intergenomic translocations and modified maize addition chromosomes with internal and terminal deletions. M9RHs with 1 to 10 radiation-induced breaks per chromosome were identified. We estimated that a panel of 100 informative M9RHs (with an average of 3 breaks per chromosome) would allow mapping at the 0. 5- to 1.0-Mb level of resolution. Because mapping with maize chromosome addition lines and radiation hybrid derivatives involves assays for the presence or absence of a given marker, monomorphic markers can be quickly and efficiently mapped to a chromosome region. Radiation hybrid derivatives also represent sources of region-specific DNA for cloning of genes or DNA markers.
Collapse
Affiliation(s)
- O Riera-Lizarazu
- Department of Agronomy and Plant Genetics and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | |
Collapse
|
9
|
Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 2000; 10:776-88. [PMID: 10854410 PMCID: PMC310908 DOI: 10.1101/gr.10.6.776] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A detailed comparative map of Brassica oleracea and Arabidopsis thaliana has been established based largely on mapping of Arabidopsis ESTs in two Arabidopsis and four Brassica populations. Based on conservative criteria for inferring synteny, "one to one correspondence" between Brassica and Arabidopsis chromosomes accounted for 57% of comparative loci. Based on 186 corresponding loci detected in B. oleracea and A. thaliana, at least 19 chromosome structural rearrangements differentiate B. oleracea and A. thaliana orthologs. Chromosomal duplication in the B. oleracea genome was strongly suggested by parallel arrangements of duplicated loci on different chromosomes, which accounted for 41% of loci mapped in Brassica. Based on 367 loci mapped, at least 22 chromosomal rearrangements differentiate B. oleracea homologs from one another. Triplication of some Brassica chromatin and duplication of some Arabidopsis chromatin were suggested by data that could not be accounted for by the one-to-one and duplication models, respectively. Twenty-seven probes detected three or more loci in Brassica, which represent 25.3% of the 367 loci mapped in Brassica. Thirty-one probes detected two or more loci in Arabidopsis, which represent 23.7% of the 262 loci mapped in Arabidopsis. Application of an EST-based, cross-species genomic framework to isolation of alleles conferring phenotypes unique to Brassica, as well as the challenges and opportunities in extrapolating genetic information from Arabidopsis to Brassica and to more distantly related crops, are discussed.
Collapse
Affiliation(s)
- T H Lan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843 USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Speulman E, van Asperen R, van der Laak J, Stiekema WJ, Pereira A. Target selected insertional mutagenesis on chromosome IV of Arabidopsis using the En-I transposon system. J Biotechnol 2000; 78:301-12. [PMID: 10751691 DOI: 10.1016/s0168-1656(00)00203-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reverse genetics using insertional mutagenesis is an efficient experimental strategy for assessing gene functions. The maize Enhancer-Inhibitor (En-I) transposable element system was used to develop an effective reverse genetics strategy in Arabidopsis based on transposons. To generate insertion mutations in a specific chromosomal region we developed a strategy for local transposition mutagenesis. A small population of 960 plants, containing independent I transpositions was used to study local mutagenesis on chromosome IV of Arabidopsis. A total of 15 genes, located on chromosome IV, were tested for I insertions and included genes identified by the European ESSA I sequencing programme. These genes were of particular interest since homologies to other genes and gene families were identified, but their exact functions were unknown. Somatic insertions were identified for all genes tested in a few specific plants. Analysis of these progeny plants over several generations revealed that the ability to generate somatic insertions in the target gene were heritable. These genotypes that show high levels of somatic insertions can be used to identify germinal insertions in the progeny.
Collapse
Affiliation(s)
- E Speulman
- CPRO, Department of Molecular Biology, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Wambutt R, Murphy G, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian KD, Terryn N, Harris B, Ansroge W, Brandt P, Grivell L, Rieger M, Weichselgartner M, de Simone V, Obermaier B, Mache R, Müller M, Kreis M, Delseny M, Puigdomenech P, Watson M, Schmidtheini T, Reichert B, Portatelle D, Perez-Alonso M, Bountry M, Bancroft I, Vos P, Hoheisel J, Zimmermann W, Wedler H, Ridley P, Langham SA, McCullagh B, Bilham L, Robben J, Van der Schueren J, Grymonprez B, Chuang YJ, Vandenbussche F, Braeken M, Weltjens I, Voet M, Bastiens I, Aert R, Defoor E, Weitzenegger T, Bothe G, Rose M. Progress in Arabidopsis genome sequencing and functional genomics. J Biotechnol 2000; 78:281-92. [PMID: 10751689 DOI: 10.1016/s0168-1656(00)00195-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arabidopsis thaliana has a relatively small genome of approximately 130 Mb containing about 10% repetitive DNA. Genome sequencing studies reveal a gene-rich genome, predicted to contain approximately 25000 genes spaced on average every 4.5 kb. Between 10 to 20% of the predicted genes occur as clusters of related genes, indicating that local sequence duplication and subsequent divergence generates a significant proportion of gene families. In addition to gene families, repetitive sequences comprise individual and small clusters of two to three retroelements and other classes of smaller repeats. The clustering of highly repetitive elements is a striking feature of the A. thaliana genome emerging from sequence and other analyses.
