1
|
Pawlak K, Błażej P, Mackiewicz D, Mackiewicz P. The Influence of the Selection at the Amino Acid Level on Synonymous Codon Usage from the Viewpoint of Alternative Genetic Codes. Int J Mol Sci 2023; 24:ijms24021185. [PMID: 36674703 PMCID: PMC9866869 DOI: 10.3390/ijms24021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation-selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used.
Collapse
|
2
|
Immunopathogenesis of infectious bronchitis virus Q1 in specific pathogen free chicks. Microb Pathog 2020; 149:104535. [PMID: 32980469 DOI: 10.1016/j.micpath.2020.104535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
The immunopathogenesis of avian coronavirus, infectious bronchitis virus (IBV) Q1, was investigated in specific pathogen free chicks. Following infection, chicks exhibited respiratory clinical signs and reduced body weight. Oropharyngeal (OP) and cloacal (CL) swabs were collected at intervals and found to be RT-PCR positive, with a greater number of partial-S1 amino acid changes noted in CL swabs compared to OP swabs. In tissue samples, IBV viral load peaked 9 days post infection (dpi) in the trachea and kidneys, and 14 dpi in the proventriculus. At 28 dpi, ELISA data showed that 63% of infected chicks seroconverted. There was significantly higher mRNA up-regulation of IFN-α, TLR3, MDA5, LITAF, IL-1β and IL-6 in the trachea compared to the kidneys. Findings presented here demonstrate that this Q1 isolate induces greater lesions and host innate immune responses in chickens' tracheas compared to the kidneys.
Collapse
|
3
|
Bose D, Mukhopadhyay S. Comparative genomics of a few members of the family Aquificaceae on the basis of their codon usage profile. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Rao Y, Wang Z, Luo W, Sheng W, Zhang R, Chai X. Base composition is the primary factor responsible for the variation of amino acid usage in zebra finch (Taeniopygia guttata). PLoS One 2018; 13:e0204796. [PMID: 30517105 PMCID: PMC6281210 DOI: 10.1371/journal.pone.0204796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/15/2018] [Indexed: 11/19/2022] Open
Abstract
In the present study, we carried out an examination of the amino acid usage in the zebra finch (Taeniopygia guttata) proteome. We found that tRNA abundance, base composition, hydrophobicity and aromaticity, protein second structure, cysteine residue (Cys) content and protein molecular weight had significant impact on the amino acid usage of the zebra finch. The above factors explained the total variability of 22.85%, 25.37%, 10.91%, 5.06%, 4.21%, and 3.14%, respectively. Altogether, approximately 70% of the total variability in zebra finch could be explained by such factors. Comparison of the amino acid usage between zebra finch, chicken (Gallus gallus) and human (Homo sapiens) suggested that the average frequency of various amino acid usage is generally consistent among them. Correspondence analysis indicated that base composition was the primary factor affecting the amino acid usage in zebra finch. This trend was different from chicken, but similar to human. Other factors affecting the amino acid usage in zebra finch, such as isochore structure, protein second structure, Cys frequency and protein molecular weight also showed the similar trends with human. We do not know whether the similar amino acid usage trend between human and zebra finch is related to the distinctive neural and behavioral traits, but it is worth studying in depth.