Collapse
Affiliation(s)
- R Wambutt
- AGOWA GmbH, Glienicker Weg 185, D-12489, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999; 402:761-8. [PMID: 10617197 DOI: 10.1038/45471] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130-140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.
Collapse
Affiliation(s)
- X Lin
- Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Faivre-Nitschke SE, Grienenberger JM, Gualberto JM. A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:896-903. [PMID: 10469156 DOI: 10.1046/j.1432-1327.1999.00591.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene and cDNA of an Arabidopsis thaliana cytidine deaminase (CDA) were cloned and sequenced. The gene, At-cda1, is located on chromosome 2 and is expressed in all plant tissues tested, although with quantitative differences. Expression analysis suggest that At-cda1 probably codes for the housekeeping cytidine deaminase of Arabidopsis. The gene was functionally expressed in Escherichia coli and the protein, At-CDA1, shows similar enzymatic and substrate specificities as conventional cytidine deaminases: it deaminates cytidine and deoxycytidine and is competitively inhibited by cytosine-containing compounds. Because the protein shows no affinity to RNA, it is not likely to be involved in RNA-editing by C-to-U deamination. When compared to cytidine deaminases from other organisms, it becomes clear that At-CDA1 is related, both in sequence and structure, to the CDA of E. coli and other gram-negative bacteria. The eubacterial nature of the Arabidopsis CDA suggests that it is an additional example of a plant gene of endosymbiotic origin.
Collapse
|
14
|
Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M, Xu G, Polacco M, Koster L, Melia-Hancock S, Houchins K, Chao S, Coe EH. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 1999; 152:1137-72. [PMID: 10388831 PMCID: PMC1460676 DOI: 10.1093/genetics/152.3.1137] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits.
Collapse
Affiliation(s)
- G L Davis
- USDA-ARS, Midwest Area, Plant Genetics Research Unit, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 1999; 22:271-5. [PMID: 10391215 DOI: 10.1038/10334] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arabidopsis thaliana is a small flowering plant that serves as the major model system in plant molecular genetics. The efforts of many scientists have produced genetic maps that provide extensive coverage of the genome (http://genome-www. stanford.edu/Arabidopsis/maps.html). Recently, detailed YAC, BAC, P1 and cosmid-based physical maps (that is, representations of genomic regions as sets of overlapping clones of corresponding libraries) have been established that extend over wide genomic areas ranging from several hundreds of kilobases to entire chromosomes. These maps provide an entry to gain deeper insight into the A. thaliana genome structure. A. thaliana has been chosen as the subject of the first large-scale project intended to determine the full genome sequence of a plant. This sequencing project, together with the increasing interest in map-based gene cloning, has highlighted the requirement for a complete and accurate physical map of this plant species. To supply the scientific community with a high-quality resource, we present here a complete physical map of A. thaliana using essentially the IGF BAC library. The map consists of 27 contigs that cover the entire genome, except for the presumptive centromeric regions, nucleolar organization regions (NOR) and telomeric areas. This is the first reported map of a complex organism based entirely on BAC clones and it represents the most homogeneous and complete physical map established to date for any plant genome. Furthermore, the analysis performed here serves as a model for an efficient physical mapping procedure using BAC clones that can be applied to other complex genomes.
Collapse
Affiliation(s)
- T Mozo
- Max-Planck-Institut für molekulare Pflanzenphysiologie, Golm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tutois S, Cloix C, Cuvillier C, Espagnol MC, Lafleuriel J, Picard G, Tourmente S. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana. Chromosome Res 1999; 7:143-56. [PMID: 10328626 DOI: 10.1023/a:1009211603248] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Arabidopsis thaliana CIC YAC 2D2, 510 kb long and containing a small block of 180 bp satellite units was subcloned after EcoR1 digestion in the pBluescript plasmid. One of these clones was mapped genetically in the pericentromeric region of chromosome 5. The analysis of 40 subclones of this YAC showed that they all contain repeated sequences with a high proportion of transposable elements. Three new retrotransposons, two Ty-3 Gypsy-like and one Ty-1 Copia, were identified in addition to two new tandem-repeat families. A physical map of the chromosome 5 pericentromeric region was established using CIC YAC clones, spanning around 1000 kb. This contig extends from the CIC YAC 9F5 and 7A2 positioned on the left arm of chromosome 5 to a 5S rDNA genes block localized by in-situ hybridization in the pericentromeric region. Hybridization of the subclones on the CIC YAC library showed that some of them are restricted to the pericentromeric region of chromosome 5 and represent specific markers of this region.
Collapse
Affiliation(s)
- S Tutois
- U.M.R. 6547 BIOMOVE, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:111-9. [PMID: 10341448 DOI: 10.1046/j.1365-313x.1999.00431.x] [Citation(s) in RCA: 398] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mutations at the SCARECROW (SCR) locus in Arabidopsis thaliana result in defective radial patterning in the root and shoot. The SCR gene product contains sequences which suggest that it is a transcription factor. A number of Arabidopsis Expressed Sequence Tags (ESTs) have been identified that encode gene products bearing remarkable similarity to SCR throughout their carboxyl-termini, indicating that SCR is the prototype of a novel gene family. These ESTs have been designated SCARECROW-LIKE (SCL). The gene products of the GIBBERELLIN-INSENSITIVE (GAI) and the REPRESSOR of ga1-3 (RGA) loci show high structural and sequence similarity to SCR and the SCLs. Sequence analysis of the products of the GRAS (GAI, RGA, SCR) gene family indicates that they share a variable amino-terminus and a highly conserved carboxyl-terminus that contains five recognizable motifs. The SCLs have distinct patterns of expression, but all of those analyzed show expression in the root. One of them, SCL3, has a tissue-specific pattern of expression in the root similar to SCR. The importance of the GRAS gene family in plant biology has been established by the functional analyses of SCR, GAI and RGA.
Collapse
Affiliation(s)
- L D Pysh
- New York University Department of Biology, NY 10003-6688, USA
| | | | | | | | | |
Collapse
|
18
|
Wang ML, Belmonte S, Kim U, Dolan M, Morris JW, Goodman HM. A Cluster of ABA-Regulated Genes on Arabidopsis thaliana BAC T07M07. Genome Res 1999. [DOI: 10.1101/gr.9.4.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Arabidopsis thaliana BAC T07M07 encoding the abscisic acid-insensitive 4 (ABI4) locus has been sequenced completely. It contains a 95,713-bp insert and 24 predicted genes. Most putative genes were confirmed by gel-based RNA profiling and a cluster of ABA-regulated genes was identified. One of the 24 genes, designatedPP2C5, encodes a putative protein phosphatase 2C. The encoded protein was expressed in Escherichia coli, and its enzyme activity in vitro was confirmed.[The sequence data described in this paper have been submitted to GenBank under accession no. AF085279.]
Collapse
|
19
|
Ito T, Seki M, Hayashida N, Shibata D, Shinozaki K. Regional insertional mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:433-444. [PMID: 10205900 DOI: 10.1046/j.1365-313x.1999.00383.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
For regional insertional mutagenesis of Arabidopsis thaliana genes, we combined a cDNA scanning method (Hayashida et al. Gene 1995; 165:155-161) and an Ac/Ds transposon designed for local mutagenesis, and evaluated this approach with two overlapping yeast artificial chromosome (YAC) clones, CIC7E11 and CIC8B11, on A. thaliana chromosome 5. We applied a previously developed novel cDNA selection method using DNA latex particles (cDNA scanning method) to the two YAC clones and constructed two sub-libraries in which cDNAs for genes on each YAC DNA were concentrated. From each sub-library we isolated cDNAs for genes on each YAC DNA, partially sequenced them, and produced expressed sequence tags (ESTs). In total, 113 non-redundant groups of cDNAs were obtained. Forty-four per cent of these EST clones were novel, and 34% had significant homology to functional proteins from various organisms. In parallel, we transposed Ds from a donor Ds-GUS-T-DNA line, Ds4391-20, already mapped to the CIC7E11/8B11 region. We obtained Ds-transposed lines and recovered their Ds-flanking genomic DNAs by thermal asymmetric interlaced (TAIL) polymerase chain reaction (PCR). Dot-blot analysis indicated that 20% of the lines contained transposed Ds in the CIC7E11/8B11 region, suggesting that this Ac/Ds transposon system is effective for regional insertional mutagenesis. To isolate Ds insertion mutants in the genes identified from the CIC7E11/8B11 region, we carried out PCR screening from 800 Ds-containing lines using Ds-specific and gene-specific primers that were designed from the 113 cDNA sequences identified by the cDNA scanning method. We found that 49 lines contain Ds insertion mutations, and that five lines contain Ds mutations in genes that are mapped to the sequenced CIC7E11/8B11 genomic DNA region. These results indicate that combining the cDNA scanning method and the Ac/Ds transposon gives a powerful tool for regional insertional mutagenesis not only in Arabidopsis but also in other plants or crops whose genomes are not sequenced.
Collapse
Affiliation(s)
- T Ito
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Institute of Physical and Chemical Research (RIKEN), Ibaraki, Japan
| | | | | | | | | |
Collapse
|
20
|
Abstract
Progress in sequencing the genome of the model plant Arabidopsis is reviewed. The resulting analysis of the sequence indicates an information-rich genome that is being tackled by a variety of high-throughput approaches aimed at understanding the functions of plant genes. The information derived from these systematic studies is providing important new knowledge of biological processes found uniquely in plants for comparison with that obtained in other multicellular organisms.
Collapse
Affiliation(s)
- M Bevan
- Department of Molecular Genetics, John Innes Centre, Norwich, England
| | | | | | | | | |
Collapse
|
21
|
Rhee SY, Weng S, Bongard-Pierce DK, García-Hernández M, Malekian A, Flanders DJ, Cherry JM. Unified display of Arabidopsis thaliana physical maps from AtDB, the A.thaliana database. Nucleic Acids Res 1999; 27:79-84. [PMID: 9847147 PMCID: PMC148102 DOI: 10.1093/nar/27.1.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the past several years, there has been a tremendous effort to construct physical maps and to sequence the genome of Arabidopsis thaliana. As a result, four of the five chromosomes are completely covered by overlapping clones except at the centromeric and nucleolus organizer regions (NOR). In addition, over 30% of the genome has been sequenced and completion is anticipated by the end of the year 2000. Despite these accomplishments, the physical maps are provided in many formats on laboratories' Web sites. These data are thus difficult to obtain in a coherent manner for researchers. To alleviate this problem, AtDB (Arabidopsis thaliana DataBase, URL: http://genome-www.stanford.edu/Arabidopsis/) has constructed a unified display of the physical maps where all publicly available physical-map data for all chromosomes are presented through the Web in a clickable, 'on-the-fly' graphic, created by CGI programs that directly consult our relational database.