Collapse
Affiliation(s)
- Yousheng Rao
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
- * E-mail:
| | - Zhangfeng Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
| | - Wen Luo
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
| | - Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
| | - Rendian Zhang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
| | - Xuewen Chai
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
- Jiang Xi Province Key Lab of Genetic Improvement of Indigenous Chicken Breeds, Nanchang, Jiangxi, China)
| |
Collapse
|
5
|
Zhang R, Zhang L, Wang W, Zhang Z, Du H, Qu Z, Li XQ, Xiang H. Differences in Codon Usage Bias between Photosynthesis-Related Genes and Genetic System-Related Genes of Chloroplast Genomes in Cultivated and Wild Solanum Species. Int J Mol Sci 2018; 19:E3142. [PMID: 30322061 PMCID: PMC6213243 DOI: 10.3390/ijms19103142] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Solanum is one of the largest genera, including two important crops-potato (Solanum tuberosum) and tomato (Solanum lycopersicum). In this study we compared the chloroplast codon usage bias (CUB) among 12 Solanum species, between photosynthesis-related genes (Photo-genes) and genetic system-related genes (Genet-genes), and between cultivated species and wild relatives. The Photo-genes encode proteins for photosystems, the photosynthetic electron transport chain, and RuBisCO, while the Genet-genes encode proteins for ribosomal subunits, RNA polymerases, and maturases. The following findings about the Solanum chloroplast genome CUB were obtained: (1) the nucleotide composition, gene expression, and selective pressure are identified as the main factors affecting chloroplast CUB; (2) all these 12 chloroplast genomes prefer A/U over G/C and pyrimidines over purines at the third-base of codons; (3) Photo-genes have higher codon adaptation indexes than Genet-genes, indicative of a higher gene expression level and a stronger adaptation of Photo-genes; (4) gene function is the primary factor affecting CUB of Photo-genes but not Genet-genes; (5) Photo-genes prefer pyrimidine over purine, whereas Genet-genes favor purine over pyrimidine, at the third position of codons; (6) Photo-genes are mainly affected by the selective pressure, whereas Genet-genes are under the underlying mutational bias; (7) S. tuberosum is more similar with Solanum commersonii than with Solanum bulbocastanum; (8) S. lycopersicum is greatly different from the analyzed seven wild relatives; (9) the CUB in codons for valine, aspartic acid, and threonine are the same between the two crop species, S. tuberosum and S. lycopersicum. These findings suggest that the chloroplast CUB contributed to the differential requirement of gene expression activity and function between Photo-genes and Genet-genes and to the performance of cultivated potato and tomato.
Collapse
Affiliation(s)
- Ruizhi Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Li Zhang
- Department of Math and Information, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Wei Wang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Huihui Du
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zheng Qu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, NB E3B 4Z7, Canada.
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Mazumder GA, Uddin A, Chakraborty S. Comparative analysis of codon usage pattern and its influencing factors in Schistosoma japonicum and Ascaris suum. Acta Parasitol 2017; 62:748-761. [PMID: 29035868 DOI: 10.1515/ap-2017-0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022]
Abstract
Schistosoma japonicum and Ascaris suum are considered as the major parasites of human which cause various life threatening diseases such as schistomiasis and ascariasis. The codon usage bias (CUB) is known as the phenomenon of more usage of a specific codon than the other synonymous codons for an amino acid. The factors that influence the codon usage bias are mutation pressure, natural selection, gene expression, gene length, GC content, RNA stability, recombination rates, codon position etc. Here we had used various bioinformatic tools and statistical analyses to understand the compositional features, expression level and codon usage bias in the genes of these two species.After estimating the effective number of codon (ENC) in both the species, codon usage bias was found to be low and gene expression was high. The nucleobase A and T were used most often than C and G. From neutrality plot and correspondence analysis it was found that both natural selection and mutation pressure played an important role in shaping the codon usage pattern of both species. Moreover, natural selection played a major role while mutation pressure played a minor role in shaping the codon usage bias in S. japonicum and A.suum. This is the first report on the codon usage biology in S. japonicum and A.suum, and the factors influencing their codon usage bias. These results are expected to be useful for genetic engineering and evolutionary studies.