Collapse
Affiliation(s)
- S Y Rhee
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu J, Kurata N, Tanoue H, Shimokawa T, Umehara Y, Yano M, Sasaki T. Physical mapping of duplicated genomic regions of two chromosome ends in rice. Genetics 1998; 150:1595-603. [PMID: 9832535 PMCID: PMC1460416 DOI: 10.1093/genetics/150.4.1595] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two genomic regions duplicated in distal ends of the short arms of chromosomes 11 and 12 in rice (Oryza sativa L.) were characterized by YAC ordering with 46 genetic markers. Physical maps covering most of the duplicated regions were generated. Thirty-five markers, including 21 rice cDNA clones, showed the duplicated loci arrayed strictly in the same order along the two specific genomic regions. Regardless of their different genetic distances, the two duplicated segments may have a similar and minimum physical size with an expected length of about 2.5 Mb. However, differences of RFLP frequency for the duplicated DNA copies and recombination frequency for a given homoeologous area between the two regions were observed, indicating that these changes in genome organization occurred after the duplication. Our results establish a good model system for resolving the relationships between gene duplication, expression of duplicated genes, and the frequency of meiotic recombination in small chromosomal regions.
Collapse
Affiliation(s)
- J Wu
- Rice Genome Research Program, National Institute of Agrobiological Resources/Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- D Bouchez
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, Route de Saint-Cyr, 78026 Versailles cedex, France
| | | |
Collapse
|
24
|
Mozo T, Fischer S, Meier-Ewert S, Lehrach H, Altmann T. Use of the IGF BAC library for physical mapping of the Arabidopsis thaliana genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:377-84. [PMID: 9881158 DOI: 10.1046/j.1365-313x.1998.00299.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to generate a physical map of the Arabidopsis thaliana genome based on bacterial artificial chromosome clones (BACs), an iterative high throughput hybridisation strategy was applied and its efficiency was evaluated. Thus, probes generated from both ends of 500 BAC clones selected from the Arabidopsis-IGF-BAC library were hybridised to the entire library gridded on high density filters. The 1000 hybridisation reactions identified 4496 clones (41.8% of the complete library, or 50.3% if organellar, centromeric, and ribosomal DNA carrying clones are excluded) which were assembled into a minimum of 220 contigs. These results demonstrate the viability of the applied 'double-end clone-limited/sampling without replacement' hybridisation strategy for the generation of a high resolution physical map, and provide a highly useful resource for map-based gene cloning approaches and further genome analysis.
Collapse
Affiliation(s)
- T Mozo
- Institut für Genbiologische Forschung Berlin GmbH, Germany
| | | | | | | | | |
Collapse
|
25
|
Ananiev EV, Phillips RL, Rines HW. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 1998; 95:13073-8. [PMID: 9789043 PMCID: PMC23713 DOI: 10.1073/pnas.95.22.13073] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A set of oat-maize chromosome addition lines with individual maize (Zea mays L.) chromosomes present in plants with a complete oat (Avena sativa L.) chromosome complement provides a unique opportunity to analyze the organization of centromeric regions of each maize chromosome. A DNA sequence, MCS1a, described previously as a maize centromere-associated sequence, was used as a probe to isolate cosmid clones from a genomic library made of DNA purified from a maize chromosome 9 addition line. Analysis of six cosmid clones containing centromeric DNA segments revealed a complex organization. The MCS1a sequence was found to comprise a portion of the long terminal repeats of a retrotransposon-like repeated element, termed CentA. Two of the six cosmid clones contained regions composed of a newly identified family of tandem repeats, termed CentC. Copies of CentA and tandem arrays of CentC are interspersed with other repetitive elements, including the previously identified maize retroelements Huck and Prem2. Fluorescence in situ hybridization revealed that CentC and CentA elements are limited to the centromeric region of each maize chromosome. The retroelements Huck and Prem2 are dispersed along all maize chromosomes, although Huck elements are present in an increased concentration around centromeric regions. Significant variation in the size of the blocks of CentC and in the copy number of CentA elements, as well as restriction fragment length variations were detected within the centromeric region of each maize chromosome studied. The different proportions and arrangements of these elements and likely others provide each centromeric region with a unique overall structure.
Collapse
Affiliation(s)
- E V Ananiev
- Department of Agronomy and Plant Genetics and Plant Molecular Genetics Institute, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
26
|
Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science 1998; 282:662, 679-82. [PMID: 9784120 DOI: 10.1126/science.282.5389.662] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arabidopsis thaliana is a small plant in the mustard family that has become the model system of choice for research in plant biology. Significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of this simple angiosperm. The 120-megabase genome of Arabidopsis is organized into five chromosomes and contains an estimated 20,000 genes. More than 30 megabases of annotated genomic sequence has already been deposited in GenBank by a consortium of laboratories in Europe, Japan, and the United States. The entire genome is scheduled to be sequenced by the end of the year 2000. Reaching this milestone should enhance the value of Arabidopsis as a model for plant biology and the analysis of complex organisms in general.
Collapse
Affiliation(s)
- D W Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
27
|
McKinney EC, Meagher RB. Members of the Arabidopsis actin gene family are widely dispersed in the genome. Genetics 1998; 149:663-75. [PMID: 9611182 PMCID: PMC1460172 DOI: 10.1093/genetics/149.2.663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant genomes are subjected to a variety of DNA turnover mechanisms that are thought to result in rapid expansion and presumable contraction of gene copy number. The evolutionary history of the 10 actin genes in Arabidopsis thaliana is well characterized and can be traced to the origin of vascular plant genomes. Knowledge about the genomic position of each actin gene may be the key to tracing landmark genomic duplication events that define plant families or genera and facilitate further mutant isolation. All 10 actin genes were mapped by following the segregation of cleaved amplified polymorphisms between two ecotypes and identifying actin gene locations among yeast artificial chromosomes. The Arabidopsis actin genes are widely dispersed on four different chromosomes (1, 2, 3, and 5). Even the members of three closely related and recently duplicated pairs of actin genes are unlinked. Several other cytoskeletal genes (profilins, tubulins) that might have evolved in concert with actins were also mapped, but showed few patterns consistent with that evolutionary history. Thus, the events that gave rise to the actin gene family have been obscured either by the duplication of very small genic fragments or by extensive rearrangement of the genome.
Collapse
Affiliation(s)
- E C McKinney
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
28
|
Camilleri C, Lafleuriel J, Macadré C, Varoquaux F, Parmentier Y, Picard G, Caboche M, Bouchez D. A YAC contig map of Arabidopsis thaliana chromosome 3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:633-642. [PMID: 9675906 DOI: 10.1046/j.1365-313x.1998.00159.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have constructed a YAC contig map of Arabidopsis thaliana chromosome 3. From an estimated total size of 25 Mb, about 21 Mb were covered by 148 clones arranged into nine YAC contigs, which represented most of the low-copy regions of the chromosome. YAC clones were anchored with 259 molecular markers, including 111 for which linkage information was previously available. Most of the genetic map was included in the YAC coverage, and more than 60% of the genetic markers from the reference recombinant inbred line map were anchored, giving a high level of integration between the genetic and physical maps. The submetacentric structure of the chromosome was confirmed by physical data; 3R (the top arm of the linkage map) was about 12 Mb, and 3L (the bottom arm of the linkage map) was about 9 Mb. This YAC physical map will aid in chromosome walking experiments and provide a framework for large-scale DNA sequencing of chromosome 3.
Collapse
Affiliation(s)
- C Camilleri
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 1998; 149:641-50. [PMID: 9611180 PMCID: PMC1460160 DOI: 10.1093/genetics/149.2.641] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We show that major chromosomal rearrangements can occur upon T-DNA transformation of Arabidopsis thaliana. In the ACL4 line, two T-DNA insertion loci were found; one is a tandem T-DNA insert in a head-to-head orientation, and the other is a truncated insert with only the left part of the T-region. The four flanking DNA regions were isolated and located on the Arabidopsis chromosomes; for both inserts, one side of the T-DNA maps to chromosome 2, whereas the other side maps to chromosome 3. Both chromosome 3 flanking regions map to the same location, despite a 1.4-kb deletion at this point, whereas chromosome 2 flanking regions are located 40 cM apart on the bottom arm of chromosome 2. These results strongly suggest a reciprocal translocation between chromosomes 2 and 3, with the breakpoints located at the T-DNA insertion sites. The interchanged fragments roughly correspond to the 20-cM distal ends of both chromosomes. Moreover, a large inversion, spanning 40 cM on the genetic map, occurs on the bottom arm of chromosome 2. This was confirmed by genetic analyses that demonstrated a strong reduction of recombination in the inverted region. Models for T-DNA integration and the consequences for T-DNA tagging are discussed in light of these results.
Collapse
Affiliation(s)
- P Nacry
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | | | | | | | |
Collapse
|
30
|
Xu J, Yang D, Domingo J, Ni J, Huang N. Screening for overlapping bacterial artificial chromosome clones by PCR analysis with an arbitrary primer. Proc Natl Acad Sci U S A 1998; 95:5661-6. [PMID: 9576940 PMCID: PMC20435 DOI: 10.1073/pnas.95.10.5661] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this article, we used PCR analysis with arbitrary primers (AP-PCR) to screen for overlapping bacterial artificial chromosome (BAC) clones and assembly of contigs. A rice BAC library with three genome equivalents was used to prepare pooled BAC DNA. Twenty-two arbitrary primers were used to survey the pooled BAC DNAs and individual BAC DNAs. Each primer identified 1-10 loci, and the average was 4.4 loci. There were 1-5 overlapping clones in each locus, and the average was 2.5 clones. A total of 245 BAC clones were identified as overlapping by AP-PCR and the identities were confirmed by DNA-DNA hybridization. The 245 BAC clones were then assembled into 80 contigs and 17 single-clone loci. The results indicated that PCR analysis with arbitrary primers is a powerful tool in screening for overlapping BAC clones with high accuracy and efficiency. The use of AP-PCR analysis should speed up the construction of physical maps of the plant and animal genomes, as well as the rice genome.