Collapse
|
7
|
Błażej P, Mackiewicz D, Grabińska M, Wnętrzak M, Mackiewicz P. Optimization of amino acid replacement costs by mutational pressure in bacterial genomes. Sci Rep 2017; 7:1061. [PMID: 28432324 PMCID: PMC5430830 DOI: 10.1038/s41598-017-01130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mutations are considered a spontaneous and random process, which is important component of evolution because it generates genetic variation. On the other hand, mutations are deleterious leading to non-functional genes and energetically costly repairs. Therefore, one can expect that the mutational pressure is optimized to simultaneously generate genetic diversity and preserve genetic information. To check if empirical mutational pressures are optimized in these ways, we compared matrices of nucleotide mutation rates derived from bacterial genomes with their best possible alternatives that minimized or maximized costs of amino acid replacements associated with differences in their physicochemical properties (e.g. hydropathy and polarity). It should be noted that the studied empirical nucleotide substitution matrices and the costs of amino acid replacements are independent because these matrices were derived from sites free of selection on amino acid properties and the amino acid costs assumed only amino acid physicochemical properties without any information about mutation at the nucleotide level. Obtained results indicate that the empirical mutational matrices show a tendency to minimize costs of amino acid replacements. It implies that bacterial mutational pressures can evolve to decrease consequences of amino acid substitutions. However, the optimization is not full, which enables generation of some genetic variability.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Dorota Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Małgorzata Wnętrzak
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
8
|
The Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons. G3-GENES GENOMES GENETICS 2017; 7:967-981. [PMID: 28122952 PMCID: PMC5345726 DOI: 10.1534/g3.116.038125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an effect, we superimposed >3.5 billion unrestricted mutational processes on the selection of nonsynonymous substitutions based on the differences in physicochemical properties of the coded amino acids. Using a modified evolutionary optimization algorithm, we determined the conditions in which the effect on the relative codon usage is maximized. We found that the effect is enhanced by mutational processes generating more adenine and thymine than guanine and cytosine, as well as more purines than pyrimidines. Interestingly, this effect is observed only under an unrestricted model of nucleotide substitution, and disappears when the mutational process is time-reversible. Comparison of the simulation results with data for real protein coding sequences indicates that the impact of selection at the amino acid level on synonymous codon usage cannot be neglected. Furthermore, it can considerably interfere, especially in AT-rich genomes, with other selections on codon usage, e.g., translational efficiency. It may also lead to difficulties in the recognition of other effects influencing codon bias, and an overestimation of protein coding sequences whose codon usage is subjected to adaptational selection.
Collapse
|
9
|
Błażej P, Miasojedow B, Grabińska M, Mackiewicz P. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes. PLoS One 2015; 10:e0130411. [PMID: 26121655 PMCID: PMC4488281 DOI: 10.1371/journal.pone.0130411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Błażej Miasojedow
- Section of Mathematical Statistics, The Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warszawa, Poland
| | - Małgorzata Grabińska
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- * E-mail:
| |
Collapse
|
10
|
Charneski CA, Honti F, Bryant JM, Hurst LD, Feil EJ. Atypical at skew in Firmicute genomes results from selection and not from mutation. PLoS Genet 2011; 7:e1002283. [PMID: 21935355 PMCID: PMC3174206 DOI: 10.1371/journal.pgen.1002283] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew. When considering a single strand of DNA, it is not necessarily the case that the frequency of each base should equal its complementary partner, such that A = T and G = C. For the leading strand, it is typically the case that Gs are more common than Cs, and Ts more common than As. This bias is widely thought to arise due to different mutational biases during replication. The Firmicutes exhibit an atypical preference for A over T on the leading strand, and here we show that selection, rather than mutation, can explain this exception. For those bases within coding regions, selection acts to inflate the frequency of A over T in order to avoid stop codons and to use metabolically cheap amino acids. Because genes are not orientated randomly, this manifests as an overall enrichment of A on the leading strand. Furthermore, a direct examination of mutational patterns is inconsistent with the observed enrichment of As. Curiously, our data also point to an unresolved source of selection on synonymous and intergenic sites, which are widely assumed to be neutral.