Collapse
Affiliation(s)
- J Xu
- Plant Breeding, Genetics and Biochemistry, International Rice Research Institute, P.O. Box 933, 1099 Manila, Philippines
| | | | | | | | | |
Collapse
|
31
|
Speulman E, Bouchez D, Holub EB, Beynon JL. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:467-474. [PMID: 9670562 DOI: 10.1046/j.1365-313x.1998.00138.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The disease resistance genes RPS2 of Arabidopsis and N of tobacco, among other recently cloned resistance genes, share several conserved sequences. Degenerate oligonucleotide primers, based on conserved sequences in the nucleotide binding site (NBS) and a weak hydrophobic domain of RPS2 and N, were used to amplify homologous sequences from Arabidopsis thaliana. Amplification products were obtained that were similar in sequence to the disease resistance genes RPS2, RPM1, N and L6. The Arabidopsis CIC-YAC library was used to identify the position of the disease resistance homologs on the Arabidopsis genome. Their map positions could be correlated with the disease resistance loci RPS5, RAC1, RPP9, CAR1, RPP7, RPW2, RPP1, RPP10, RPP14, RPP5, RPP4, RPS2, RPW6, HRT, RPS4, RPP8, RPP21, RPP22, RPP23, RPP24 and TTR1. This method was therefore not only successful in the identification of sequences located within gene clusters that are involved in disease resistance, but could also contribute to the cloning of disease resistance genes from Arabidopsis.
Collapse
Affiliation(s)
- E Speulman
- Department of Biological Sciences, Wye College, Ashford, Kent, UK.
| | | | | | | |
Collapse
|
32
|
Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MT. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:259-71. [PMID: 9628021 DOI: 10.1046/j.1365-313x.1998.00115.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An amplified fragment polymorphism (AFLP) based linkage map has been generated for a new Landsberg erecta/ Cape Verde Islands (Ler/Cvi) recombinant inbred line (RIL) population. A total of 321 molecular PCR based markers and the erecta mutation were mapped. AFLP markers were also analysed in the Landsberg erecta/Columbia (Ler/Col) RIL population (Lister and Dean, 1993) and 395 AFLP markers have been integrated into the previous Arabidopsis molecular map of 122 RFLPs, CAPSs and SSLPs. This enabled the evaluation of the efficiency and robustness of AFLP technology for linkage analyses in Arabidopsis. AFLP markers were found throughout the linkage map. The two RIL maps could be integrated through 49 common markers which all mapped at similar positions. Comparison of both maps led to the conclusion that segregating bands from a common parent can be compared between different populations, and that AFLP bands of similar molecular size, amplified with the same primer combination in two different ecotypes, are likely to correspond to the same locus. AFLPs were found clustering around the centromeric regions, and the authors have established the map position of the centromere of chromosome 3 by a quantitative analysis of AFLP bands using trisomic plants. AFLP markers were also used to estimate the polymorphism rate among the three ecotypes. The larger polymorphism rate found between Ler and Cvi compared to Ler and Col will mean that the new RIL population will provide a useful material to map DNA polymorphisms and quantitative trait loci.
Collapse
Affiliation(s)
- C Alonso-Blanco
- Graduate School Experimental Plant Sciences, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bent E, Johnson S, Bancroft I. BAC representation of two low-copy regions of the genome of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:849-855. [PMID: 9681021 DOI: 10.1046/j.1365-313x.1998.00082.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two regions of Arabidopsis chromosome 4, totalling 4.7 Mb, were assayed for representation in the TAMU and IGF BAC libraries. A directed approach to BAC identification was developed. Gel-purified DNA samples of YACs selected from the YAC-based physical map of chromosome 4 were used to probe high-density colony arrays of the BAC libraries. Strategies were developed that allowed the efficient construction of restriction maps and BAC contigs. Four hundred and sixty-four BACs were mapped, assembled into two complete contigs and used to analyse genomic representation. These BACs provided a mean of 9.4-fold redundant coverage, with a range of 2- to 22-fold. The representation provided by the two libraries showed almost coincident peaks and troughs, with a periodicity of approximately 200 kb. These results demonstrate that, provided both TAMU and IGF libraries are used in their entirety, BACs should provide an excellent resource for both physical mapping and sequencing of the Arabidopsis genome.
Collapse
Affiliation(s)
- E Bent
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | |
Collapse
|
34
|
Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G. Cytogenetics for the model system Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:867-76. [PMID: 9681023 DOI: 10.1046/j.1365-313x.1998.00086.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A detailed karyotype of Arabidopsis thaliana is presented using meiotic pachytene cells in combination with fluorescence in situ hybridization. The lengths of the five pachytene bivalents varied between 50 and 80 microns, which is 20-25 times longer than mitotic metaphase chromosomes. The analysis confirms that the two longest chromosomes (1 and 5) are metacentric and the two shortest chromosomes (2 and 4) are acrocentric and carry NORs subterminally in their short arms, while chromosome 3 is submetacentric and medium sized. Detailed mapping of the centromere position further revealed that the length variation between the pachytene bivalents comes from the short arms. Individual chromosomes were unambiguously identified by their combinations of relative lengths, arm-ratios, presence of NOR knobs and FISH signals with a 5S rDNA probe and chromosome specific DNA probes. Polymorphisms were found among six ecotypes with respect to the number and map positions of 5S rDNA loci. All ecotypes contain 5S rDNA in the short arms of chromosomes 4 and 5. Three different patterns were observed regarding the presence and position of a 5S rDNA locus on chromosome 3. Repetitive DNA clones enabled us to subdivide the pericentromeric heterochromatin into a central domain, characterized by pAL1 and 106B repeats, which accommodate the functional centromere and two flanking domains, characterized by the 17 A20 repeat sequences. The upper flanking domains of chromosomes 4 and 5, and in some ecotypes also chromosome 3, contain a 5S rDNA locus. The detection of unique cosmids and YAC sequences demonstrates that detailed physical mapping of Arabidopsis chromosomes by cytogenetic techniques is feasible. Together with the presented karyotype this makes Arabidopsis a model system for detailed cytogenetic mapping.
Collapse
Affiliation(s)
- P Fransz
- School of Biological Sciences, University of Birmingham, Edgbaston, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Mathur J, Szabados L, Schaefer S, Grunenberg B, Lossow A, Jonas-Straube E, Schell J, Koncz C, Koncz-Kálmán Z. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:707-716. [PMID: 9681013 DOI: 10.1046/j.1365-313x.1998.00059.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A protocol for establishment and high-frequency Agrobacterium-mediated transformation of morphogenic Arabidopsis cell suspensions was developed to facilitate saturation mutagenesis and identification of plant genes by sequenced T-DNA tags. Thirty-two self-circularized T-DNA tagged chromosomal loci were isolated from 21 transgenic plants by plasmid rescue and long-range inverse polymerase chain reaction (LR-iPCR). By bidirectional sequencing of the ends of T-DNA-linked plant DNA segments, nine T-DNA inserts were thus localized in genes coding for the Arabidopsis ASK1 kinase, cyclin 3b, J-domain protein, farnesyl diphosphate synthase, ORF02, an unknown EST, and homologues of a copper amine oxidase, a peripheral Golgi protein and a maize pollen-specific transcript. In addition, 16 genes were identified in the vicinity of sequenced T-DNA tags illustrating the efficiency of genome analysis by insertional mutagenesis.
Collapse
Affiliation(s)
- J Mathur
- Max-Planck Institut für Züchtungsforschung, Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JD, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 1998; 391:485-8. [PMID: 9461215 DOI: 10.1038/35140] [Citation(s) in RCA: 545] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.
Collapse
Affiliation(s)
- M Bevan
- Department of Molecular Genetics, John Innes Centre, Colney, Norwich, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Copenhaver GP, Browne WE, Preuss D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci U S A 1998; 95:247-52. [PMID: 9419361 PMCID: PMC18190 DOI: 10.1073/pnas.95.1.247] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During meiosis, crossover events generate new allelic combinations, yet the abundance of these genetic exchanges in individual cells has not been measured previously on a genomic level. To perform a genome-wide analysis of recombination, we monitored the assortment of genetic markers in meiotic tetrads from Arabidopsis. By determining the number and distribution of crossovers in individual meiotic cells, we demonstrated (i) surprisingly precise regulation of crossover number in each meiosis, (ii) considerably reduced recombination along chromosomes carrying ribosomal DNA arrays, and (iii) an inversely proportional relationship between recombination frequencies and chromosome size. This use of tetrad analysis also achieved precise mapping of all five Arabidopsis centromeres, localizing centromere functions in the intact chromosomes of a higher eukaryote.
Collapse
Affiliation(s)
- G P Copenhaver
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Round EK, Flowers SK, Richards EJ. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res 1997; 7:1045-53. [PMID: 9371740 DOI: 10.1101/gr.7.11.1045] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genetic positions of the five Arabidopsis thaliana centromere regions have been identified by mapping size polymorphisms in the centromeric 180-bp repeat arrays. Structural and genetic analysis indicates that 180-bp repeat arrays of up to 1000 kb are found in the centromere region of each chromosome. The genetic behavior of the centromeric arrays suggests that recombination within the arrays is suppressed. These results indicate that the centromere regions of A. thaliana resemble human centromeres in size and genomic organization.
Collapse
Affiliation(s)
- E K Round
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
39
|
Abstract
The complexity of the proteasome gene family in higher plants was investigated by identification and sequencing cDNA clones from the Arabidopsis thaliana database showing homologies to 20S proteasome subunits. We identified plant counterparts for each of the 14 proteasomal subunit subfamilies. Moreover, several of them were highly related isoforms. Mapping data indicate a random distribution of the proteasome genes over the Arabidopsis genome.
Collapse
Affiliation(s)
- Y Parmentier
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
40
|
Terryn N, Neyt P, De Clercq R, De Keyser A, Van Den Daele H, Ardiles W, Déhais P, Rouzé P, Gielen J, Villarroel R, Van Montagu M. Sequence analysis of a 24-kb contiguous genomic region at the Arabidopsis thaliana PFL locus on chromosome 1. FEBS Lett 1997; 416:156-60. [PMID: 9369203 DOI: 10.1016/s0014-5793(97)01190-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As part of the European Union program of European Scientist Sequencing Arabidopsis (ESSA), the DNA sequence of a 24.053-bp insert of cosmid clone CC17J13 was determined. The cosmid is located on chromosome 1 at the PFL locus (position 30 cM). Analysis of the sequence and comparison to public databases predicts seven genes in this area, thus approximately one gene every 3.3 kb. Three cDNAs corresponding to genes in this region were also sequenced. The homologies and/or possible functions of the (putative) genes are discussed. Proteins encoded by genes in this region include a polyadenylate-binding protein (PAB-3) and a GTP-binding protein (Rab7) as well as a novel protein, possibly involved in double-stranded RNA unwinding and apoptosis. Intriguingly, the gene encoding the PAB-3 protein, which is very specifically expressed, is flanked by putative matrix attachment regions.