Collapse
|
11
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
12
|
Rocha EPC, Touchon M, Feil EJ. Similar compositional biases are caused by very different mutational effects. Genome Res 2006; 16:1537-47. [PMID: 17068325 PMCID: PMC1665637 DOI: 10.1101/gr.5525106] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compositional replication strand bias, commonly referred to as GC skew, is present in many genomes of prokaryotes, eukaryotes, and viruses. Although cytosine deamination in ssDNA (resulting in C-->T changes on the leading strand) is often invoked as its major cause, the precise contributions of this and other substitution types are currently unknown. It is also unclear if the underlying mutational asymmetries are the same among taxa, are stable over time, or how closely the observed biases are to mutational equilibrium. We analyzed nearly neutral sites of seven taxa each with between three and six complete bacterial genomes, and inferred the substitution spectra of fourfold degenerate positions in nonhighly expressed genes. Using a bootstrap procedure, we extracted compositional biases associated with replication and identified the significant asymmetries. Although all taxa showed an overrepresentation of G relative to C on the leading strand (and imbalances between A and T), widely variable substitution asymmetries are noted. Surprisingly, all substitution types show significant asymmetry in at least one taxon, but none were universally biased in all taxa. Notably, in the two most biased genomes, A-->G, rather than C-->T, shapes the compositional bias. Given the variability in these biases, we propose that the process is multifactorial. Finally, we also find that most genomes are not at compositional equilibrium, and suggest that mutational-based heterotachy is deeply imprinted in the history of biological macromolecules. This shows that similar compositional biases associated with the same essential well-conserved process, replication, do not reflect similar mutational processes in different genomes, and that caution is required in inferring the roles of specific mutational biases on the basis of contemporary patterns of sequence composition.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, URA 2171, Institut Pasteur, 75015 Paris, France.
| | | | | |
Collapse
|
13
|
Palacios C, Wernegreen JJ. A strong effect of AT mutational bias on amino acid usage in Buchnera is mitigated at high-expression genes. Mol Biol Evol 2002; 19:1575-84. [PMID: 12200484 DOI: 10.1093/oxfordjournals.molbev.a004219] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The advent of full genome sequences provides exceptionally rich data sets to explore molecular and evolutionary mechanisms that shape divergence among and within genomes. In this study, we use multivariate analysis to determine the processes driving genome-wide patterns of amino usage in the obligate endosymbiont Buchnera and its close free-living relative Escherichia coli. In the AT-rich Buchnera genome, the primary source of variation in amino acid usage differentiates high- and low-expression genes. Amino acids of high-expression Buchnera genes are generally less aromatic and use relatively GC-rich codons, suggesting that selection against aromatic amino acids and against amino acids with AT-rich codons is stronger in high-expression genes. Selection to maintain hydrophobic amino acids in integral membrane proteins is a primary factor driving protein evolution in E. coli but is a secondary factor in Buchnera. In E. coli, gene expression is a secondary force driving amino acid usage, and a correlation with tRNA abundance suggests that translational selection contributes to this effect. Although this and previous studies demonstrate that AT mutational bias and genetic drift influence amino acid usage in Buchnera, this genome-wide analysis argues that selection is sufficient to affect the amino acid content of proteins with different expression and hydropathy levels.
Collapse
Affiliation(s)
- Carmen Palacios
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
14
|
Abstract
We tried to identify the substitutions involved in the establishment of replication strand bias, which has been recognized as an important evolutionary factor in the evolution of bacterial genomes. First, we analyzed the composition asymmetry of 28 complete bacterial genomes and used it to test the possibility that asymmetric deamination of cytosine might be at the origin of the bias. The model showed significant correlation to the data but left unexplained a significant portion of the variance and indicated a systematic underestimation of GC skews in comparison with TA skews. Second, we analyzed the substitutions acting on the genes from five fully sequenced Chlamydia genomes that had not suffered strand switch since speciation. This analysis showed that substitutions were not at equilibrium in Chlamydia trachomatis or in C. muridarum and that strand bias is still an on-going process in these genes. Third, we identified substitutions involved in the adaptation of genes that had switched strands after speciation. These genes adapted quickly to the skewed composition of the new strand, mostly due to C-->T, A-->G, and C-->G asymmetric substitutions. This observation was reinforced by the analysis of genes that switched strands after divergence between Bacillus subtilis and B. halodurans. Finally, we propose a more extended model based on the analysis of the substitution asymmetries of CHLAMYDIA: This model fits well with the data provided by bacterial genomes presenting strong strand bias.
Collapse
Affiliation(s)
- E P Rocha
- Atelier de BioInformatique, Université Paris VI, Paris, France.
| | | |
Collapse
|
15
|
Francino MP, Ochman H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol 2001; 18:1147-50. [PMID: 11371605 DOI: 10.1093/oxfordjournals.molbev.a003888] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|