Collapse
Affiliation(s)
- N Terryn
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Brandes A, Thompson H, Dean C, Heslop-Harrison JS. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 1997; 5:238-46. [PMID: 9244451 DOI: 10.1023/a:1018415502795] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nine repetitive DNA sequences, present in the haploid Arabidopsis thaliana genome in 7-300 copies, were hybridized in situ to metaphase and interphase chromosomes. Every sequence was detected on all five chromosome pairs, but was not evenly dispersed over the genome. Clusters of signals were found in particular regions of the centromeric heterochromatin, and each sequence showed a characteristic distribution pattern. Some sequences hybridized more strongly on different chromosomes, reflecting chromosome-specific amplification or the presence of homologous sequences. No hybridization signals could be detected on euchromatic regions. In situ hybridization on extended chromatin fibres showed that the pAL1 repeats are interrupted by another repetitive DNA sequence. A cosmid subclone (74A) contained a (GA)38 microsatellite motif, and hybridization with a (GA) oligonucleotide revealed that most of the hybridization sites of 74A correspond to the distribution of this microsatellite motif. The results show that the paracentromeric heterochromatin of A. thaliana chromosomes is composed not only of the tandemly arranged 180-bp repeat family pAL1/pAtMr, but also of some other repetitive sequences, thus giving a better understanding of the organization of sequences at the centromeres of A. thaliana.
Collapse
Affiliation(s)
- A Brandes
- Department of Cell Biology, John Innes Centre, Norwich, UK.
| | | | | | | |
Collapse
|
43
|
Agyare FD, Lashkari DA, Lagos A, Namath AF, Lagos G, Davis RW, Lemieux B. Mapping expressed sequence tag sites on yeast artificial chromosome clones of Arabidopsis thaliana DNA. Genome Res 1997; 7:1-9. [PMID: 9037596 DOI: 10.1101/gr.7.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe a method for efficient parallel mapping of expressed sequence tag (EST) sites onto yeast artificial chromosome (YAC) clones. The strategy involves an initial YAC clone pooling scheme that minimizes the number of required PCR amplifications. This is followed by parallel analysis of PCR amplicons of EST sequences. Using this method, we have screened 600 EST sites in combinatorial pools of 3449 YAC clones that contain Arabidopsis thaliana DNA inserts. The presence of these genes on YACs was detected by amplifying EST sequences with PCR and analyzing the reaction products by agarose gel electrophoresis. Of the 600 ESTs, 271 were found to map to individual YACs. Software tools are presented that allow for the automated analysis of this electrophoresis data. Suggestions for the scale-up of this method to map large genomes are discussed.
Collapse
Affiliation(s)
- F D Agyare
- Department of Biology, York University, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Thompson HL, Schmidt R, Dean C. Analysis of the occurrence and nature of repeated DNA in an 850 kb region of Arabidopsis thaliana chromosome 4. PLANT MOLECULAR BIOLOGY 1996; 32:553-557. [PMID: 8980506 DOI: 10.1007/bf00019109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The occurrence and nature of repeated DNA sequences has been analysed within an 850 kb YAC contig on Arabidopsis thaliana chromosome 4. Hybridization analysis with seven RFLP markers, six cosmid contigs, 29 YAC end probes and eight YAC clones showed that a least 585 kb of the 850 kb contained only low-copy sequences. One YAC end probe, EG15C8LE, hybridized to multiple genomic fragments and contained a sequence with predicted protein homology to cytochrome P450 monooxygenases. Another one, EG11B7RE, was found to be non-contiguous with the other YAC clones and contained a dispersed repetitive sequence associated with centromeric regions.
Collapse
|
45
|
Thompson HL, Schmidt R, Dean C. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res 1996; 24:3017-22. [PMID: 8760888 PMCID: PMC146053 DOI: 10.1093/nar/24.15.3017] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to analyse further the genomic distribution of repetitive sequences in the Arabidopsis genome, we have identified and characterized seven novel repetitive sequences. Analysis of genomic representation, genomic location and DNA sequence divided the seven repeated sequences into two classes. The first was represented by three cosmid subclones (182A, 74A, 191A) carrying sequences that hybridised to up to 20 genomic fragments and showed sequence homology to the genes, Arabidopsis CCR2, Arabidopsis MYB and to various ATP-binding transport proteins. These multigene families mapped to various positions within the genome, as judged by hybridization to YAC clones constituting the Arabidopsis physical map. The second class was represented by four cosmid subclones (106B, 164A, 163A, 278A) that hybridised to between 20 and 300 genomic fragments. One of these, 106B, is a diverged, partial copy of the LTR of the Arabidopsis retrotransposon Athila. The other three sequences showed no homology to known genes or proteins. The distribution of these sequences on chromosome 4 was analysed and sequences hybridizing to 106B, 164A and 163A were found exclusively at the centromeric region of this chromosome. Their detailed arrangement at the centromeric region of chromosome 4, relative to other repeated sequence families and single copy sequences, was determined.
Collapse
|